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Diffusion Processes and the Ewens
Sampling Formula
Shui Feng

Abstract. Crane [The ubiquitous Ewens sampling formula (2016) Preprint]
provides an excellent review of Ewens’ sampling formula (henceforth, ESF),
its applications in and connections with various subjects. This note intends
to extend the discussion a little bit. The focus will be on nonequilibrium ESF
involving diffusion processes, ESF with symmetric selection and asymptotics
of ESF. The references listed are by no means exhaustive.
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Let S↓ be the ranked simplex and νθ be King-
man’s Poisson–Dirichlet distribution on S↓ with pa-
rameter θ > 0. For notational convenience, we de-
note the generic element of S↓ by x = (x1, x2, . . .),
y = (y1, y2, . . .), etc. Consider a population of indi-
viduals of various types. If the random proportions of
types follow the law νθ , then ESF gives the distribu-
tion of the allelic partitions of random samples from
the population. Given the sample size n and an allelic
partition m = (m1, . . . ,mn), set fm(x) = 1 for n = 1
and for n > 1,

fm(x) = n!∏n
j=1(j !)mj mj !

· ∑
distinct kij

xk11 · · ·xk1m1
x2
k21

· · ·

· x2
k2m2

· · ·xn
kn1

· · ·xn
knmn

.

The ESF can be written as ESFn(m; θ) =∫
S↓ fm(x)νθ (d x).
The distribution νθ can be constructed from a se-

quence of Dirichlet distributions through a Poisson
type limiting procedure. Ethier and Kurtz (1981) gen-
eralized this construction to a dynamical setting and
constructed an infinite dimensional diffusion process
with reversible measure νθ . The process is an infinite
dimensional limit of a sequence of finite-dimensional
Wright–Fisher diffusions. It describes the evolution of
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random proportions of a population under the influence
of parent independent mutation with mutation rate θ

and random sampling. The generator of the process on
an appropriate domain has the form

Aθ = 1

2

[ ∞∑
i,j=1

xi(δij − xj )
∂2

∂xi ∂xj

− θ

∞∑
i=1

xi

∂

∂xi

]
,

δij is the Kronecker delta.

Starting from any point x, the distribution νθ (t) of the
process at each fixed time t > 0 is shown in Ethier
(1992) to be absolutely continuous with respect to νθ

and the density function is

q(t,x,y) = 1 +
∞∑

k=2

e−λktϕk(x,y),

where λk = k(k−1+θ)
2 , and

ϕk(x,y) = 2k − 1 + θ

k!
k∑

n=0

(−1)k−n

(
k

n

)

· �(n + k − 1 + θ)

�(n + θ)
pn(x,y).

Here �(·) denotes the gamma function, and the func-
tion pn(x,y) has the form

pn(x,y) = ∑
m

fm(x)fm(y)

ESFn(m; θ)
,

and the summation is over all allelic partitions of the
size n sample. It is clear that q(t,x,y) converges to 1
as t tends to infinity. The summation starting from 2 is
a result of the ordering procedure.
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Rearranging the terms, one obtains the following
representation for q(t,x,y):

q(t,x,y) = d0(t) +
∞∑

n=1

dn(t)pn(x,y),

where

d0(t) = 1−
∞∑

k=1

e−λkt
2k + θ − 1

k! (−1)k−1 �(θ + k − 1)

�(θ)

and for n ≥ 1,

dn(t) =
∞∑

k=n

e−λkt
2k + θ − 1

k! (−1)k−n

(
k

n

)

· �(n + θ + k − 1)

�(n + θ)
.

Here dn(t) is the probability of having n ancestors at
time t in Kingman’s coalescent and the representation
of dn(t) is derived in Tavaré (1984).

