
Lecture On Central Limit Theorem

Lemma 1 For any t in R, n ≥ 1 and δ in [0, 1], one has

eit −
n∑
k=0

(it)k

k!
=

(it)n+1

n!

∫ 1

0

eitu(1− u)nd u (1)

= in+1

∫ t

0

d tn+1

∫ tn+1

0

d tn · · ·
∫ t2

0

eit1dt1. (2)

and

|eit −
n∑
k=0

(it)k

k!
| ≤ 21−δ|t|n+δ∏n

k=1(k + δ)
. (3)

Proof. Let t ∈ R, n ≥ 1, 0 ≤ δ ≤ 1 be fixed. For any 1 ≤ k ≤ n, set a1 = b1 = eit − 1 and

ak+1 =
(it)k+1

k!

∫ 1

0

eitu(1− u)kd u

bk+1 = ik+1

∫ t

0

d tk+1

∫ tk+1

0

d tk · · ·
∫ t2

0

eit1d t1.

Through integrating by parts we obtain

ak+1 = ak −
(it)k

k!

bk+1 = ik
∫ t

0

d sk+1

∫ sk+1

0

d sk · · ·
∫ s3

0

(eis2 − 1)d s2

= ik
∫ t

0

d sk+1

∫ sk+1

0

d sk · · ·
∫ s3

0

eis2d s2 − ik
∫ t

0

d sk+1

∫ sk+1

0

d sk · · ·
∫ s3

0

d s2

= bk −
(it)k

k!

where the last equality follows from a change of variable sk+1 = tk. By induction we have ak = bk
for all k and thus (2). The equation (1) follows from the fact that

eit = 1 + a1

= 1 +

n∑
k=1

(ak − ak+1) + an+1.

It is clear that for any x with |x| ≥ 1, | sin(x)| ≤ |x|δ. If |x| < 1, then by mean value theorem we
have

| sinx| ≤ |x| ≤ |x|δ.

Thus for any x we have
| sinx| ≤ |x|δ. (4)
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By direct calculation, we have

|eit − 1| =
√

2(1− cos t)

= 2| sin t

2
| ≤ 2| t

2
|δ

= 21−δ|t|δ.

The result (3) can now be derived as follows.

|eit −
n∑
k=0

(it)k

k!
| ≤

∫ |t|
0

d tn+1 · · ·
∫ t3

0

|
∫ t2

0

eit1d t1|d t2

=

∫ |t|
0

d tn+1 · · ·
∫ t3

0

|eit2 − 1|d t2

≤ 21−δ
∫ |t|
0

d tn+1 · · ·
∫ t3

0

tδ2d t2

=
21−δ|t|n+δ∏n
k=1(k + δ)

.
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Lemma 2 For any complex number z with |z| ≤ 1, we have

|ez − 1− z| ≤ |z|2. (5)

If z = x is non-positive real number, then

|ex − 1− x| ≤ x2

2
. (6)

Proof.

|ez − 1− z| = |
∞∑
k=2

zk

k!
|

≤
∞∑
k=2

|z|k

k!

≤ |z|2
∞∑
k=2

1

2k−1
= |z|2.

If x ≤ 0, then

ex − (1 + x) = eξ
x2

2

for some ξ between x and 0.
2

Theorem 3 (Lindeberg-Feller CLT) Let {Xn : n ≥ 1} be a sequence of independent random vari-
ables with mean zero and variances {σ2

n : n ≥ 1}. Set

Sn =

n∑
k=1

Xk, B2
n =

n∑
k=1

σ2
k.
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1 If the Lindeberg condition holds, i.e., for any ε > 0

lim
n→∞

∑n
k=1 E[X2

kI{|Xk|>εBn}]

B2
n

= 0, (7)

then
Sn
Bn
−→ Z ∼ N(0, 1) (8)

in distribution.

2 Assume that Feller’s conditions hold, i.e.,

lim
n→∞

Bn =∞

lim
n→∞

σn
Bn

= 0.

If (8) holds, then the Lindeberg condition holds.

Proof. Proof of 1: Let S0 = 0, B0 = 0. Then we have

|E[eit
Sn
Bn ]− e− t

2

2 |

=

∣∣∣∣E[exp[it
Sn
Bn

]]− e− t
2

2 E[exp[it
S0

Bn
]]

∣∣∣∣
= e−

t2

2

∣∣∣∣E[ exp[it
Sn
Bn

+
B2
nt

2

2B2
n

]

]
− E

[
exp[it

S0

Bn
+
B2

0t
2

2B2
n

]

]∣∣∣∣
= e−

t2

2 |
n∑
k=1

(
E[exp[it

Sk
Bn

+
B2
kt

2

2B2
n

]]− E[exp[it
Sk−1
Bn

+
B2
k−1t

2

2B2
n

]]

)
| (9)

