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UNCONDITIONAL LARGE DEVIATION PRINCIPLES FOR DIRICHLET
POSTERIOR AND BAYESIAN BOOTSTRAP

BY SHUI FENGa

Department of Mathematics and Statistics, McMaster University, ashuifeng@mcmaster.ca

The unconditional or annealed large deviation principles are established
for the Dirichlet posterior and the Bayesian bootstrap. The rate functions
are identified explicitly, which provide new measurements of divergence be-
tween probabilities. As applications, we study the asymptotic efficiencies of
the Dirichlet posterior mean and the Bayesian bootstrap mean.

1. Introduction. Let S be a compact Polish space with the Borel σ -field 𝒮 . Denote
by C(S) and B(S) the spaces of continuous functions and bounded measurable functions
on S, respectively. The space of probability measures on (S,𝒮) is denoted by M1(S) which
is equipped with the weak topology. The space M1(M1(S)) is defined similarly. To avoid
triviality, we assume that S contains at least two elements. For any f in C(S) and μ in
M1(S), the integral of f with respect to μ is denoted by ⟨μ,f ⟩.

For any θ > 0, let U1,U2, . . . be i.i.d. with Beta(1, θ) distribution. Independently, let
ξ1, ξ2, . . . be i.i.d. with common distribution ν0 in M1(S). The Dirichlet process [8] on (S,𝒮)

with mean distribution ν0 and concentration parameter θ , denoted by Πθ,ν0 , is the law of the
random measure

(1.1) Ξθ,ν0 =
∞∑︂
i=1

Viδξi
,

where V1 = U1, Vi = (1 − U1) · · · (1 − Ui−1)Ui , i ≥ 2 and δξ denotes the Dirac measure at
ξ . Given observations X1, . . . ,Xn from the Dirichlet process, set

νn = θ

θ + n
ν0 + n

θ + n

n∑︂
i=1

δXi
.

Then a version of the corresponding Dirichlet posterior distribution is given by Πθ+n,νn ,
which is the law of the random measure

(1.2) Ξ
(n)
θ,ν0

= U(n)Ξθ,ν0 + (︁
1 − U(n))︁ n∑︂

i=1

Wn,iδXi

where U(n) is Beta(θ, n) distributed, (Wn,1, . . . ,Wn,n) has Dirichlet(1, . . . ,1) distribution,
and all random variables appearing on the right-hand side are independent given X1, . . . ,Xn.
The Bayesian bootstrap corresponds to θ = 0.

For any ν1 in M1(S), let ν∞
1 denote the infinite product measure of ν1. Given that

X1,X2, . . . are i.i.d. with common distribution ν1, the Dirichlet posterior is strongly con-
sistent in the sense that, with ν∞

1 probability one, Πθ+n,νn converges to δν1 in M1(M1(S)) as
n tends to infinity. In other words, for almost all observations under ν∞

1 , the random measure

Ξ
(n)
θ,ν0

converges in probability to ν1 as n tends to infinity.
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The study of large sample asymptotic behaviours for the Dirichlet posterior and the
Bayesian bootstrap is part of frequentist Bayesian inference. Consistency and normal fluc-
tuations (Bernstein–von Mises theorem) have been the focus of active research over the years
[13, 16, 17, 21, 24]. In [11] a conditional large deviation principle was established for the
Dirichlet posterior. More specifically, for any measurable set A with interior A◦ and closure
Ā, one has for almost all observations under ν∞

1

− inf
μ∈A◦ I (μ) ≤ lim

n→∞
1

n
lnΠθ+n,νn

(︁
A◦)︁≤ lim

n→∞
1

n
lnΠθ+n,νn(Ā) ≤ − inf

μ∈Ā
I (μ),

where I (μ) is a good rate function, and, for ν1 with support S, is equal to the Kullback–
Leibler divergence or relative entropy

(1.3) H(ν1|μ) = sup
{︁⟨ν1, f ⟩ − ln

⟨︁
μ,ef ⟩︁ : f ∈ C(S)

}︁
.

A comparison with the frequentist inference is revealing. Recall that for i.i.d. sequence
X1,X2, . . . with common distribution ν1, the empirical distribution

ℒn = 1

n

n∑︂
i=1

δXi

converges almost surely to ν1 as n tends to infinity. In addition, the functional central limit
theorem holds for ℒn. Thus Ξ

(n)
θ,ν0

and ℒn have similar large sample behaviours under ν∞
1 in

terms of law of large numbers and normal fluctuations. But the more refined large deviation
results reveal the fundamental difference between the two. By Sanov’s theorem [23], ℒn

satisfies a large deviation principle with the good rate function H(μ|ν1) while the conditional
large deviation rate function for Ξ

(n)
θ,ν0

has the reversed form H(ν1|μ).
The large deviation principle for ℒn is a frequentist result while the conditional large de-

viation result for Ξ
(n)
θ,ν0

is purely Bayesian. The objective of this paper is to understand the
large deviation behaviour of the combined frequentist and Bayesian structure of the Dirichlet
posterior. More specifically, we are interested in the large deviation principle for the law of
Ξ

(n)
θ,ν0

under Πθ,ν0 × ν∞
1 denoted by Π

(n)
θ,ν0,ν1

. Using the terminology of statistical mechanics,
the conditional large deviation principle in [11] can be viewed as quenched large deviations
while the main result in this paper is the annealed large deviations. As application, we will
study the asymptotic efficiency of the Dirichlet posterior mean in terms of large deviation
rate functions. In particular we observe the following:

• The Dirichlet posterior mean is asymptotically less efficient than the Dirichlet mean and
the sample mean.

