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§1. Introduction

A primitive root mod p is a generator of pZ{pZq�. Gauss was the first to introduce
the idea of a primitive root in his Disquisitiones Arithmeticae. They were first used
to answer questions about the decimal expansion of fractions 1{p, and have fasci-
nated mathematicians ever since. In 1927, Artin conjectured that every non-square
integer a different from 1 or �1 is a primitive root for infinitely many primes p. He
also provided a heuristic argument for the conjectured density of such primes [1].
Computations performed by Lehmer showed that this density was incorrect for some
values of a, so that a correction factor was required. In 1967, Hooley assumed the
generalised Riemann hypothesis (see below) and was able to prove Artin’s conjecture
with a modified density. Many other important results surrounding Artin’s conjec-
ture have been proven (see [6], for example). The unconditional conjecture remains
open as of 2006.

During the summer of 2004, Solomon Golomb related a “natural” generalisation
of Artin’s conjecture to one of the authors [4].

Conjecture. For every squarefree integer a ¡ 1, and for every positive
integer r, there are infinitely many primes p � 1 pmod rq such that the
order of a in pZ{pZq� is pp � 1q{r. Moreover, the density of such primes
p is asymptotic to a constant (expressible in terms of a and r) times the
corresponding asymptotic density for the case r � 1 (Artin’s conjecture).
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His conjecture arose in connection with the divisibility of polynomials over GF pqq
with a restricted number of terms [5]. Golomb performed extensive computations
for various r when a � 2. They seemed to support his conjecture and, in particular,
indicated a density of

Ap2q
r2

�
r2 � 1

r2 � r � 1



for odd prime values of r, where Ap2q is Artin’s constant. In this paper we will
assume the generalised Riemann hypothesis and follow Hooley’s method in order to
prove results towards a resolution of Golomb’s conjecture.

We must introduce some notation before we can begin the analysis. Throughout
the paper, a will denote a fixed positive integer that is not a p-th power for any prime
p. The symbol r will also represent a fixed positive integer, and k will usually be
reserved for positive squarefree integers. A primitive n-th root of unity will always
be denoted by ζn. The object of inquiry is the function Na,rpxq, which counts the
primes p ¤ x satisfying p � 1 pmod rq and such that a has multiplicative order
pp � 1q{r modulo p. Our goal is to use the generalised Riemann hypothesis to find
an asymptotic formula for Na,rpxq.

For our purpose, it is necessary to reformulate the condition that a has order
pp � 1q{r. A necessary and sufficient condition for a to have order pp � 1q{r is that
app�1q{r � 1 pmod pq and whenever p � 1 pmod rqq for a prime q, then app�1q{prqq � 1
pmod pq. If we let Rpp, kq correspond to the simultaneous conditions

p � 1 pmod rkq
app�1q{prkq � 1 pmod pq

then a has order pp� 1q{r if and only if Rpp, 1q holds, but Rpp, qq does not for every
prime q. We adopt the formalism introduced by Hooley so that we can restate this
once again in the language of algebraic number theory.

Let Lr denote the Galois number field Qp r
?

a, ζrq and for each prime q, let Lrq �
Qp rq

?
a, ζrqq. Then a famous theorem of Dedekind can be used to show that Rpp, qq

holds if and only if p splits completely in Lrq. Thus, a has the required order for
a given prime p if it splits in Lr, but not in Lrq for any prime q. Since these fields
are Galois extensions of Q, the Chebotarev density theorem gives the proportion of
primes that split completely in a given Lrq. Denoting the degree of the extensions
Lk by nk, the density of primes that split completely in Lk is 1{nk.
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For any squarefree positive integer k let

Lrk �
¹
q�k

Lrq

be the compositum of these fields, and nrk denote the corresponding degree of the
extension. Then the inclusion-exclusion principle and the Chebotarev density theo-
rem lead one to conclude that the density of primes such that a has order pp� 1q{r
modulo p should be

Apa, rq �
8̧

k�1

µpkq
nrk

(1)

where µpkq is the classical Möbius function.

