Lecture On Central Limit Theorem

Lemma 1 For anyt in R, n > 1 and ¢ in [0,1], one has
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Through integrating by parts we obtain
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where the last equality follows from a change of variable sx11 = t;. By induction we have aj = by,

for all k£ and thus (2). The equation (1) follows from the fact that
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Thus for any = we have
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1, |sin(z)| < |z|°. If |z| < 1, then by mean value theorem we



By direct calculation, we have
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The result (3) can now be derived as follows.
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Lemma 2 For any complex number z with |z| < 1, we have
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If z = x is non-positive real number, then
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Theorem 3 (Lindeberg-Feller CLT) Let {X,, : n > 1} be a sequence of independent random vari-
ables with mean zero and variances {o2 :n > 1}. Set

S, = zn:Xk, BZ = En:a,%.
k=1 k=1



1 If the Lindeberg condition holds, i.e., for any e > 0
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2 Assume that Feller’s conditions hold, i.e.,
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If (8) holds, then the Lindeberg condition holds.

Proof. Proof of 1: Let Sy = 0, By = 0. Then we have
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which implies that
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Putting (9) and (10) together one obtains

[Ele"#] -7

n 2
t
S z IE[BQXgI{‘XkI>€Bn}]+€|t|3
k=1 n

n 0'1% 4
max —e—.
1<k<n B2 8

Noting that

0.2

Ifixy<eBy}

max —& =  max B;Q <E[X,§I{|Xk|>53n}] +E[X;§I{|Xk|<53”}]>

1<k<n B2 1<k<n

1 n
< 2+ B2 ZE[X£I{|Xk|>eBn}]7
n =1

it follows from the Lindeberg condition that
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Proof of 2: Assume that Feller’s conditions hold. Noting that for any 1 <m <n
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it follows by letting n going to infinity followed by m going to infinity that
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For complex number z satisfying |z| < 1 one has
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This combined with (14) implies that for n large enough we have
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Applying the central limit theorem we get
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Focusing on the real part, we obtain
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Letting n go to infinity followed by ¢ going to infinity we obtain the Lindeberg condition.



