Review: derivatives of basic functions (I)

Constant function:

$$f(x) = c$$
 (where c is a constant) \rightarrow $f'(x) = 0$

2 Power function:

$$f(x)=x^{p}$$
 (where p is a real number) $ightarrow f'(x)=px^{p-1}$

3 Natural exponential/logarithm function:

$$f(x) = e^x \quad \rightarrow \quad f'(x) = e^x$$

 $f(x) = \ln x \quad \rightarrow \quad f'(x) = \frac{1}{x}$

4 General exponential/logarithm function:

$$f(x) = a^x \longrightarrow f'(x) = a^x \ln a$$

 $f(x) = \log_a x \longrightarrow f'(x) = \frac{1}{x \ln a}$

Review: derivatives of basic functions (II)

1 Basic trigonometric functions:

$$\begin{array}{rcl} f(x) = \sin x & \rightarrow & f'(x) = \cos x \\ f(x) = \cos x & \rightarrow & f'(x) = -\sin x \\ f(x) = \tan x & \rightarrow & f'(x) = \sec^2 x \end{array}$$

2 Other trigonometric functions:

$$\begin{aligned} f(x) &= \sec x & \to & f'(x) = \sec x \tan x \\ f(x) &= \cot x & \to & f'(x) = -\csc^2 x \\ f(x) &= \csc x & \to & f'(x) = -\csc x \cot x \end{aligned}$$

3 Inverse trigonometric functions:

$$f(x) = \arcsin x \quad \rightarrow \quad f'(x) = \frac{1}{\sqrt{1 - x^2}}$$

 $f(x) = \arctan x \quad \rightarrow \quad f'(x) = \frac{1}{1 + x^2}$

-

Review: derivatives of algebraic operations

Consider two differentiable functions f(x) and g(x). Then,

1 Multiplication by a constant:

$$(cf(x))'=cf'(x)$$

2 Sum/difference rule:

$$(f(x) + g(x))' = f'(x) + g'(x)$$

(f(x) - g(x))' = f'(x) - g'(x)

3 Product rule:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Quotient rule:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Chain rule & Implicit differentiation

1 Chain rule. Let

$$F(x) = (f \circ g)(x) = f(g(x))$$

and assume that g is differentiable at x and f differentiable at g(x). Then F is differentiable at x and

$$F'(x) = f'(g(x))g'(x)$$

2 Implicit differentiation. Sometimes the relation between the dependent and independent variable might be implicit. Example:

$$x^3 + y^4 = y\sin x - 7$$

How do we differentiate functions that are given implicitely? We combine usual differentiation and the chain rule (BB):

$$\frac{d}{dx}(x^3) + \frac{d}{dx}(y^4) = \frac{d}{dx}(y\sin x - 7) \quad \rightarrow \quad \frac{dy}{dx} = \frac{y\cos x - 3x^2}{4y^3 - \sin x}$$