This paper will show that under the generalised Riemann hypothesis, this is
indeed the correct density. The next section analyses Apa, rq in an attempt to express
it in a more convenient form. Following this, the generalised Riemann hypothesis is
used to compute an asymptotic formula for Na,rpxq. We follow a method analogous
to that originally implemented by Hooley to settle Artin’s conjecture under the same
hypothesis. Finally, in the fourth section we restrict our attention to a special case
where it is possible to express Apa, rq as a product and conclude that the primes in
question have positive density. Subject to the generalised Riemann hypothesis, this
verifies Golomb’s claim about the density in these cases.

§2. Analysis of Apa, rq

We begin this section by attempting to relate the density for a general r to the case
r � 1, which corresponds to Artin’s conjecture. Write a � b2c with c squarefree.
Hooley showed that, if the generalised Riemann hypothesis holds, the density of
primes given by Artin’s conjecture is

Apaq � δ
¹

q

�
1� 1

nq



(2)

where

δ �
"

1� µpcq±q�c
1

nq�1
if c � 1 pmod 4q

1 otherwise
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This gives the proportion of primes p such that p does not split in any Lq. Hence,
by the Chebotarev density theorem, one would expect that the proportion of primes
that don’t split in each Lq with pr, qq � 1, but do split in Lr is

Apaq
nr

¹
q�r

�
1� 1

nq


�1

Our initial remarks show that this is equivalent to the density of primes such that the
index of a in pZ{pZq� is divisible by r, and divisible only by primes dividing r. The
product must therefore be corrected in order to obtain the density of primes such
that a has index precisely r. The inclusion-exclusion principle leads one to conclude
that the correct density should be

Apaq
�¸

k�r

µpkq
nrk

�¹
q�r

�
1� 1

nq


�1

(3)

In this Section 4 below, we will focus on a special case where Apa, rq is in fact equal
to the expression above.

For the remainder of this section k will denote a fixed squarefree positive integer.
The following elementary lemma and induction show that Lrk � Qp rk

?
a, ζrkq.

Lemma 1 Let K be a field and suppose that a P K has both m-th and n-th roots in
K. Then a has an mn{pm, nq-th root in K.

Proof. Suppose c, d P K satisfy cm � a and dn � a. Let x, y be integers such that
xm1 � yn1 � 1, where m1 � m{pm, nq and n1 � n{pm, nq. Then

a � axm1

ayn1 � pdxcyqmn{pm,nq P K. l

Put Z � Qpζrkq and observe that in order to compute nrk it suffices to compute
rLrk : Zs, for

nrk � rLrk : ZsrZ : Qs � rLrk : Zsφprkq
Let α be a root of the polynomial xrk�a and F � Qpαq, so that Lrk � FZ. Since the
cyclotomic extension Z{Q is Galois, rLrk : Zs � rF : Qs. In light of this observation,
we proceed to compute rF : Qs. The following theorem will be useful.
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Theorem 1 Let K be a field, n an integer greater than 1 and a P K�. Assume that
for all prime numbers p � n we have a R Kp, and if 4 � n then a R �4K4. Then
xn � a is irreducible in Krxs.

Proof. [9], p. 297. l

This theorem and our assumptions about a imply that the polynomial xrk � a is
irreducible. Hence, rF : Qs � rk and

rk � mrLrk : Zs
for some integer m. In the sequel we will need to consider these extensions for a
variety of values of k. Consequently, in these cases we will write mpkq � m to denote
the dependence on k.

Before moving on, we remark that the hypotheses imposed on a are only necessary
for the application of Theorem 1 to the computation of rF : Qs. For odd values of
r it is possible to weaken these hypotheses. In the odd case, 4 does not divide rk
for any squarefree k. Theorem 1 reveals that in thise case the polynomial xrk � a is
reducible if and only if a is a perfect p-th power for some prime p � rk. Thus, for
odd values of r we need not assume a is positive, only that it is not a perfect power.