This representation of q(t,x,y) gives a clear picture
about the population structure at each positive time t .
Initially individuals in the population have types (old
types) with proportions x. The population evolves un-
der the influence of random sampling and mutation.
Random sampling changes proportions of each type
while each mutation results in a new type not seen be-
fore. At each positive time, the population is a mixture
of individuals of old types and new types. The number
of old types is always finite and the distribution is given
by Kingman’s coalescent. For each n ≥ 1, the function
pn(x,y) reflects the details of the mixture when the
number of old types is n and the type of proportions
in the population is y. An unordered model, a particu-
lar Fleming–Viot process, is studied in Ethier and Grif-
fiths (1993) where the distribution at each positive time
is represented as a mixture of posteriors of the Dirich-
let process. The mixing factor is given by Kingman’s
coalescent.

For each fixed t > 0, the nonequilibrium ESF gives
the distribution of the allelic partitions of random sam-
ples from the population when the random proportions
follow the law νθ (t). For any n ≥ 1 and allelic partition
m, the nonequilibrium ESF is

ESFn(m; t, θ) = ESFn(m; θ) + Fn(t),

where

Fn(t) =
∞∑

k=2

e−λkt
∫
S↓

ϕk(x,y)fm(y)νθ (d y).

The nonequilibrium factor Fn(t) describes the impact
of finite time and diminishes as t tends to infinity.

Griffiths (1979a) is the first to obtain the nonequilib-
rium or transient ESF. The integral on the right-hand
of the above equation can be calculated explicitly.

For 0 < α < 1, θ + α > 0, let να,θ denote the
two-parameter Poisson–Dirichlet distribution. Petrov
(2009) constructed an infinite dimensional diffusion
process that has να,θ as the reversible measure. Alter-
nate constructions were obtained later in Feng and Sun
(2010), Ruggiero and Walker (2009). The generator of
the diffusion process has the form

Aα,θ = 1

2

[ ∞∑
i,j=1

xi(δij − xj )
∂2

∂xi ∂xj

− θ

∞∑
i=1

(xi + α)
∂

∂xi

]

on an appropriate domain and the transition density
function is obtained in Feng et al. (2011). Given the
sample size n and the allelic partition m, the Pit-
man’s sampling formula or the two-parameter ESF,
PSFn(m;α, θ), also has a nonequilibrium version:

PSFn(m; t, α, θ) = PSFn(m;α, θ) + Gn(t),

where Gn(t) is obtained by replacing νθ with να,θ in
the expression of Fn(t). More details are found in Xu
(2011), Zhou (2015).

ESF with selection.
For any real numbers s and r ≥ 1, set

hr(x) =
∞∑
i=1

xr
i , φr(x) = exp

{
shr(x)

}
.

The function h2 is the homozygosity and the parameter
s is the selection intensity. The probability

ν
φr

θ (d x) = φr(x)νθ (d x)

is called the Poisson–Dirichlet distribution with sym-
metric selection. Grote and Speed (2002) studied the
sampling formula under ν

φ2
θ when s < 0 and obtained

a useful approximation. Handa (2005) studied the gen-
eral case. For given sample size n and allelic partition
m, the sampling formula is∫

S↓
fm(x)ν

φr

θ (d x)

= ESFn(m; θ) + n!
n∏

i=1

θmi

(j !)mimi !
∞∑
l=1

θ l

l! Il(m),

where Il(·) has explicit integral form depending on s

and r . The structure of this formula is very similar
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to the nonequilibrium ESF. An alternate derivation is
found in Huillet (2007).

Asymptotics.
In the neutral evolution model, the parameter θ is

the scaled population mutation rate and is equal to
4Nu with u being the individual mutation rate and N

the effective population size. The Poisson type limit
is to let N tend to infinity and u tend to zero while
the product Nu is held constant. If N goes to infin-
ity faster or slower than 1/u, one would be dealing
with limiting procedures of θ tending to infinity or
zero. Given sample size n, let m0 = (0,0, . . . ,1) and
m∞ = (n,0, . . . ,0) be two allelic partitions. Then the
ESFs corresponding to θ = 0 and θ = ∞ are Dirac
measures at m0 and m∞, respectively. Asymptotic re-
sults for ESF such as central limit theorems and large
deviations can be found in Griffiths (1979b), Joyce,
Krone and Kurtz (2002) and Feng (2007).
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