L'Hôpital's Rule (I)

Definition of indeterminate forms:

• The limit of the ratio

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

(where a can be $\pm\infty$) is called an indeterminate form of type 0/0 if

$$\lim_{x \to a} f(x) = 0 \quad \text{and} \quad \lim_{x \to a} g(x) = 0,$$

and an indeterminate form of type ∞/∞ if

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{and} \quad \lim_{x \to a} g(x) = \pm \infty.$$

L'Hôpital's Rule (II)

Theorem. L'Hôpital's Rule:

• Suppose that f(x) and g(x) are differentiable functions such that

$$\lim_{x\to a}\frac{f(x)}{g(x)}$$

is an indeterminate form of type 0/0 or ∞/∞ . If $g'(x) \neq 0$ near *a* (could be 0 at *a*) then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that the limit on the right side exists (i.e., is equal to a real number), or is equal to $-\infty$ or $+\infty$.

Differential Equations

Table : Finding the rate of change by differentiating a value or measurement.

Value (measured)	Differentiate	Rate of Change (comptued)	
position	\rightarrow	speed	
mass	\rightarrow	rate of change of mass (growth rate)	
amount of sodium	\rightarrow	rate sodium enters a cell	
population size	\rightarrow	rate of change of population size	

Table : Find a value or measurement from the rate of change (by solving the differential equation).

Rate of Change (measured)	Solve Differential Equation	Value (comptued)
speed	\rightarrow	position
rate of change of mass (growth rate)	\rightarrow	mass
rate sodium enters a cell	\rightarrow	amount of sodium
rate of change of population size	\rightarrow	population size