≤ e− t
2

2

n∑
k=1

∣∣∣∣(E[exp[it
Sk
Bn

+
B2
kt

2

2B2
n

]]− E[exp[it
Sk−1
Bn

+
B2
k−1t

2

2B2
n

]]

)∣∣∣∣
≤ e− t

2

2

n∑
k=1

∣∣∣∣E[exp[it
Sk−1
Bn

+
B2
kt

2

2B2
n

]]

(
E[exp[it

Xk

Bn
]]− e−

σ2kt
2

2B2
n

)∣∣∣∣
≤ e− t

2

2 e
t2

2

n∑
k=1

∣∣∣∣E[eit
Xk
Bn ]− e−

σ2kt
2

2B2
n

∣∣∣∣.
Set

Yk(t) = eitXk − 1− itXk +
t2X2

k

2

and

hk(t) = e−
σ2k
2 t

2

− 1 +
σ2
kt

2

2
.

By the Lemma 1,

|Yk(t)| ≤ min{|a2|+
t2X2

k

2
, |a3|}

≤ min{t2X2
k ,
|tXk|3

6
}
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which implies that∣∣∣∣E[eit
Xk
Bn ]− e−

σ2kt
2

2B2
n

∣∣∣∣ =

∣∣∣∣E[Yk(
t

Bn
)]− hk(

t

Bn
)

∣∣∣∣ (10)

≤ E
[
t2

B2
n

X2
kI{|Xk|>εBn} + ε

|t|3|Xk|2

B2
n

I{|Xk|≤εBn}

]
+
σ4
kt

4

8B4
n

where (6) is used in the last inequality to hk( t
Bn

),i.e.,

|hk(
t

Bn
)| ≤ (σ2

kt
2/2B2

n)2

2
=
σ4
kt

4

8B4
n

.

Putting (9) and (10) together one obtains

|E[eit
Sn
Bn ]− e− t

2

2 |

≤
n∑
k=1

E[
t2

B2
n

X2
kI{|Xk|>εBn}] + ε|t|3 (11)

+ max
1≤k≤n

σ2
k

B2
n

t4

8
.

Noting that

max
1≤k≤n

σ2
k

B2
n

= max
1≤k≤n

B−2n

(
E[X2

kI{|Xk|>εBn}] + E[X2
kI{|Xk|≤εBn}]

)
≤ ε2 +

1

B2
n

n∑
k=1

E[X2
kI{|Xk|>εBn}],

it follows from the Lindeberg condition that

lim
n→∞

E[eit
Sn
Bn ]− e− t

2

2 | = 0. (12)

Proof of 2: Assume that Feller’s conditions hold. Noting that for any 1 ≤ m ≤ n

max
1≤k≤n

σ2
k

B2
n

≤ max
1≤k≤m

σ2
k

B2
n

+ max
m≤k≤n

σ2
k

B2
k

,

it follows by letting n going to infinity followed by m going to infinity that

limn→∞ max
1≤k≤n

σ2
k

B2
n

= 0. (13)

By Lemma 1, we have that for any 1 ≤ k ≤ n

max
1≤k≤n

|E[eit
Xk
Bn ]− 1| ≤ t2

2
max

1≤k≤n

σ2
k

B2
n

= o(1) (14)

and
n∑
k=1

|E[eit
Xk
Bn ]− 1| ≤ t2

2
.
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For complex number z satisfying |z| < 1 one has

log(1 + z) =

∞∑
k=1

(−1)k+1 z
k

k
.

If |z| < 1
2 , then

| log(1 + z)− z| ≤ |z|
2

2

∞∑
k=2

|z|k−2 ≤ |z|2

This combined with (14) implies that for n large enough we have

n∑
k=1

| logE[eit
Xk
Bn ]− (E[eit

Xk
Bn ]− 1)| ≤

n∑
k=1

|E[eit
Xk
Bn ]− 1|2

≤ t2

2
max

1≤k≤n

σ2
k

B2
n

= o(1)

Applying the central limit theorem we get

lim
n→∞

∣∣∣∣ t22 −
n∑
k=1

(1− E[eit
Xk
Bn ])

∣∣∣∣ = 0.

Focusing on the real part, we obtain

t2

2
−

n∑
k=1

E[1− cos
tXk

Bn
] = o(1).

Since 1− cos tXkBn
≤ t2X2

k

2B2
n

, it follows that

t2

2

1

B2
n

n∑
k=1

E[X2
kI{|Xk|>εBn}]

≤ t2

2
−

n∑
k=1

E[(1− cos
tXk

Bn
)I{|Xk|≤εBn}]

=

n∑
k=1

E[(1− cos
tXk

Bn
)I{|Xk|>εBn}] + o(1)

≤ 2

n∑
k=1

E[I{|Xk|>εBn}] + o(1)

≤ 2

ε2B2
n

n∑
k=1

E[X2
k ] + o(1)

=
2

ε2
+ o(1).

Letting n go to infinity followed by t going to infinity we obtain the Lindeberg condition. 2
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