• If ν1 is uniform over [0, τ ] for some 0 < τ ≤ 1, then the Dirichlet mean and the sample
mean have the same asymptotic efficiency while the Dirichlet posterior mean is strictly
less efficient than both.

The development of the paper is as follows. The main result of annealed large deviation
principle will be presented in Section 2. The rate function is identified explicitly. It consists
of a frequentist part and a Bayesian part. The main result is applied in the study of asymptotic
efficiencies of three random means in Section 3. The proof of the main result is contained in
Section 4. All terms and definitions regarding large deviations are found in [6].

2. Main result. Recall that S be a compact Polish space. By Urysohn’s embedding
lemma, the space S is homeomorphic to a compact subspace of ℝ

∞. For ease of presen-
tation, we choose S = [0,1] in the sequel, which contains all the ingredient for the proof of
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general cases. The space of probability measures on S, M1(S), is equipped with the weak
topology, which is generated by the metric

ρ(υ,μ) =
∞∑︂
i=1

|⟨υ − μ,fi⟩| ∧ 1

2i
, υ,μ ∈ M1(S),

where {fi ∈ C(S) : i = 1,2, . . .} be a countable dense subset of C(S). The main result of this
paper is the following theorem.

THEOREM 2.1. Fix ν1 in M1(S) with topological support supp(ν1) containing at least
two points in S. Then the family {Π(n)

θ,ν0,ν1
: n ≥ 1} satisfies a large deviation principle on

M1(S) with speed n and good rate function

(2.1) Jν1(μ) =
⎧⎨
⎩

inf
υ∈M1(S)

{︁
H(υ|μ) + H(υ|ν1)

}︁
supp(μ) ⊂ supp(ν1)

∞ else.

Equivalently, due to the compactness of M1(S), we have for any μ in M1(S)

(2.2)
lim
δ→0

lim
n→∞

1

n
lnΠ

(n)
θ,ν0,ν1

(︁
ρ(υ,μ) < δ

)︁= lim
δ→0

lim
n→∞

1

n
lnΠ

(n)
θ,ν0,ν1

(︁
ρ(υ,μ) ≤ δ

)︁
= −Jν1(μ)

and, for any c ≥ 0, the set {υ ∈ M1(S) : Jν1(υ) ≤ c} is compact.

REMARKS.

(a) The large deviation result does not depend on θ and ν0. Thus the Dirichlet posterior
and the Bayesian bootstrap have the same large deviation behaviour.

(b) There are two sources of randomness in the Bayesian bootstrap
∑︁n

i=1 Wn,iδXi
: the

prior reflected in the random weights and the i.i.d. observations (frequentist component).
These correspond to the two parts in Jν1(μ). Noting that

H(μ|ν1) = H(μ|μ) + H(μ|ν1), H(ν1|μ) = H(ν1|μ) + H(ν1|ν1),

it follows that for supp(μ) ⊂ supp(ν1), Jν1(μ) is less than both H(μ|ν1) and H(ν1|μ). This
reflects the impact of the combined randomness.

(c) If the Dirichlet(1, . . . ,1) weights in the Bayesian bootstrap are replaced with
Dirichlet(an, . . . , an) weights for an tending to infinity, then the unconditional large deviation
principle would be similar to the large deviation principle for the empirical distribution ℒn.
On the other hand, if the i.i.d. observations are replaced with triangular arrays X

(n)
1 , . . . ,X

(n)
n

and the empirical distribution

1

n

n∑︂
k=1

δ
X

(n)
k

satisfies a large deviation principle with speed nγ for some γ > 1, then the unconditional
large deviation principle will be similar to the conditional large deviation principle in [11].
The latter has been established in [10] and [9], where the corresponding triangular array are
the eigenvalues of random matrices.

(d) For any μ, ν in M1(S), the function Jν(μ) defined as in (2.1) provides a new mea-
surement of divergence between μ and ν, which we call the J -divergence. It is nonnegative,
symmetric, convex, and equals to zero only when μ = ν. Since the triangle inequality does



2970 S. FENG

not hold, it is not a metric. But the finiteness of Jν(μ) does not require the absolute continuity
between μ and ν. This can be seen from the following example:

υ(dx) = dx, μ(dx) = 1

2

[︁
υ(dx) + δ{0}(dx)

]︁
,

ν(dx) = 1

2

[︁
υ(dx) + δ{1}(dx)

]︁
, x ∈ S.

It follows from direct calculation that

H(υ|μ) = ln 2 = H(υ|ν), Jν(μ) ≤ 2 ln 2.

Clearly H(μ|ν) = H(ν|μ) = ∞. Thus Jν(μ) can be strictly less than the minimum of
H(μ|ν) and H(ν|μ). This helps in quantifying the relative information between probabilities
that have no absolute continuity relation.