Let q be a prime divisor of m, and suppose that q does not divide r. The index
rZp q

?
aq : Zs is either 1 or q and, furthermore, it divides rk{m. Such primes q are

relatively prime to rk{m, which shows that the index must be 1, and q
?

a P Z.
This cyclotomic field is abelian, and all subfields of it are abelian. Noting that the
extension Qp q

?
aq{Q is Galois only when q � 2, one concludes that 2 is the sole

possible prime divisor of m that does not divide r. Thus,

nrk � φprkqrk
m

for some m � 2rpr, kq.
Galois theory shows that restricting automorphisms σ P GalpLrk{F q to Z fur-

nishes an isomorphism

GalpLrk{F q � GalpZ{pZ X F qq
which yields the relation m � rZ XF : Qs ([9], p. 266). It will often be the case that
Z X F � Q and m � 1. However, this is not always true; indeed, Artin’s original
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miscalculation of the density of primes in the case r � 1 was due to an oversight of
this fact! In the original Artin case, m � 2, and this allows one to apply the theory
of quadratic subfields of cyclotomic fields to find a neat criterion for determining the
value of m. This remains true in our case, however, a different argument is necessary.
The first result along these lines was worked out by Darbi in 1926 [2].

Theorem 2 Let ζn denote a primitive n-th root of unity and let xn � a P Qrxs be
irreducible with root α. Define an integer m as

m � maxtd : d � n and αn{d P Qpζnqu

Then the degree of the splitting field of xn � a is nφpnq{m.

Gay and Vélez [3] extended Darbi’s result to fields of arbitrary characteristic.
They also provided a more explicit formula for m applicable to the rational numbers.
In particular, their work shows that in the present case

m �
"

2 if rk is even and
?�a P Qpζ2rkq

1 otherwise

§3. Asymptotics for Na,rpxq

Let πr denote the set of primes that split completely in Lr, and similarly for πrq.
Equivalently, it is the set of primes p such that Rpp, 1q (respectively Rpp, qq) holds.
Also let πrkpxq denote the number of primes no larger than x contained in

�
q�k πrq.

In other words, πrkpxq gives the number of primes up to x that split in each Lrq for
q � k. By convention take πrpxq to give the number of primes up to x contained in
πr. The inclusion-exclusion principle shows that

Na,rpxq �
8̧

n�1

µpnqπrnpxq. (4)

If rq ¡ x then Rpp, qq cannot possibly hold for any primes p   x. Hence, πrqpxq is
zero for such primes q. This implies that the sum above is in fact finite.
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In order to find an asymptotic formula for Na,rpxq, we break the last sum up
following Hooley’s method for Artin’s conjecture. Define another function Mpx; z, wq
that counts the number of primes p ¤ x satisfying Rpp, qq for some prime q such that
z ¤ rq ¤ w. Put k �±rq¤z q. The following upper bound is immediate

Na,rpxq ¤
¸
d�k

µpdqπrdpxq

This is because the sum on the right counts all primes p ¤ x satisfying Rpp, 1q and
such that Rpp, qq does not hold for every prime q with rq ¤ z. A lower bound is
obtained just as easily using the function defined above

Na,rpxq ¥
¸
d�k

µpdqπrdpxq �Mpx; z, xq

These results lead us to the departure point of our asymptotic investigation

Na,rpxq �
¸
d�k

µpdqπrdpxq �OpMpx; z, xqq (5)

To continue the analysis we will require an effective version of the Chebotarev
density theorem. Assuming the generalised Riemann hypothesis, one can prove that

πrdpxq � 1

nrd

Li x�Op?x logprdxqq (6)

where Li x is the logarithmic integral

Li x �
» x

2

dt

log t

and the constant implied by the O notation is absolute [13]. Combining this result
with (5) yields

Na,rpxq � Apa, rqLi x�
�¸

d�k

µpdq
nrd

�
Li x�

¸
d�k

O
�?

x logprdxq��OpMpx; z, xqq

Letting z � p1{6q log x gives

k �
¹
rp¤z

p � eθpz{rq ¤ e2z{r ¤ x1{3
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which shows that the third term above is Opx5{6 log xq. The results of the previous
section can be applied to estimate the second term. The expression obtained for nrk

reveals that the term in question is

O

�¸
d¡z

Li x

dφpdq

�

where the sum is over squarefree integers d. It is a well-known fact [7] that

d

φpdq   C log log d

for sufficiently large values of d. Hence,

O

�¸
d¡z

Li x

dφpdq

�
� O

�
Li x

¸
d¡z

log log d

d2

�
� O

�
x log log x

log2 x




The asymptotic expansion of Li x about infinity

Li x � x

log x
� x

log2 x
� 2!x

log3 x
� 3!x

log4 x
� � � �

allows one to rewrite the expression for Na,rpxq:

Na,rpxq � Apa, rq x

log x
�O

�
x log log x

log2 x



�O pMpx; z, xqq (7)

To treat the OpMpx; z, xqq term, let z1 � ?
x{ log2 x and z2 � ?

x log x. The
inequality

Mpx; z, xq ¤ Mpx; z, z1q �Mpx; z1, z2q �Mpx; z2, xq
is used to break the estimation up into three tractable steps, each of which can be
estimated following Hooley’s original method.

The effective Chebotarev density theorem is used to treat Mpx; z, z1q. Observe
that

Mpx; z, z1q ¤
¸

z¤rq¤z1

πrqpxq
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Substituting (6) into this inequality shows that

Mpx; z, z1q ¤ Li x

� ¸
z¤rq¤z1

1

nrq

�
�

¸
z¤rq¤z1

O
�?

x logprqxq�

� O

�
Li x

�¸
z¤rq

1

qpq � 1q

��
�O

�
?

x log x
¸

rq¤z1

1

�

� O

�
x

log2 x




The treatment of the second term begins similarly. As above, we have

Mpx; z1, z2q ¤
¸

z1¤rq¤z2

πrqpxq

The error term in the Chebotarev density theorem is too large for this case. A
different approach must be used. Recall that the condition Rpp, qq contains two
clauses. Maintaining only the condition that p � 1 pmod rqq provides the loose
inequality

πrqpxq ¤
¸
p¤x

rq�p�1

1

This final term can be estimated via the Brun-Titchmarsh theorem ([10], p. 143).
For large enough values of x, ¸

p¤x
rq�p�1

1 ¤ 3x

φprqq logp2x{rqq

which leads one to the result that

Mpx; z1, z2q � O

�
x

log x

¸
z1¤rq¤z2

1

φpqq

�

Following Hooley, an application of Merten’s formula then gives

Mpx; z1, z2q � O

�
x log log x

log2 x



(8)

An elegant and very elementary argument is used for the final term. The key
idea is that if Rpp, qq holds then p divides

app�1q{prqq � 1
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The inequalities
?

x log x ¤ rq and p � 1   x yield pp � 1q{rq   ?
x{ log x. Con-

sequently, Mpx; z2, xq is bounded by the number of distinct prime divisors of the
product ¹

m ?x{ log x

pam � 1q

Since am � 1 is divisible by at most m log a prime factors, this shows that

Mpx; z2, xq � O

�
x

log2 x




These estimates prove the following theorem.

Theorem 3 Let a be a positive integer that is not a p-th power for any prime p, and
let r be a positive integer. If Na,rpxq denotes the number of primes p ¤ x such that
p � 1 pmod rq and a has order pp� 1q{r in pZ{pZq� then, assuming the generalised
Riemann hypothesis,

Na,rpxq � Apa, rq x

log x
�O

�
x log log x

log2 x




where

Apa, rq �
¸
k¡0

µpkqmpkq
rkφprkq

and

mpkq �
"

2 if rk is even and
?�a P Qpζ2rkq

1 otherwise

§4. A Special Case

After making his conjecture, Golomb performed extensive computations for various
values of r in the case a � 2. In this section we treat the case when r is odd, a � b2c
is not a perfect p-th power for any prime p, and c is even and squarefree. This
includes the case a � 2. The results established here match Golomb’s computations.

Since r is odd, a remark from Section 2 shows that we need not assume a is
positive. The same section showed that a full resolution to this problem depends
upon determining when

?�c P Qpζ2rkq for squarefree k. First note that if k is
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odd then Qpζ2rkq � Qpζrkq. To see this one observes that Qpζrkq � Qpζ2rkq and
rQpζrkq : Qs � rQpζ2rkq : Qs. The discriminant of the cyclotomic field Qpζrkq divides
prkqφprkq, and is hence odd. These observations show that the rational prime 2 does
not ramify in Qpζ2rkq when rk is odd. Hence, in these cases

?�c R Qpζ2rkq and
mpkq � 1.

