Polar Form of a Complex Number (I)

The **polar form** of a complex number z = x + iy is given by

 $z = r(\cos\theta + i\sin\theta)$

where θ is the angle from the real axes to the vector z and r is the modulus of z, i.e. r = |z|. Note that $x = r \cos \theta$ and $y = r \sin \theta$ (see figure below).

The angle θ is called the **argument of** z and is denoted by

$$\theta = \arg z$$

Note $\theta = \arg z$ is not uniquely determined (adding/substracting multiples of 2π from θ produces same argument). The **principal argument of** z is the argument of z that satisfies $-\pi < \theta < \pi$ and is denoted by

$$\theta = \operatorname{Arg} z$$

Polar Form of a Complex Number (II)

Multiplication and division (using polar form). Let

$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
 and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$

Then,

$$z_1z_2 = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

and

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos\left(\theta_1 - \theta_2\right) + i\sin\left(\theta_1 - \theta_2\right)]$$

DeMoivre's Formula. If *n* is a any integer and $z = r(\cos \theta + i \sin \theta)$ (and $z \neq 0$), then

$$z^n = r^n(\cos n\theta + i\sin n\theta)$$

In the special case where r = 1, we have

$$(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$$

Polar Form of a Complex Number (III)

Application of DeMoivre's Formula (finding roots of z). If n is a positive integer, then n-th root of $z = r(\cos \theta + i \sin \theta)$ is given by

$$z^{1/n} = \sqrt[n]{r} \left[\cos\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) \right], \quad k = 0, 1, 2, \dots, n-1$$

Euler's Formula. In more detailed studies of complex numbers, complex exponents are defined, and it is shown that

$$(\cos\theta + i\sin\theta) = e^{i\theta}$$

where *e* is the irrational number $e \approx 2.71828...$ (Euler number). Note: the expression above can be derived by expanding e^x around 0, substituting $x = i\theta$ and rearranging terms.

From Euler's formula it follows that the polar form $z = r(\cos \theta + i \sin \theta)$ can be expressed as

$$z = re^{i\theta}$$

and $\bar{z} = r(\cos \theta - i \sin \theta)$ as

$$\bar{z} = re^{-i\theta}$$

Definition (ordered *n***-tuple** & *n***-space).** If *n* is a positive integer, then an **ordered** *n***-tuple** is a sequence of *n* real numbers $(v_1, v_2, ..., v_n)$. The set of all ordered *n*-tuples is called *n*-**space** and is denoted by \mathbb{R}^n .

Definition (equal vectors). Vectors $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ in \mathbb{R}^n are said to be **equivalent** (also called **equal**) if

$$v_1 = w_1$$
 $v_2 = w_2$... $v_n = w_n$

We indicate this by writing $\mathbf{v} = \mathbf{w}$.

Definition (operations). If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n , and if k is any scalar, then we define

(i)
$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

(ii) $k\mathbf{v} = (kv_1, kv_2, \dots, kv_n)$
(iii) $-\mathbf{v} = (-v_1, -v_2, \dots, -v_n)$
(vi) $\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$

Vectors in 2-space, 3-space, and n-space (II)

Theorem (properties of operations). If $\mathbf{u} = (u_1, u_2, ..., u_n)$, $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$ are vectors in \mathbb{R}^n , and if k and m are scalars, then:

(a)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
(b) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (f) $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
(c) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (g) $k(m\mathbf{u}) = (km)\mathbf{u}$
(d) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (h) $\mathbf{1u} = \mathbf{u}$

Theorem (additional properties). If \mathbf{v} is a vector in \mathbb{R}^n and k an scalar, then:

(a)
$$0v = 0$$
 (b) $k0 = 0$ (c) $(-1)v = -v$

Definition (linear combination). If **w** is a vector in \mathbb{R}^n , then **w** is said to be a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \ldots + k_r \mathbf{v}_r \tag{1}$$

where k_1, k_2, \ldots, k_r are scalars. These scalars are called the **coefficients** of the linear combination. If r = 1, formula (1) becomes $\mathbf{w} = k_1 \mathbf{v}_1$, so that a linear combination of a single vector is just a scalar multiple of that vector.

Norm, Dot Product, and Distance in R^n (I)

Definition (norm). If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the **norm** (or **length** or **magnitude**) of \mathbf{v} is denoted by $||\mathbf{v}||$, and is defined by the formula

$$|\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Theorem (facts about vectors in R^n **).** If **v** is a vector in R^n , and if k is any scalar, then:

(a)
$$||\mathbf{v}|| \ge 0$$
 (b) $||\mathbf{v}|| = 0 \iff \mathbf{v} = \mathbf{0}$ (c) $||k\mathbf{v}|| = |k|||\mathbf{v}||$

Unit vector: A vector of norm 1 is called a unit vector. If \mathbf{v} is a nonzero vector, then

$$\mathbf{u} = \frac{1}{||\mathbf{v}||}\mathbf{v}$$

defines the unit vector that has the same direction as \mathbf{v} . Obtaining the unit vector \mathbf{u} of \mathbf{v} is called **normalizing v**.