(e) Let dh and dtv denote the Hellinger distance and the total variation distance on M1(S)

respectively. Then, for any μ, ν in M1(S) we have by Pinsker’s inequality,

d4
h(μ, ν) ≤ 4d2

tv(μ, ν) ≤ 16Jν(μ).

3. Application. Let ν1 in M1(S) have mean value κ and variance σ 2. Assume the ob-
servations X1,X2, . . . are i.i.d.with common distribution ν1. Recall that for any f in C(S)

and μ in M1(S), the integral of f with respect to μ is denoted by ⟨μ,f ⟩. The mean of μ

corresponds to f (x) = x. In this section, we will apply the main result to the analysis of the
asymptotic behaviours of following three random means:

sample mean = ⟨ℒn, x⟩,
Dirichlet mean = ⟨Ξn,ν0, x⟩,

Dirichlet posterior mean = ⟨︁
Ξ

(n)
θ,ν0

, x
⟩︁
.

The study of random means has been an active research area over the years. Two compre-
hensive surveys on the subject can be found in [15] and [19].

By direct calculation, we obtain that

𝔼
[︁⟨ℒn, x⟩]︁= 𝔼

[︁⟨Ξn,ν0, x⟩]︁= κ,

𝔼
[︁⟨︁
Ξ

(n)
θ,ν0

, x
⟩︁]︁= n

n + θ
κ + θ

n + θ
⟨ν0, x⟩,

and

Var
[︁⟨ℒn, x⟩]︁= σ 2

n
,

Var
[︁⟨Ξn,ν0, x⟩]︁= σ 2

n + 1
,

Var
[︁⟨︁
Ξ

(n)
θ,ν0

, x
⟩︁]︁= 2nσ 2

(n + θ)(n + θ + 1)

+ θ

(n + θ)2(n + θ + 1)

[︁
κ2 + (n + θ)

⟨︁
ν0, x

2⟩︁− θ⟨ν0, x⟩2 − 2nκ⟨ν0, x⟩]︁.
Thus all three means are either unbiased or asymptotically unbiased estimators of κ , and

have the same magnitude of fluctuations. It is natural to ask which of these provide a better
or more efficient estimation?
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Following [1], we compare these means through the study of their asymptotic efficiencies
characterized by the large deviation rate functions. The asymptotically more efficient esti-
mators will have bigger rate functions. This criterion has been used in the comparison of
weighted bootstraps [2]. Rate functions are usually proportional to the Fisher information,
which is consistent with the well known Cramér–Rao theory.

Noting that the map

M1(S) → ℝ, μ → ⟨μ,x⟩
is continuous, the following result follows by a direct application of Theorem 2.1, the large
deviations for the Dirichlet process [5, 18], the Sanov’s theorem, and the contraction princi-
ple.

THEOREM 3.1. The laws of the families {⟨ℒn, x⟩ : n ≥ 1}, {⟨Ξn,ν0, x⟩ : n ≥ 1}, and

{⟨Ξ(n)
θ,ν0

, x⟩ : n ≥ 1} satisfy large deviation principles on S with the same speed n and re-
spective good rate functions

I1(u;ν1) = inf
μ∈M1(S)

{︁
H(μ|ν1) : ⟨μ,x⟩ = u

}︁
,

I2(u;ν1) = inf
μ∈M1(S)

{︁
H(ν1|μ) : ⟨μ,x⟩ = u

}︁
,

I3(u;ν1) = inf
μ∈M1(S)

{︁
Jν1(μ) : ⟨μ,x⟩ = u

}︁
.

By Theorem 2.1, we have I3(u;ν1) ≤ min{I1(u;ν1), I2(u;ν1)} for all u. Hence the Dirich-
let posterior mean is less efficient than both the sample mean and the Dirichlet mean. The
inequality can be strict as the following example indicates:

ν1(dx) = 1

2
[δ0 + δ1],

μ(dx) = 3

4
δ0 + 1

4
δ1,

I1

(︃
1

4
;ν1

)︃
= H(μ|ν1) = 3

4
ln 3 − ln 2,

I2

(︃
1

4
;ν1

)︃
= H(ν1|μ) = ln 2 − ln 3

2
,

and

I3

(︃
1

4
;ν1

)︃
= ln

4

2 + √
3
.

Clearly we have

I3

(︃
1

4
;ν1

)︃
< I1

(︃
1

4
;ν1

)︃
< I2

(︃
1

4
;ν1

)︃
.

The rate functions I1(u;ν1) and I2(u;ν1) are the forward information projection and the
reverse information projection, respectively. There is no simple order between them in gen-
eral. It is known that the forward information projection over convex set has an explicit so-
lution [3], and the reverse information projection has a solution over any log-convex domain
[4]. Since the set {μ ∈ M1(S) : ⟨μ,x⟩ = u} is not log-convex, it is not clear whether one can
identify the minimizer, and thus I2(u) explicitly.