The problem has been reduced to considering the case k � 2t. As above, we show
that Qp?�cq is not a quadratic subfield of Qpζ4rtq. Quadratic subfields of a Galois
extension correspond to subgroups of index 2 in the Galois group. The fields under
consideration are not only Galois, but are in fact abelian. By considering group
characters trivial on subgroups of index 2 in the Galois group, the duality theory of
finite abelian groups furnishes a bijection between subgroups of index 2 and elements
of order 2. Let s be the number of elements of order 2 in pZ{rtZq�, so that Qpζrtq
has s quadratic subfields. Write them as Qp?d1q, . . . , Qp

?
dsq with the di’s distinct

integers. Since 2 does not ramify in Qpζrtq, upon consideration of the discriminant of
the associated quadratic field one sees that di � 1 pmod 4q for each i. In particular,
each di is odd.

The Chinese remainder theorem shows that pZ{4rtZq� � pZ{4Zq��pZ{rtZq� has
2s� 1 elements of order 2. These correspond to the quadratic subfields Qp?d1q, . . .,
Qp?dsq, Qp?�d1q, . . . , Qp

?�dsq, Qp?�1q of Qpζ4rtq. Since the di’s are odd, one
concludes that Qp?�cq is not a quadratic subfield of Qpζ4rtq and mpkq � 1. Thus,

Apa, rq �
¸
k¡0

µpkq
rkφprkq

�
¸
d�r

¸
pk,rq�d

µpkq
rkφprkq

�
�¸

d�r

µpdq
rdφprdq

��� ¸
pk,rq�1

µpkq
kφpkq

�


� Apaq
�¸

d�r

µpdq
rdφprdq

�¹
p�r

�
1� 1

ppp� 1q

�1

as predicted by (3) above (recall that Apaq is Artin’s constant). Rewrite the sum
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appearing in this expression as

¸
d�r

µpdq
rdφprdq � 1

r2

¹
p�r

�
p

p� 1


�¸
d�r

µpdq
d2

�

� 1

r2

¹
p�r

�
p

p� 1


¹
p�r

�
1� 1

p2




� 1

r2

¹
p�r

�
1� 1

p




Hence, in this case

Apa, rq � Apaq
r2

¹
p�r

�
p2 � 1

p2 � p� 1



(9)

Equation (9) reveals that the density Apa, rq is positive, which proves the following
corollary of Theorem 3.

Corollary 1 Let a be an integer that is not a p-th power for any prime p, and let r
be an odd positive integer. If a � b2c where c is even and squarefree, then there are
infinitely many primes p � 1 pmod rq such that a has order pp� 1q{r in pZ{pZq�.

§5. Concluding Remarks

Golomb conjectured that, for any positive integer r, a given non-square integer a ¡ 1
has index pp� 1q{r in pZ{pZq� for infinitely many primes p � 1 pmod rq. Under the
assumption of the generalised Riemann hypothesis, Theorem 3 is a good step towards
a resolution of this conjecture. It can be improved in several important ways, many
of which seem to depend upon a deeper understanding of the fields Lrk.

The work above assumes that a is positive and not a perfect p-th power. These
simplifying assumptions imply that the polynomials xrk � a are irreducible, and the
work of Gay and Vélez then provides a lower bound for nrk � rLrk : Qs. If a suitable
lower bound could be found for a more general class of integers a, the method of
Hooley outlined in Section 3 could be applied to strengthen Theorem 3 to apply to
these cases as well.
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Theorem 3 does not allow one to conclude that Golomb’s conjecture holds in any
case. In particular, one is not able to conclude that the density (1) is positive. In the
original Artin case, Hooley analysed the density and rewrote it as a product. This
enabled him to conclude that it was positive. We achieved this for certain special
cases of Golomb’s conjecture in Section 4 above. A similar idea could be applied
to the general case. It would require an explicit expression for nrk akin to what
Hooley achieved in his original work. One sees that treating Golomb’s conjecture
in the broadest generality is tantamount to computing the degree of the extension
Qpζn, n

?
aq{Q for every positive integer n, and non-square integer a � 0, 1,�1. If

this were known, it is expected that a simple application of the methods above
would supply proof of Golomb’s conjecture under the assumption of the generalised
Riemann hypothesis.
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