Cobwebbing, Equilibria and Stability

Algorithm (Cobwebbing). Using Cobwebbing to find the solution of $m_{t+1} = f(m_t)$ with initial condition m_0 :

- **1** Graph the updating function $(f(m_t))$ and the diagonal $(m_{t+1} = m_t)$.
- Prom the initial condition in the horizontal axis, go vertically to the updating function and over to the diagonal.
- 3 From the diagonal go vertically to the updating function and over the diagonal again. Repeat this step as many times as needed to find the pattern.
- **4** Sketch the solution at t = 0, 1, 2, ... and so forth.

Definition (Equilibrium): A point m^* is called equilibrium of the discrete-time dynamical system $m_{t+1} = f(m_t)$ if

$$m^* = f(m^*).$$
 (1)

Definition (Stability): An equilibrium m^* is called **stable** if the solutions that start near m^* stay near or approach m^* . If the solutions that start near m^* move away from it, then m^* is an **unstable** equilibrium.