Our next result shows that if ν1(dx) is uniform over [0, τ ] for some 0 < τ ≤ 1, then we
have I3(u, ν1) < I1(u;ν1) = I2(u;ν1) for u ≠ τ/2. In other words, the sample mean and the
Dirichlet mean have the same efficiency while the Dirichlet posterior mean is strictly less
efficient than both.
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THEOREM 3.2. Let ν1 be the uniform distribution over [0, τ ]. Then, for any 0 ≤ u ≤ τ ,

I1(u, ν1) = I2(u;ν1)

=
∫︂ τ

0
ln(α + βx)ν1(dx)(3.1)

= F−1(u/τ)(u − τ) + ln
(︁
1 + F−1(u/τ)u

)︁
,

where

α + τβ = αeτβ, α + βu = 1

and

F(z) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
z = 0,

ez

ez − 1
− 1

z
else.

In addition, we have for u ≠ τ/2

(3.2) I3(u, ν1) < I1(u, ν1) = I2(u;ν1).

PROOF. By the minimum discrimination information theorem (pages 36–39 in [14]), the
infimum of I1(u;ν1) is achieved at a probability measure μ0 satisfying

μ0(dx) = cerxν1(dx).

The constraints ⟨︁
ν1, ce

rx ⟩︁= 1,
⟨︁
ν1, cxerx ⟩︁= u

imply that

c = rτ

erτ − 1
, cerτ − 1 = ur,

and

u/τ = erτ

erτ − 1
− 1

rτ
= F(rτ).

By direct calculation,

I1(u;ν1) = H(μ0|ν1)

= 1

τ

∫︂ τ

0
cerx(ln c + rx) dx

= ln c + ru

= τr(u − 1) + ln(1 + τru)

= F−1(u/τ)(u − τ) + ln
(︁
1 + F−1(u/τ)u

)︁
.

On the other hand, for any μ in M1(S), let μ = μ1 + μ2 be the Lebesgue decomposition
of μ with respect to ν1, with μ1 ≪ ν1 and μ2 ⊥ ν1. Set f (x) = dμ1

dν1
, the Radon–Nikodym

derivative of μ1 with respect to ν1. Then for any u in S we have

I2(u;ν1) = inf
{︁⟨︁
ν1,− lnf (x)

⟩︁ : ⟨μ1 + μ2, x⟩ = u,μ1 ≡ ν1
}︁

= inf
{︁⟨︁
ν1,− lnf (x)

⟩︁ : f > 0, ν1-a.s.,
⟨︁
ν1, f (x)

⟩︁≤ 1,
⟨︁
ν1, xf (x)

⟩︁≤ u
}︁

(3.3)

= inf
a∈(0,1],b∈(0,a∧u] inf

f ∈Γa,b

{︁⟨︁
ν1,− lnf (x)

⟩︁}︁
,
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where

Γa,b = {︁
f ∈ B(S) : f > 0, ν1-a.s.,

⟨︁
ν1, f (x)

⟩︁= a,
⟨︁
ν1, xf (x)

⟩︁= b
}︁
.

For any 0 < a ≤ 1, and 0 < b ≤ u ∧ (τa), let λ1(a, b) and λ2(a, b) be such that

(3.4) λ1(a, b) + τλ2(a, b) = λ1(a, b)eaτλ2(a,b), aλ1(a, b) + bλ2(a, b) = 1.

Since b ≤ τ ∧ a, it follows that

λ1(a, b) > 0, λ1(a, b) + λ2(a, b) > 0.

Thus the nonnegative function

ga,b(x) = 1

λ1(a, b) + λ2(a, b)x

is well defined. It follows from direct calculation that⟨︁
ν1, ga,b(x)

⟩︁= a,
⟨︁
ν1, xga,b(x)

⟩︁= b.

Thus ga,b is in Γa,b. For any f in Γa,b, we obtain∫︂ τ

0

f (x)

ga,b(x)
ν1(dx) =

∫︂ τ

0

(︁
λ1(a, b) + λ2(a, b)x

)︁
f (x)ν1(dx) = 1

and ∫︂ τ

0
ln

f (x)

ga,b(x)
ν1(dx) ≤ ln

(︃∫︂ τ

0

f (x)

ga,b(x)
ν1(dx)

)︃
= 0.

Hence ⟨︁
ν1,− lnf (x)

⟩︁≥ ⟨︁
ν1,− lnga,b(x)

⟩︁
,

and the infimum of ⟨ν1,− lnf (x)⟩ is achieved at ga,b. It is not difficult to see that the map
from (a, b) to (λ1, λ2) is one-to-one, and

∂a

∂λ1
< 0,

∂a

∂λ2
< 0,

∂b

∂λ1
< 0,

∂b

∂λ2
< 0.

It follows that ⟨ν1,− lnga,b(x)⟩ is decreasing in both a and b, and the infimum is achieved
for a = 1, b = u. Solving the equations in (3.4), we obtain

u/τ = F
(︁−τλ2(1, u)

)︁
.

Thus by (3.3) we obtain

I2(u;ν1) = −
∫︂ τ

0
lng1,u(x)ν1(dx)

=
∫︂ τ

0
ln(α + βx)ν1(dx)

which implies (3.1) by taking α = λ1(1, u), β = λ2(1, u).
Finally we turn to the proof of (3.2). For any u ≠ τ/2, let

μ1(dx) = g1,u(x)ν1(dx)

and

μλ = λμ0 + (1 − λ)μ1, 0 ≤ λ ≤ 1.
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It is clear that μλ is in M1(S) and ⟨μλ,x⟩ = u for all λ. By direct calculation we obtain

I3(u, ν1) ≤ Jν1(μλ)

≤ H
(︁
λμ0 + (1 − λ)ν1|μλ

)︁+ H(
(︁
λμ0 + (1 − λ)ν1|ν1

)︁
.

