

S4D03/S6D03 2019/2020: Assignment Four

1. Let X, Y be two independent Poisson random variables with corresponding parameters $\lambda_1 > 0$ and $\lambda_2 > 0$. Find the characteristic function of $X + Y$ and identify its distribution.

Proof:

$$\begin{aligned}\phi_{X+Y}(t) &= E[e^{it(X+Y)}] \\ &= E[e^{itX}]E[e^{itY}] \\ &= \sum_{k=0}^{\infty} e^{itk} \frac{\lambda_1^k}{k!} e^{-\lambda_1} \sum_{j=0}^{\infty} e^{itj} \frac{\lambda_2^j}{j!} e^{-\lambda_2} \\ &= e^{\lambda_1(e^{it}-1)} e^{\lambda_2(e^{it}-1)} \\ &= e^{(\lambda_1+\lambda_2)(e^{it}-1)}\end{aligned}$$

which implies that $X + Y$ is a Poisson random variable with parameter $\lambda_1 + \lambda_2$.

2. For each $n \geq 1$, let X_n be a random variable with distribution function

$$F_n(x) = \begin{cases} 0, & x < 0 \\ x - \frac{\sin(2n\pi x)}{2n\pi}, & 0 \leq x < 1 \\ 1, & \text{else.} \end{cases}$$

- (a) Show that $F_n(x)$ is indeed a distribution function.
- (b) Show that X_n has a density function.
- (c) Show that $F_n(x)$ converges in distribution to the uniform random variable X over $[0, 1]$ as n tends to infinity.
- (d) Show that the density function of X_n does not converge to the density function of X .

Proof: (a) By definition, we have that $F_n(x)$ is continuous in x and

$$F_n(-\infty) = 0, \quad F_n(+\infty) = 1.$$

The fact that

$$\frac{dF_n(x)}{dx} \geq 0$$

implies that $F_n(x)$ is non-decreasing in x . This $F_n(x)$ is a distribution function.

(b) Let

$$f_n(x) = \begin{cases} 0, & x < 0 \text{ or } x \geq 1 \\ 1 - \cos(2n\pi x), & 0 \leq x < 1 \end{cases}$$

Then it is clear that $f_n(x) \geq 0$ and

$$\int_{-\infty}^{+\infty} f_n(x) dx = \int_0^1 (1 - \cos(2\pi nx)) dx = 1.$$

Thus $f_n(x)$ is a probability density function. By direct calculation we have

$$\frac{dF_n(x)}{dx} = f_n(x).$$

Therefore $f_n(x)$ is actually the density function of X_n .

(c) The cdf of X is continuous and is given by

$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \leq x < 1 \\ 1, & \text{else.} \end{cases}$$

For any $x < 0$ or $x \geq 1$, we have $F_n(x) = F(x)$. For $0 \leq x < 1$, we have

$$\lim_{n \rightarrow \infty} F_n(x) = \begin{cases} 0, & x < 0 \\ x - \lim_{n \rightarrow \infty} \frac{\sin(2n\pi x)}{2n\pi}, & 0 \leq x < 1 \\ 1, & \text{else} \end{cases} = F(x).$$

(d) The pdf of X is

$$f(x) = \begin{cases} 0, & x < 0 \text{ or } x \geq 1 \\ 1, & 0 \leq x < 1 \end{cases}$$

Since $f_n(\frac{1}{2}) = 0$ or 2 while $f(\frac{1}{2}) = 1$, it follows that f_n does not converge to $f(x)$.

3. Let X_1, X_2, \dots be i.i.d. with common finite mean -2 and variance 1 . Show that

$$\frac{1}{n^2} \sum_{i,j=1, i \neq j}^n X_i X_j$$

converges almost surely to 4 .

Proof: Set

$$U_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

$$V_n = \frac{1}{n} \sum_{i=1}^n X_i^2,$$

and

$$W_n = \frac{1}{n^2} \sum_{i,j=1, i \neq j}^n X_i X_j.$$

Then we have

$$W_n = U_n^2 - \frac{1}{n} V_n.$$

By the strong law of large numbers, we have

$$U_n^2 \rightarrow 4, \text{ almost surely}$$

and

$$V_n \rightarrow 5, \text{ almost surely.}$$

Thus we have the desired the result.

4. Show that for $x \geq 0$,

$$\lim_{n \rightarrow \infty} \frac{1}{2^n} \sum_{k:|2k-n| \leq \sqrt{nx}} \binom{n}{k} = \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du,$$

$$\lim_{n \rightarrow \infty} \sum_{k:|k-n| \leq \sqrt{nx}} \frac{n^k}{k!} e^{-n} = \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du.$$

Proof: Let X_1, X_2, \dots be i.i.d. with

$$P(X_1 = 1) = \frac{1}{2} = P(X_1 = 0)$$

and

$$S_n = \sum_{i=1}^n X_i.$$

Then we have $E[X] = \mu = \frac{1}{2}$, $Var[X] = \sigma^2 = \frac{1}{4}$ and

$$P\left(\left|\frac{S_n - n\mu}{\sqrt{n\sigma^2}}\right| \leq x\right) = \frac{1}{2^n} \sum_{k:|2k-n| \leq \sqrt{nx}} \binom{n}{k}.$$

By Central Limit Theorem,

$$\lim_{n \rightarrow \infty} \frac{1}{2^n} \sum_{k:|2k-n| \leq \sqrt{nx}} \binom{n}{k} = \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du.$$

Next let Y_n be a Poisson random variable with parameter n . Then

$$P\left(\frac{Y_n - n}{\sqrt{n}} \leq x\right) = \sum_{k:|k-n| \leq \sqrt{nx}} \frac{n^k}{k!} e^{-n}.$$

By direct calculation,

$$\begin{aligned} E[e^{it(\frac{Y_n - n}{\sqrt{n}})}] &= e^{-it\sqrt{n}} e^{n(e^{\frac{it}{\sqrt{n}}}-1)} \\ &= e^{-\frac{t^2}{2} + o(1)}. \end{aligned}$$

By the continuity theorem, we get

$$\sum_{k:|k-n| \leq \sqrt{nx}} \frac{n^k}{k!} e^{-n} = \int_{-x}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du.$$