Real Vector Spaces (I) (Reminder)

Definition (vector space). Let V be an arbitrary nonempty set of objects on which two opearations are defined: addition and multiplication by scalars. If the following axioms are satisfied by all objects \mathbf{u} , \mathbf{v} and \mathbf{w} and all scalars k and m, then we call V a vector space and we call the objects in V vectors.

- **1** If $\mathbf{u} + \mathbf{v}$ are objects in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- $\mathbf{2} \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$

$$\mathbf{0} \ \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- **3** There is an object **0** in *V* called a **zero vector** for *V*, such that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$ for all \mathbf{u} in *V*.
- For each u in V, there is an object -u in V, called a negative of u, such that u + (-u) = (-u) + u = 0.
- **(**If *k* is any scalar and **u** is any object in *V*, the *k***u** is in *V*.

$$\mathbf{0} \hspace{0.1in} k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

- $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- (mu) = (km)(u)

To show that a set with two operations is a vector space:

Step 1. Identify the set V of objects that will become vectors.

- Step 2. Identify the addition and scalar multiplication operation on V.
- Step 3. Verify Axioms 1 and 6; That is, adding two vectors in V produces a vector in V, and multiplying a vector in V by a scalar also produces a vector in V. Axiom 1 is called closure under addition and Axiom 6 is called closure under scalar multiplication.
- Step 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9 and 10 hold.

Theorem (Properties of vectors). Let V be a vector space, \mathbf{u} a vector in V, and k a scalar; then

(a) 0u = 0(b) k0 = 0(c) (-1)u = -u(d) If ku = 0, then k = 0 or u = 0

Subspaces (I)

Definition (subspace). A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Comment: To check that W is itself a vector space we only need to verify Axioms 1 and 6 (next theorem). Axioms 4 and 5 hold in W as a consequence of 1 and 6 and the rest are inherited from V.

Theorem (subspace). If W is a set of one or more vectors in a vector space V, then W is a subspace of V if and only if the following conditions are satisfied: (a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u} + \mathbf{v}$ is in W. (b) If k is a scalar and \mathbf{u} is a vector in W, then $k\mathbf{u}$ is in W.

Theorem (subspace from subspaces). if W_1 , W_2 , ..., W_r are subspaces of a vector space V, then the intersection of these subspaces is also a subspace.

Definition (linear combination). If **w** is a vector in a vector sapce V, then **w** is said to be a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ in V if **w** can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \ldots + k_r \mathbf{v}_r$$

where k_1, k_2, \ldots, k_r are scalars. These scalars are called the **coefficients** of the linear combination.

Subspaces (II)

Theorem (subspace from linear combinations). If $S = \{w_1, w_2, ..., w_r\}$ is a nonempty set of vectors in a vector space V, then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace of V.

(b) The set W in part (a) is the *smallest* subspace of V that contains all of the vectors in S in the sense that any other subspace that contains those vectors contains W.

Definition (span). If $S = \{w_1, w_2, ..., w_r\}$ is a nonempty set of vectors in a vector space V then the subspace W of V that consists of all possible linear combination of the vectors in S is called the subspace of V generated by S, and we say that the vectors $w_1, w_2, ..., w_r$ span W. We denote this supspace as

$$W = \operatorname{span} \{ \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r \}$$
 or $W = \operatorname{spans}(S)$

Theorem (solution spaces of HLS). The solution set of a homogenous linear system $A\mathbf{x} = 0$ of *m* equations in *n* unknowns is a subspace of \mathbb{R}^n .

This theorem can be viewed as a statement about matrix transformations by letting $T_A : R^n \to R^m$ be multiplication by the coefficient matrix A. The solution space of $A\mathbf{x} = \mathbf{0}$ is the set of vectors in R^n that T_A maps into the zero vector in R^m . This set is sometimes called the **kernel** of the transformation.

Theorem (kernel). If A is an $m \times n$ matrix, then the kernel of the matrix transformation $T_A : R^n \to R^m$ is a subspace of R^n .

Theorem (two sets of vectors spanning same space). If $S = \{w_1, w_2, ..., w_r\}$ and $S' = \{w_1, w_2, ..., w_r\}$ are nonempty sets of vectors in a vector space V, then

$$\mathsf{span}\left\{\boldsymbol{\mathsf{v}}_1,\boldsymbol{\mathsf{v}}_2,\ldots,\boldsymbol{\mathsf{v}}_r\right\}=\mathsf{span}\left\{\boldsymbol{\mathsf{w}}_1,\boldsymbol{\mathsf{w}}_2,\ldots,\boldsymbol{\mathsf{w}}_r\right\}$$

if and only if each vector in S is a linear combination of those in S', and each vector in S' is a linear combination of those in S.

Definition (LI set). If $S = \{v_1, v_2, ..., v_r\}$ is a set of two or more vectors in a vector space V, then S is said to be a **linearly independent** set if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be **linearly dependent**.

Theorem (LI set). A nonempty set $S = \{v_1, v_2, ..., v_r\}$ in a vectors space V is linearly independent if and only if the only coefficients satisfying the vector equation

 $k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots+k_r\mathbf{v}_r=0$

are $k_1 = 0$, $k_2 = 0$, ..., $k_r = 0$.

Theorem (LI sets with 1 or 2 vectors). The theorem has 3 parts:

(a) A finite set that contains **0** is linearly dependent.

(b) A set with exactly one vectors is linearly independent if and only if that vector is not $\mathbf{0}$.

(c) A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

Theorem (LI in \mathbb{R}^n). Let $\mathbf{S} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r}$ be a set of vectors in \mathbb{R}^n . If r > n, then S is linearly dependent.

Definition (Wronskian). If $\mathbf{f}_1 = f_1(x)$, $\mathbf{f}_2 = f_2(x)$, ..., $\mathbf{f}_n = f_n(x)$ are functions that are n-1 times differentiable on the interval $(-\infty, +\infty)$, then the determinant

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

is called the Wronskian of f_1, f_2, \ldots, f_n .

Theorem (Wronskian and LI set of functions). If the functions f_1, f_2, \ldots, f_n have n - 1 continuous derivatives on the interval $(-\infty, +\infty)$, and if the Wronskian of these functions is not identically zero on $(-\infty, +\infty)$, then these functions form a linearly independent set of vectors in $C^{(n-1)}(-\infty, +\infty)$.