It follows from the pair convexity that

H(
(︁
λμ0 + (1 − λ)ν1|ν1

)︁≤ λI1(u, ν1)

and

H
(︁
λμ0 + (1 − λ)ν1|μλ

)︁≤ (1 − λ)I2(u, ν1).

Since the first inequality is strict for some λ in (0,1), it follows that

H
(︁
λμ0 + (1 − λ)ν1|μλ

)︁+ H(
(︁
λμ0 + (1 − λ)ν1|ν1

)︁
< λI1(u, ν1) + (1 − λ)I2(u, ν1)

= I1(u, ν1).

Putting all these together we obtain (3.2). □

REMARKS.

(a) Let ν2 denote the law of ⟨Ξ1,ν0, x⟩ and η1, η2, . . . be i.i.d. with common distribution ν2.
Then by the Gamma–Dirichlet algebra (Theorem 1.1 in [7]) we have

⟨Ξn,ν0, x⟩ d=
n∑︂

i=1

Wn,iηi,

which implies that

I2(u;ν1) = I3(u;ν2).

(b) The distribution of the Dirichlet mean has been derived explicitly in many cases
in [22]. For diffuse probability measure ν1, the law of the Dirichlet mean ⟨Ξn,ν0, x⟩ for n ≥ 2
is absolutely continuous with respect to the Lebesgue measure with the Radon–Nikodym
derivative

qn(x) = n − 1

π

∫︂ x

0
(x − y)n−2e−n

∫︁ 1
0 ln |y−z|ν1(dz) sin(nπν1

(︁[0, y])︁dy, 0 ≤ x ≤ 1.

But it is not clear how this can be used to obtain the explicit form of I2(u, ν1).

4. Proof of the main result. For ease of presentation, we assume that the topological
support of ν1 is S. The general case follows directly by defining the rate function to be
infinity for μ with supp(μ) ⊄ supp(ν1).

For any m ≥ 1 and any partition A1, . . . ,Am of S, define the map

π : M1(S) → △m, υ → (︁
υ(A1), . . . , υ(Am)

)︁
,

where

△m =
{︄
(x1, . . . , xm) ∈ [0,1] × · · · × [0,1] :

m∑︂
k=1

xk = 1

}︄
.

Let ai = θν0(Ai), pi = ν1(Ai), i = 1, . . . ,m, and

ni = #{1 ≤ k ≤ n : Xk ∈ Ai}, i = 1, . . . ,m.
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Then π(Ξ
(n)
θ,ν0

) has Dirichlet(a1 + n1, . . . , am + nm) distribution, and π(ℒn) has multino-
mial distribution with parameters n, p1, . . . , pm. If ai + ni = 0 (pi = 0) for some i, then
the corresponding coordinate in the Dirichlet (multinomial) distribution will be zero and the
distribution can be viewed as a Dirichlet (multinomial) distribution on a lower dimensional
space. Thus, without loss of generality, we assume ai + ni > 0, pi > 0 for i = 1, . . . ,m.

LEMMA 4.1. For any μ, υ in M1(S), set

π(μ) = (q1, . . . , qm) = q, π(υ) = (o1, . . . , om) = o.

Define

H
(︁
π(υ)|π(μ)

)︁=
m∑︂

i=1

oi ln
oi

qi

, H
(︁
π(υ)|π(ν1)

)︁=
m∑︂

i=1

oi ln
oi

pi

,

where 0 ln 0 = 0 ln 0
0 = 0. Then we have

lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓
< δ

}︁

= lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓≤ δ
}︁

(4.1)

= −[︁
H
(︁
π(υ)|π(μ)

)︁+ H
(︁
π(υ)|π(ν1)

)︁]︁
,

where

⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓= m∑︂
i=1

[︁⃓⃓
Ξ

(n)
θ,ν0

(Ai) − qi

⃓⃓+ ⃓⃓ℒn(Ai) − oi

⃓⃓]︁
.

PROOF. Fix μ, ν in M1(S). For any δ > 0, let

F(n1, . . . , nm; δ) = Γ(n + θ)

Γ(n1 + a1) · · ·Γ(nm + am)

∫︂
· · ·

∫︂
Dδ,m

m∏︂
i=1

x
ai+ni−1
i dx1 . . . dxm−1,

where

Dδ,m =
{︄
(x1, . . . , xl) ∈ △m :

m∑︂
i=1

|xi − qi | < δ

}︄
.

Then we have

P
{︁⃓⃓(︁

π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓
< δ

}︁
= ∑︂

∑︁m
k=1 | ni

n
−oi |<δ

A(n1, . . . , nm; δ),(4.2)

where

A(n1, . . . , nm; δ) =
(︃

n

n1 · · ·nm

)︃
F(n1, . . . , nm; δ)

m∏︂
i=1

p
ni

i .

