S4D03/S6D03 2019/2020: Assignment Two Solution

1 [5’]. Let f be a real-valued measurable function on the probability space (Q, F, P). Assume that
f(w) > 1 almost surely under P and [ f(w)P(dw) = 1. Show that f(w) =1 almost surely under P.

SOLUTION:

Let A, = {w:1 < f(w) <1+ 1} since f(w) > 1 almost surely, A5 = {w : f(w) > 1+ 1}
U A% = {w: f(w) > 1}. To show that f(w) = 1 almost surely under P, it is sufficient to show
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2. Let {A,}n>1 and {B, },,>1 be two sequences of measurable sets in the measurable space (2, F).
Set Cp, = A, N By, D, = A, UB,.
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(2) [2] Show by example the two inclusions in (1) can be strict.

SOLUTION:
(1) PART A For any
we lim Oy = N U (4mnBn)
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which means for any N > 1, exists m > N such that w € A,, N By, then w € A,,, and w € B,,.
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a)w € ( lim An) means that there exists Ny > 1, such that for any m > Ny, w € A,,, or
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w € B,,.

Then there exists N = max{Ny, No} > 1, such that for any m > N, w € A,, or w € By, i.e.,
w € A, UB,,.
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(2) Let

A - {0} if n is odd B {1} if n is odd
{1} if n is even " {0} if n is even
then C,, = A, N B, = & for all n, h?n C,=60.

0 € lim A, since 0 exists in a subsequence of A,,. For the same reason, 0 € lim B,.
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The first inclusion can be strict.



D, = A,UB, ={0,1} for all n, lim D, = {0,1}. However, neither 0 nor 1 exists in a tail of

n—oo

A, (or B,). lim A, = lim B, = @. The second inclusion can also be strict.
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3 [4’]. Consider the following two simple functions on a probability space (2, F, P)
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Find [(f(w)+ g(w))*P(dw).

SOLUTION:
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is a simple function.
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4 [5’]. Let X,,,n > 2 be a sequence of random variables such that
2
P{X,=0}=1-—,
1
P{X,=n}=P{X,=—-n}= 2

Show that {X,,},>2 converges to 0 almost surely.
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SOLUTION:

Lemma 10.2 Let {a,} be a sequence with limit a, Y}, is a sequence of random variable satisfying
S P(Y, — an| > €) < oo for any € > 0, then Y,, converges to a almost surely.
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Choose {a,} = 0 for all n, then a = lim,,_,o = 0. Without loss of generality, let 0 < e < 1.
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By Lemma 10.2, {X,, },,>2 converges to 0 almost surely.



