Eigenvalues and Eigenvectors (I) (Reminder)

Definition (Eigenvalue and Eigenvector). If A is an $n \times n$ matrix, then a nonzero vector **x** in \mathbb{R}^n is called an eigenvector of A if A**x** is a scalar multiple of **x**; that is,

 $A\mathbf{x} = \lambda \mathbf{x}$

for some scalar λ . The scalar λ is called an **eigenvalue** of A, and **x** is said to be an **eigenvector corresponding to** λ .

Comment: Our next objective will be to find a procedure for finding Eigenvalues and Eigenvectors (they are very important in many applications) for a given matrix *A*. Note:

$$A\mathbf{x} = \lambda \mathbf{x} \quad \rightarrow \quad A\mathbf{x} = \lambda I \mathbf{x} \quad \rightarrow \quad (\lambda I - A)\mathbf{x} = 0$$

For λ to be an eigenvalue of A this equation must have a nonzero solution for **x**. Equivalence Theorem says that this is only possible if det $(\lambda I - A) = 0$.

Theorem (Characteristic equation of *A***).** If *A* is an $n \times n$ matrix, then λ is an eigenvalue of *A* if and only if it satisfies the equation

$$\det(\lambda I - A) = 0$$

This is called the characteristic equation of A.

Eigenvalues and Eigenvectors (II)

Comment: When the determinant $det(\lambda I - A)$ is expanded, the characteristic equation of A takes the form

$$\lambda^n + c_1 \lambda^{n-1} + \ldots + c_n = 0$$

which is a polynomial of degree n. The polynomial will have at most n roots, which represent the eigenvalues of A. The polynomial

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \ldots + c_n$$

is called the characteristic polynomial of A.

Theorem (*A* **triangular** \implies **entries eigenvalues).** If *A* is an $n \times n$ triangular matrix, then the eigenvalues of *A* are the entries of the main diagonal of *A*.

Theorem (Equivalent statements for eigenval. and eigenvec.). If A is an $n \times n$ matrix, the following statements are equivalent:

- (a) λ is an eigenvalue of A.
- (b) λ is a solution of the characteristic equation det $(\lambda I A) = 0$.
- (c) The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solution.
- (d) There is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.

Eigenvalues and Eigenvectors (III)

Eigenvectors, Eigenspaces and bases for Eigenspaces: All nonzero vectors solving

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

for a given λ are called the **eigenspace** of A corresponding to λ . A **base** for a given eigenspace is a vector or vectors that (combined in a specific way called *linear combination*) allow to generate all the vectors in the eigenspace (we will formalize this definition in the future).

Theorem (*A* **invertible** $\iff \lambda \neq 0$ **).** A square matrix *A* is invertible if and only if $\lambda = 0$ is not an eigenvalue of *A*.

Theorem (Extension Extension of Equivalence Theorem). If A is an $n \times n$ matrix, then the following statements are equivalent, that is, all true or all false:

- (a) A is invertible.
- (b) $A\mathbf{x} = 0$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressable as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$.
- (h) $\lambda = 0$ is not an eigenvalue of A.

Diagonalization (I)

In this section we will study products of the form $P^{-1}AP$ in which A and P are $n \times n$ matrices and P is invertible. A transformation

$$A \rightarrow P^{-1}AP$$

is called a **similarity transformation**. These transformations preserve many properties of the matrix *A*:

Property	Description
Determinant	A and $P^{-1}AP$ have same determinant
Invertibility	A invertible $\iff P^{-1}AP$ invertible
Trace	A and $P^{-1}AP$ have same trace
Characteristic polynomial	A and $P^{-1}AP$ have same characteristic polynomial
Eigenvalues	A and $P^{-1}AP$ have same eigenvalues
Eigenspace dimension	The dimension of the eigenspace of A corresponding
	to λ is the same for $P^{-1}AP$

Definition (*B* similar to *A***).** If *A* and *B* are square matrices, then we say that *B* is similar to *A* if there is an invertible matrix *P* such that $B = P^{-1}AP$.

Definition (*A* **diagonalizable).** If a square matrix *A* is said to be diagonalizable if it is similar to some diagonal matrix; that is, if there exists an invertible matrix *P* such that $P^{-1}AP$ is diagonal. In this case the matrix *P* is said to diagonalize *A*.

Diagonalization (II)

Theorem. If A is an $n \times n$ matrix, the following statements are equivalent. (a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Theorem.

(a) If $\lambda_1, \lambda_2, \ldots \lambda_k$ are distinct eigenvalues of a matrix A, and if $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are corresponding eigenvectors, then $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ is a linearly independent set.

(b) An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Procedure for Diagonalizing a Matrix A

- Determine first whether A is actually diagonalizable by searching for n linearly independent eigenvectors. One way to do this is: find basis for each eigenspace and count total number of vectors. If there is n vectors then A is diagonalizable, otherwise it is not.
- **2** Form a matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \dots \ \mathbf{p}_n]$ whose column vectors are the vectors obtained in Step 1.
- P⁻¹AP will be a diagonal matrix whose successive diagonal entries are the eigenvalues λ₁, λ₂,..., λ_n that correspond to the successive columns of P.

Theorem (λ **eigenval. of** $A \implies \lambda^k$ **eigenval. of** A^k **).** If k is a positive integer, λ is an eigenvalue of a matrix A, and **x** is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and **x** is a corresponding eigenvector.

Terminology: If λ_0 is an eigenvalue of a $n \times n$ matrix A, then the dimension of the eigenspace (number of vectors forming the base) corresponding to λ_0 is called the **geometric multiplicity**. The number of times that $\lambda - \lambda_0$ appears as a factor in the characteristic polynomial of A is called the **algebraic multiplicity**.

Theorem (Geometric and Algebraic Mutliplicity). If *A* is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.