Similarly we have

P
{︁⃓⃓(︁

π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓≤ δ
}︁

= ∑︂
∑︁m

k=1 | ni
n

−oi |≤δ

Ā(n1, . . . , nm; δ),(4.3)
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where

Ā(n1, . . . , nm; δ) =
(︃

n

n1 · · ·nm

)︃
F̄ (n1, . . . , nm; δ)

m∏︂
i=1

p
ni

i ,

and F̄ (n1, . . . , nm; δ) is defined by replacing Dδ,m with

D̄δ,m =
{︄
(x1, . . . , xm) ∈ △m :

m∑︂
i=1

|xi − qi | ≤ δ

}︄
.

We begin with the case θ = 0. The assumption ai + ni > 0, 1 ≤ i ≤ m implies that ni ≥ 1
for all i.

By Stirling’s formula for the gamma function, there exist positive constants c1 < c2 such
that for all n ≥ 1 and ni ≥ 1,

∑︁m
i=1 ni = n

c1

m∏︂
i=1

(︃
ni

n

)︃−ni
√︃

n1 . . . nm

n
≤ Γ(n)

Γ(n1) · · ·Γ(nm)
≤ c2

m∏︂
i=1

(︃
ni

n

)︃−ni
√︃

n1 . . . nm

n
.

Noting that for any integer n ≥ 1
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n,

it follows that there exist constants c3 < c4 such that

c3

m∏︂
i=1

(︃
ni

n

)︃−ni
√︄

n

n1 . . . nm

≤
(︃

n

n1 . . . nm

)︃
≤ c4

m∏︂
i=1

(︃
ni

n

)︃−ni
√︄

n

n1 . . . nm

.

Putting these together it follows that

c5

m∏︂
i=1

(︃
ni

n

)︃−2ni ≤
(︃

n

n1 . . . nm

)︃
Γ(n)

Γ(n1) · · ·Γ(nm)
≤ c6

m∏︂
i=1

(︃
ni

n

)︃−2ni

for some positive constants c5 < c6.
For any x = (x1, . . . , xm), y = (y1, . . . , ym) in △m, define the function

Ψ(x,y) = H(y|x) + H
(︁
y|π(ν1)

)︁
.

Then we have for y = (n1
n

, . . . , nm

n
)

c5

∫︂
· · ·

∫︂
Dδ,m

exp

{︄
−n

(︄
Ψ(x,y) + n−1 ln

m∏︂
i=1

xi

)︄}︄
dx1, . . . dxm−1

≤ A(n1, . . . , nm; δ) ≤ Ā(n1, . . . , nm; δ)(4.4)

≤ c6

∫︂
· · ·

∫︂
D̄δ,m

exp

{︄
−n(Ψ(x,y) + n−1 ln

m∏︂
i=1

xi

}︄
dx1, . . . dxm−1.

We now divide the upper estimations into three cases.
Case 1. qi > 0 for all i. For any τ > 0 one can choose n large and δ small such that⃓⃓⃓

⃓⃓Ψ(x,y) + n−1 ln
m∏︂

i=1

xi − Ψ
(︁
π(μ),π(υ)

)︁− n−1 ln
m∏︂

i=1

qi

⃓⃓⃓
⃓⃓≤ τ,

which implies that

Ā(n1, . . . , nm; δ)

≤ c6[2δ]m exp

{︄
−n

(︄
Ψ
(︁
π(μ),π(υ)

)︁+ n−1 ln
m∏︂

i=1

qi − τ

)︄}︄
.

(4.5)



UNCONDITIONAL LARGE DEVIATIONS FOR DIRICHLET POSTERIOR 2977

Since the total number of terms in (4.3) is at most (n + 1)m and τ is arbitrary, we obtain
that

lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓≤ δ
}︁

≤ −
l∑︂

i=1

oi

(︃
ln

oi

qi

+ ln
oi

pi

)︃
(4.6)

= −[︁
H
(︁
π(υ)|π(μ)

)︁+ H
(︁
π(υ)|π(ν1)

)︁]︁
.

Next we turn to the situation where qi = 0 for some i. Without loss of generality, we
assume that there exists an 1 < l < m such that qi > 0 for 1 ≤ i ≤ l and qi = 0 for i > l.

Case 2. oi > 0 for some i > l. In this case the term ni−1
n

ln ni/n
xi

in

Ψ(x,y) + n−1 ln
m∏︂

i=1

xi

converges to infinity as δ tends to zero. Thus

lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓≤ δ
}︁≤ −∞.

The result (4.1) follows from the fact that

H
(︁
π(υ)

⃓⃓
π(μ)

)︁+ H
(︁
π(υ)

⃓⃓
π(ν0)

)︁= ∞.

