
More on Linear Systems and Invertible Matrices (I)

Theorem (0, 1 or ∞ solutions). A system of linear equations has zero, one,
or infinitely many solutions. There are no other options. (Reminder)

Theorem (Solution of LS by matrix inversion). If A is an invertible n × n
matrix, then for each n × 1 matrix b, the system of equations Ax = b has
exactly one solution, namely,

x = A−1b

Linear systems with a common coefficient matrix

A x1 = b1, A x2 = b2, . . . A xk = bk

have solutions

x1 = A−1b1, x2 = A−1b2, . . . xk = A−1bk

In this situation the k systems can be solved at once by applying the
Gauss-Jordan algorithm to the following augmented matrix

[A|b1|b2| . . . |bk]

Theorem. Let A be a square matrix. Then,
(i) If B is a square matrix satisfying BA = I , then B = A−1.
(ii) If B is a square matrix satisfying AB = I , then B = A−1.
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More on Linear Systems and Invertible Matrices (II)

Theorem (Extension of Equivalence Theorem). If A is an n × n matrix,
then the following statements are equivalent, that is, all true or all false:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressable as a product of elementary matrices.
(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one solution for every n × 1 matrix b.

Theorem (AB invertible =⇒ A, B invertible). Let A and B be square
matrices of the same size. If AB is invertible, then A and B must also be
invertible.

Fundamental Problem. Let A be a fixed n ×m matrix. Find all m × 1
matrices b such that the system of equations Ax = b is consistent. Solution:

If A is invertible (so, square): Theorem Solution of LS by matrix inversion
from previous slide ensures that the system has the unique solution
x = A−1b.

If A is square but not invertible or not square: Then b must usually satisfy
certain conditions for Ax = b to be consistent. This conditions can be
found by using Gauss-Jordan algorithm, for instance. (see example)
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Diagonal, Triangular and Symmetric Matrices (I)

Diagonal Matrix: Matrix in which all the entries off the main diagonal are
zeros (Example: In). A general n × n diagonal matrix can be written as

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
...

0 0 . . . dn


Inverse and powers of a Diagonal Matrix:

D−1 =


1
d1

0 . . . 0

0 1
d2

. . . 0
...

...
...

0 0 . . . 1
dn

 , Dk =


dk
1 0 . . . 0

0 dk
2 . . . 0

...
...

...
0 0 . . . dk

n


Multiplying a matrix by a Diagonal Matrix from the left and from the
right: [

d1 0
0 d2

] [
a11 a12 a13
a21 a22 a23

]
=

[
d1a11 d1a12 d1a13
d2a21 d2a22 d2a23

]
[
a11 a12
a21 a22

] [
d1 0
0 d2

]
=

[
d1a11 d2a12
d1a21 d2a22

]
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Diagonal, Triangular and Symmetric Matrices (II)

Triangular Matrix: A square matrix in which all the entries above or below the
main diagonal are zero (If zeros above: lower triangular, if zeros below: upper
diagonal). Examples:

Lower: L =

l11 0 0
l21 l22 0
l31 l32 l33

 , Upper: U =

u11 u12 u13
0 u22 u23
0 0 u33


Theorem (Properties of Triangular Matrices):
(a) The transpose of a lower triangular matrix is upper triangular (and vice
versa).
(b) The product of lower triangular matrices is lower triangular, and the
product of upper triangular matrices is upper triangular.
(c) A triangular matrix is invertible if and only if its diagonal entries are all
nonzero.
(d) The inverse of an invertible lower triangular matrix is lower triangular, and
the inverse of an invertible upper triangular matrix is upper triangular.

F. Font Linear Algebra - Winter Term 2017



Diagonal, Triangular and Symmetric Matrices (III)

Symmetric Matrices (SM): A square matrix A is said to be symmetric if
A = AT . In compact form this can be expressed as

(A)ij = (A)ji

Theorem (Properties of SM (i)): If A and B are symmetric matrices with
the same size, and if k is any scalar, then:
(a) AT is symmetric.
(b) A + B and A− B are symmetric.
(c) kA is symmetric.

Theorem (Properties of SM (ii)): The product of two symmetric matrices is
symmetric if and only if the matrices commute.

Theorem (Properties of SM (iii)): If A is an invertible symmetric matrix,
then A−1 is symmetric.

Comment: Matrix products of the form AAT and ATA are always symmetric
since (Using Theorem “Properties of the Transpose” part (d) from last week)

(AAT )T = (AT )TAT = AAT and (ATA)T = AT (AT )T = ATA

Theorem: If A is an invertible matrix, then AAT and ATA are also invertible.
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Determinants by Cofactor Expansion (I)

Recall

A =

[
a b
c d

]
→ A−1 =

1

ad − bc

[
d −b
−c a

]
Comment: the factor ad − bc is the determinant of A, i. e.

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

The following definitions and theorems will allow us to learn how to compute
determinants of higher order matrices.

Definition (Minor & Cofactor): If A is a square matrix, then the minor of
entry aij is denoted by Mij and is defined to be the determinant of the
submatrix that remains after the ith row and jth column are deleted from A.
The number (−1)i+jMij is denoted by Cij and is called the cofactor of entry
aij .

Theorem: If A is a n × n matrix, then regardeless of which row or column of
A is chosen, the number obtained by multiplying the entries in that row or
column by the corresponding cofactors and adding the resulting products is
always the same.
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Determinants by Cofactor Expansion (II)

Definition (Determinant): If A is an n × n matrix, then the number obtained
by multiplying the entries in any row or column of A by the corresponding
cofactors and adding the resulting products is called the determinant of A, and
the sums themselves are called cofactor expansion of A. That is,
Cofactor expansion along the jth column:

det(A) = a1jC1j + a2jC2j + . . . + anjCnj

Cofactor expansion along the ith row :

det(A) = ai1Ci1 + ai2Ci2 + . . . + ainCin
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