Standard unit vectors are the unit vectors in the positive directions of the coordinate axes. In \mathbb{R}^n the standard unit vectors are expressed as

$${f e}_1 = (1,0,\ldots,0) \quad {f e}_1 = (0,1,\ldots,0) \quad \ldots \quad {f e}_n = (0,0,\ldots,1)$$

Every vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n can be expressed as a linear combination of the standard unit vectors

$$\mathbf{v} = (v_1, v_2, \ldots, v_n) = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \ldots + v_n \mathbf{e}_n$$

Norm, Dot Product, and Distance in R^n (II)

Definition (distance). If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are points in \mathbb{R}^n , then we denote the distance between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$ and define it to be

$$d(\mathbf{u},\mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_n - v_n)^2}$$

Definition (dot product in R^2 , R^3). If **u** and **v** are nonzero vecotrs in R^2 and R^3 , and if θ is the angle between **u** and **v**, then the **dot product** (or **Euclidian inner product**) of **u** and **v** is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$$

If
$$\mathbf{u} = 0$$
 or $\mathbf{v} = 0$, then $\mathbf{u} \cdot \mathbf{v} = 0$.

Definition (dot product - component form). If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then the **dot product** (or **Euclidian inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\ldots+u_nv_n$$

Comment: In the particular case $\mathbf{u} = \mathbf{v}$

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Norm, Dot Product, and Distance in R^n (III)

Theorem (properties of dot product). If \mathbf{u} , \mathbf{v} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ Symmetry property(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ Distributive property(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ Homogeneity property(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$, and $\mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0}$ Positivity property

Theorem (additional properties). If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a)
$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$
 (d) $(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$
(b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$
(c) $\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$

Angles in \mathbb{R}^n : We can extend the notion of angle to \mathbb{R}^n by means of the dot product definition in \mathbb{R}^2 and \mathbb{R}^3

$$heta = \cos^{-1}\left(rac{\mathbf{u}\cdot\mathbf{v}}{||\mathbf{u}||\,||\mathbf{v}||}
ight)$$

This expression is defined if the argument satisfies

$$-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} \leq 1$$

Norm, Dot Product, and Distance in R^n (IV)

Theorem (Cauchy-Schwarz Inequality). If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n , then

 $|\mathbf{u}\cdot\mathbf{v}| \le ||\mathbf{u}||\,||\mathbf{v}||$

or in terms of components

$$|v_1u_1 + \ldots + u_nv_n| \le \sqrt{u_1^2 + \ldots + u_n^2} \sqrt{v_1^2 + \ldots + v_n^2}$$

Theorem (Triangle inequalities). If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n , then (a) $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ (triangle inequality for vectors) (b) $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ (triangle inequality for distances)

Theorem (Parallelogram Equation for Vectors). If **u** and **v** are vectors in \mathbb{R}^n , then

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2(||\mathbf{u}||^2 + ||\mathbf{v}||^2)$$

Theorem (Rel. between dot product and norm). If **u** and **v** are vectors in \mathbb{R}^n , then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} ||\mathbf{u} + \mathbf{v}||^2 - \frac{1}{4} ||\mathbf{u} - \mathbf{v}||^2$$

Table 1

Form	Dot Product	Example	
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$	$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5\\4\\0 \end{bmatrix} = -7$ $\mathbf{v}^{T}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1\\-3 \end{bmatrix} = -7$
			5
u a row matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v} = \mathbf{v}^T\mathbf{u}^T$	u = [1 -3 5]	$\mathbf{uv} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		$\mathbf{v} = \begin{bmatrix} 5\\4\\0 \end{bmatrix}$	$\mathbf{v}^T \mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a column matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{u}^T \mathbf{v}^T$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	$\mathbf{vu} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
			$\mathbf{u}^T \mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
u a row matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v}^T = \mathbf{v}\mathbf{u}^T$	$\mathbf{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}$	$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		$v = [5 \ 4 \ 0]$	$\mathbf{v}\mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

Norm, Dot Product, and Distance in R^n (V)

Dot product as matrix multiplication: If A is an $n \times n$ matrix and u and v are $n \times 1$ matrices, then it follows that

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$$
$$\mathbf{u} \cdot A \mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v}$$

Dot product view of matrix multiplication: If the row vectors of *A* are $\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_3$ and the column vectors of *B* are $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_3$, then the product *AB* can be expressed as

$$AB = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{c}_1 & \mathbf{r}_1 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_1 \cdot \mathbf{c}_n \\ \mathbf{r}_2 \cdot \mathbf{c}_1 & \mathbf{r}_2 \cdot \mathbf{c}_2 & \dots & \mathbf{r}_2 \cdot \mathbf{c}_n \\ \vdots & & \vdots \\ \mathbf{r}_n \cdot \mathbf{c}_1 & \mathbf{r}_n \cdot \mathbf{c}_2 & \dots & \mathbf{r}_n \cdot \mathbf{c}_n \end{bmatrix}$$