Case 3. oi = 0 for i > l. It follows from direct calculation that

exp

{︄
−n

(︄
Ψ(x,y) + n−1 ln

m∏︂
i=1

xi

)︄}︄

=
(︄

m∏︂
i=l+1

x
ni−1
i

)︄
exp

{︄
−n

(︄
l∑︂

i=1

yi

(︃
ln

yi

xi

+ ln
yi

pi

)︃
+ n−1 ln

l∏︂
i=1

xi

)︄}︄

× exp

{︄
−n

(︄
m∑︂

i=l+1

yi

(︃
lnyi + ln

yi

pi

)︃)︄}︄

≤ exp

{︄
−n

(︄
l∑︂

i=1

yi

(︃
ln

yi

xi

+ ln
yi

pi

)︃
+ n−1 ln

l∏︂
i=1

xi

)︄}︄

× exp

{︄
−n

(︄
m∑︂

i=l+1

yi

(︃
lnyi + ln

yi

pi

)︃)︄}︄

on the domain Dδ,m. The exponential term

exp

{︄
−n

(︄
l∑︂

i=1

yi

(︃
ln

yi

xi

+ ln
yi

pi

)︃
+ n−1 ln

l∏︂
i=1

xi

)︄}︄

can be estimated by an argument similar to that used in deriving (4.5).
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For the second exponential term we have

lim
δ→0

lim
n→∞

1

n
ln exp

{︄
−n

(︄
m∑︂

i=l+1

yi

(︃
lnyi + ln

yi

pi

)︃)︄}︄

≤ − lim
δ→0

inf∑︁m
i=l+1 yi≤δ

{︄
m∑︂

i=l+1

yi

(︃
lnyi + ln

yi

pi

)︃}︄

= 0.

Thus (4.6) also holds in this case. It remains to check the lower bound in Cases 1 and 3.
In Case 1, the function Ψ(x,y)+n−1 ln

∏︁m
i=1 xi is continuous at (q,o). Thus for any τ > 0

one can choose δ small so that for

|(x,y) − (q,o)| < δ

and ⃓⃓⃓
⃓⃓Ψ(x,y) − Ψ(q,o) + n−1

(︄
ln

m∏︂
i=1

xi − ln
m∏︂

i=1

qi

)︄⃓⃓⃓
⃓⃓< τ.

By (4.4) we have

A(n1, . . . , nm; δ) ≥ c5

∫︂
· · ·

∫︂
Dδ,m

exp

{︄
−n

[︄
Ψ(x,y) + n−1 ln

m∏︂
i=1

xi

]︄}︄
dx1, . . . dxm

≥ c5e
−nτ exp

{︄
−n

[︄
Ψ(q,o) + n−1

m∏︂
i=1

qi

]︄}︄∫︂
· · ·

∫︂
Dδ,m

dx1 · · ·dxm

which combined with (4.2) implies

lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
π
(︁
Ξ

(n)
θ,ν0

)︁
, π(ℒn)

)︁− (︁
π(μ),π(υ)

)︁⃓⃓
< δ

}︁
≥ −[︁

H
(︁
π(υ)|π(μ)

)︁+ H
(︁
π(υ)|π(ν1)

)︁]︁
.

(4.7)

In Case 3, let T = {1 ≤ i ≤ m : qi = 0}(oi = 0 for i ∈ T ) and define

Ψ1(x,y) = ∑︂
i /∈T

yi ln
yi

xi

, Ψ2(x,y) = ∑︂
i∈T

yi ln
yi

xi

.

The function Ψ1(x,y) + n−1 ln
∏︁

i /∈T xi is clearly continuous at (q,o). On the other hand,
set

Cδ,m =
{︃

x = (x, . . . , xm) ∈ △m : 1

2

(︃
qi + δ

m

)︃
< xi < qi + δ

m
, for all i

}︃
.

Then the following holds on Cδ,m:

Ψ2(x,y) + n−1 ln
∏︂
i∈T

xi ≤ −mδ ln
δ

2m
+ |T |

n
ln

δ

m
,

where |T | is the cardinality of T .
Since Cδ,m is a subset of Dδ,m, it follows from (4.4) and an argument similar to Case 1

that (4.7) holds in Case 3. Putting together (4.6) and (4.7) we obtain the result for θ = 0.
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For θ > 0, we can write the probability density function of π(Ξ
(n)
θ,ν0

) in the form

fθ (x1, . . . , xm) = Γ(n + θ)

Γ(n1 + a1) · · ·Γ(nm + a+m)

m∏︂
i=1

x
(ni+ai)−1
i

= gθ (x1, . . . , xm)f0(x1, . . . , xm),

where f0(x1, . . . , xm is the corresponding density function for θ = 0 and

gθ (x1, . . . , xm) = Γ(n + θ)

Γ(n)

Γ(n1) · · ·Γ(nm)

Γ(n1 + a1) · · ·Γ(nm + am)

m∏︂
i=1

x
ai

i .

The lemma follows from the observation that the factor
m∏︂

i=1

x
ai

i = exp

{︄
n

[︄
1

n

m∑︂
i=1

ai lnxi

]︄}︄

does not change the estimates above, and

lim
n→∞

1

n
ln

Γ(n + θ)

Γ(n)

Γ(n1) · · ·Γ(nm)

Γ(n1 + a1) · · ·Γ(nm + am)
= 0. □

For any μ in M1(S), set

Sμ = {︁
t ∈ S : μ(︁{t})︁= 0

}︁
.

For any 0 < t1 < · · · < tm < 1 in Sμ, define

πt1,...,tm(μ) = (︁
μ
(︁[0, t1)

)︁
, . . . ,μ

(︁[tk, tk+1)
)︁
, . . . ,μ

(︁[tm,1])︁)︁.
Then the following holds.

