

S4D03/S6D03 2019/2020: Assignment One Solution [5 marks each]

1. Construct an example showing the union of two σ -fields is not a σ -field. Verify your result.

SOLUTION:

Let $\Omega = \{1, 2, 3, 4\}$, $\mathcal{F}_1 = \{\emptyset, \{1, 2\}, \{3, 4\}, \Omega\}$ and $\mathcal{F}_2 = \{\emptyset, \{1, 3\}, \{2, 4\}, \Omega\}$ are two σ -fields.

Let $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}, \Omega\}$

Suppose \mathcal{F} is a σ -field, then for any $A, B \in \mathcal{F}$, $A \cap B \in \mathcal{F}$.

Pick $A = \{1, 2\}$, $B = \{1, 3\}$, $A \cap B = \{1\} \notin \mathcal{F}$, which is a contradiction.

$\therefore \mathcal{F}$ as a union of two σ -field is not a σ -field.

2. Consider the sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$. Set $\mathcal{A} = \{\{1\}, \{3, 4\}, \{2, 4, 5\}\}$. Find the σ -field \mathcal{F} generated by \mathcal{A} .

SOLUTION:

Claim: $\mathcal{F} = \sigma(\mathcal{A}) = \sigma(\{\{1\}, \{3\}, \{4\}, \{6\}, \{2, 5\}\})$.

To prove this claim, it is required to show that i) $\mathcal{A} \subseteq \mathcal{F}$, ii) For any σ -field \mathcal{G} on Ω containing \mathcal{A} , $\mathcal{F} \subseteq \mathcal{G}$

Part i) $\{1\} \in \mathcal{F}$, $\{3, 4\} = \{3\} \cup \{4\} \in \mathcal{F}$, $\{2, 4, 5\} = \{4\} \cup \{2, 5\} \in \mathcal{F}$. i.e. every elements in \mathcal{A} is also in \mathcal{F} , $\mathcal{A} \subseteq \mathcal{F}$.

Part ii) Suppose \mathcal{G} is a σ -field on Ω containing \mathcal{A} , $\{1\} \in \mathcal{A}$, $\{3\} = \{3, 4\} \cap \{2, 4, 5\}^c$, $\{4\} = \{3, 4\} \cap \{2, 4, 5\}$, $\{6\} = (\{1\} \cup \{3, 4\} \cup \{2, 4, 5\})^c$, $\{2, 5\} = \{3, 4\}^c \cap \{2, 4, 5\}$, therefore, $\sigma(\{\{1\}, \{3\}, \{4\}, \{6\}, \{2, 5\}\}) \subseteq \mathcal{G}$

$$\begin{aligned} \mathcal{F} &= \sigma(\{\{1\}, \{3\}, \{4\}, \{6\}, \{2, 5\}\}) \\ &= \{\emptyset, \{1\}, \{3\}, \{4\}, \{6\}, \{2, 5\}, \\ &\quad \{1, 3\}, \{1, 4\}, \{1, 6\}, \{1, 2, 5\}, \{3, 4\}, \{3, 6\}, \{3, 2, 5\}, \{4, 6\}, \{4, 2, 5\}, \{6, 2, 5\}, \\ &\quad \{1, 3, 4\}, \{1, 3, 6\}, \{1, 3, 2, 5\}, \{1, 4, 6\}, \{1, 4, 2, 5\}, \{1, 6, 2, 5\}, \{3, 4, 6\}, \{3, 4, 2, 5\}, \{3, 6, 2, 5\}, \{4, 6, 2, 5\}, \\ &\quad \{1, 3, 4, 6\}, \{1, 3, 4, 2, 5\}, \{1, 3, 6, 2, 5\}, \{1, 4, 6, 2, 5\}, \{3, 4, 6, 2, 5\}, \Omega\} \end{aligned}$$

3. Let E_1, E_2, \dots be a sequence of disjoint measurable sets in the measurable space (Ω, \mathcal{F}) . Given a sequence of real numbers a_1, a_2, \dots , define

$$f_n(\omega) = \sum_{i=1}^n a_i I_{E_i}(\omega)$$

and

$$f(\omega) = \sum_{i=1}^{\infty} a_i I_{E_i}(\omega).$$

Show that f_n converges pointwise to f as n tends to infinity.

SOLUTION:

We want to show that $\lim_{n \rightarrow \infty} f_n(\omega) = f(\omega)$ for any $\omega \in \Omega$.

$$\text{Let } E^c = \left(\bigcup_{i=1}^{\infty} E_i \right)^c.$$

If $\omega \in E^c$, $f_n(\omega) = 0$ for any n , and $f(\omega) = 0$, $\lim_{n \rightarrow \infty} f_n(\omega) = f(\omega)$.

If $\omega \notin E^c$, then ω belongs to one and only one E_i since E_i 's are disjoint, say $\omega \in E_k$, then $I_{E_k}(\omega) = 1$ and $I_{E_i}(\omega) = 0$ for any $i \neq k$. $f_n(\omega) = a_k$ for any $n \geq k$, and $f(\omega) = a_k$, that is $\lim_{n \rightarrow \infty} f_n(\omega) = f(\omega)$.

4. Let Ω be the set of all rational numbers in $[0, 1]$. Set

$$\mathcal{C} = \{A_{a,b} : 0 \leq a \leq b \leq 1, A_{a,b} = \{\omega \in \Omega : a \leq \omega \leq b\}\}$$

and define the set function

$$\mu(A_{a,b}) = b - a.$$

Show that μ is not a probability.

SOLUTION:

Ω is a countable set.

$$\mu(\Omega) = \mu \left(\bigcup_{r \in \Omega} A_{r,r} \right) = \sum_{r \in \Omega} \mu(A_{r,r}) = \sum_{r \in \Omega} (r - r) = \sum_{r \in \Omega} 0 = 0 \neq 1$$

μ is not a probability.