LEMMA 4.2. For any υ , μ in M1(S), we have

H(υ|μ) + H(υ|ν1) = sup
0<t1<···<tm<1∈ Sυ∩Sμ

{︁
H
(︁
πt1,...,tm(υ)|πt1,...,tm(μ)

)︁

+ H(πt1,...,tm(υ)|πt1,...,tm(ν1)
}︁
.

(4.8)

PROOF. It is known [5, 12] that for any υ , μ in M1(S)

H(υ|μ) = sup
0<t1<···<tm<1 ∈ Sμ

{︁
H(πt1,...,tm(υ)|πt1,...,tm(μ)

}︁
.

Since the supremum of sums is less than or equal to the sum of supremums, it follows that

H(υ|μ) + H(υ|ν1) ≥ sup
0<t1<···<tm<1 in Sυ∩Sμ

{︁
H
(︁
πt1,...,tm(υ)|πt1,...,tm(μ)

)︁

+ H(πt1,...,tm(υ)|πt1,...,tm(ν1)
}︁
.

To prove the other direction, we first recall the variational form (1.3) of the relative entropy

H(υ|μ) = sup
g∈C(S)

{︁⟨υ,g⟩ − ln
⟨︁
μ,eg ⟩︁}︁.

For any τ > 0, there are g, h in C(S) such that

H(υ|μ) ≤ ⟨υ,g⟩ − ln
⟨︁
μ,eg ⟩︁+ τ

and

H(υ|ν1) ≤ ⟨υ,h⟩ − ln
⟨︁
μ,eh⟩︁+ τ.
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Since Sυ ∩ Sμ is dense in S, there exist 0 < tn1 < · · · < tnn < 1 in Sυ ∩ Sμ such that

lim
n→∞ max

1≤i≤n+1

{︁
max

{︁⃓⃓
g(x) − g(y)

⃓⃓ : x, y ∈ [tn(i−1), tni]}︁= 0,

lim
n→∞ max

1≤i≤n+1

{︁
max

{︁⃓⃓
h(x) − h(y)

⃓⃓ : x, y ∈ [tn(i−1), tni]}︁}︁= 0,

where tn0 = 0, tn(n+1) = 1. Set

αni = g(tni), βni = h(tni), i = 1, . . . , n + 1

and

An(n+1) = [tnn,1], Ani = [tn(i−1), tni), i = 1, . . . , n.

Then there exists cn(g,h) such that

lim
n→∞ cn(g,h) = 0

H(υ|μ) ≤
n+1∑︂
i=1

αniυ(Ani) − ln
n+1∑︂
i=1

eαniμ(Ani) + τ + cn(g,h)

≤ H
(︁
πtn1,...,tnn(υ)|πtn1,...,tnn(μ)

)︁+ τ + cn(g,h)

and

H(υ|ν1) ≤
n+1∑︂
i=1

βniυ(Ani) − ln
n+1∑︂
i=1

eβni ν1(Ani) + τ + cn(g,h)

≤ H
(︁
πtn1,...,tnn(υ)|πtn1,...,tnn(ν1)

)︁+ τ + cn(g,h).

Putting all these together we obtain (4.8). □

PROOF OF THEOREM 2.1. For any υ , μ in M1(S), and any 0 < t1 < · · · < tm < 1 in
Sυ ∩ Sμ, let

Am+1 = [tm,1], Ai = [ti−1, ti), i = 1, . . . ,m.

It follows from Lemma 4.1 that

lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
πt1,...,tm

(︁
Ξ

(n)
θ,ν0

)︁
, πt1,...,tm(ℒn)

)︁
− (︁

πt1,...,tm(μ),πt1,...,tm(υ)
)︁⃓⃓

< δ
}︁

= lim
δ→0

lim
n→∞

1

n
lnP

{︁⃓⃓(︁
πt1,...,tm

(︁
Ξ

(n)
θ,ν0

)︁
, πt1,...,tm(ℒn)

)︁
− (︁

πt1,...,tm(μ),πt1,...,tm(υ)
)︁⃓⃓≤ δ

}︁
= −[︁

H
(︁
πt1,...,tm(υ)|πt1,...,tm(μ)

)︁+ H
(︁
πt1,...,tm(υ)|πt1,...,tm(ν1)

)︁]︁
.

By approximation and Lemma 4.2, we obtain

lim
δ→0

lim
n→∞

1

n
lnP

(︁{︁
ρ
(︁
Ξ

(n)
θ,ν0

,μ
)︁
< δ,ρ(ℒn, ν) < δ

}︁)︁

= lim
δ→0

lim
n→∞

1

n
lnP

(︁{︁
ρ
(︁
Ξ

(n)
θ,ν0

,μ
)︁≤ δ, ρ(ℒn, ν) ≤ δ

}︁)︁
= −[︁

H(υ|μ) + H(υ|ν1)
]︁
.

Since M1(S)×M1(S) is compact, it follows from Theorem (P) in [20] that the family of the
laws of (Ξ

(n)
θ,ν0

,ℒn) satisfies a large deviation principle with rate function H(υ|μ)+H(υ|ν1).

Noting that Ξ
(n)
θ,ν0

is the continuous image of (Ξ
(n)
θ,ν0

,ℒn) through projection, we obtain the
main result by the contraction principle. □
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