
p-ADIC UNIFORMIZATION OF SHIMURA CURVES: THE THEOREMS OF
CEREDNIK AND DRINFELD

BOUTOT-CARAYOL

ABSTRACT. This is a translation of the Asterisque paper of Boutot and Carayol explain-
ing Drinfeld’s proof of the Cerednik- Drinfeld theorem. This p-adic uniformization
result was originally obtained by Cerednik. Drinfeld then gave a more conceptual
proof by interpreting the p-adic upper half plane as a moduli space for certain formal
groups.
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INTRODUCTION

Let ∆ denote an indefinite quaternion algebra over Q. It corresponds to a projective
system, indexed by compact open subgroups U of ∆(Af )

×, of Shimura curves SU :
they are algebraic curves (complete if ∆ is a division algebra), defined over Q, whose
absolutely connected components are defined over cyclotomic extensions of Q. The
most well-known example of such a situation is the case when ∆ isM2(Qp): the curves
obtained are the usual modular curves. Their reduction modulo p has been well-
studied, and the nature of this reduction depends on the exponent of p in the level,
which is to say the component Up at p of the subgroup U (supposing, for simplicity,
that it decomposes into a product): in particular – when U is small enough to avoid
problems of non-representability – our curve has good reduction at p if Up is maximal,
which is to say that p does not divide the level. One can consult [De-Ra] and [K-M]
for the study of the bad reduction in the case when Up is not maximal: this reduction
can be described in terms of a moduli problem (where the famous Drinfeld bases play
a role), which allows one to study the special fiber and the singularity obtained there.
In the case of a general algebra ∆, at a place p where ∆ is unramified, the sitation is
formally similar to the case of modular curves: the Shimura curve has good reduction
when Up is maximal, and the case of bad reduction can be described in an analogous
fashion to the modular case; moreover, everything can be generalised to the case of
quaternion algebras over a totally real field ([Ca 1]).

The situation is quite different at a place p where the algebra ∆ is ramified: in this
case, supposing that Up is maximal, Cerednik showed that the Shimura curve SU ad-
mits a p-adic uniformisation, which is to say that SU ⊗ Qp is the union of (twisted
forms of) Mumford quotients of the “p-adic upper half-plane” by Schottky subgroups
of PGL2(Qp); such subgroups are obtained from the algebra ∆ obtained from ∆ by
interchanging local invariants at the places p and∞ (that is, ∆ is definite and unram-
ified at p). One can use this uniformisation to describe the special fiber at p, which
is a quotient by a finite group of a graph of projective lines (whose general fiber is
singular).

Cerednik obtained his result via an indirect method, where the principal was to
consider a priori Mumford curves, and to compare them to Shimura curves on the
one hand, and one the other to study the action of the fundamental group: this
method, which was motivated by work of Ihara, is similar – unsurprisingly – to that
used by Kazhdan to study conjugates of Shimura varieties.

Deligne and Kazhdan quickly remarked that the result of Cerednik pointed towards
the existence of a universal family of formal groups over the rigid-analytic “half-plane”
ΩQp = P1(Cp) − P1(Qp); this is what Drinfeld’s fundamental theorem proves: in a
very precise manner, he proved that Ω̂Qp⊗̂Ẑp

nr
– where Ω̂Qp is a formal scheme over

Zp whose special fiber is ΩQp – parameterises a family of formal groups, of dimension
2 and height 4, along with an action of the maximal order of the quaternion field D
of center Qp, and with a “rigidification”. The local theorem of Drinfeld is also valid
in higher dimensions (where ΩQp is replaced by Pn−1(Cp) deprived of its rational
hyperplanes: one obtains in this way a moduli space for formal groups of dimension
n and height n2, along with an action of the maximal order of the division algebra of
invariant 1/n), as well as for ΩK = P1(CK)−P1(K) (where K is a non-archimedean
local field) and its analogues in higher dimensions. The method used by Drinfeld
for proving his theorem rests on the theory of Dieudonne-Cartier: it consists of an
ingenious algebraic construction on the Dieudonne modules of the formal groups
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under consideration, and in this way one shows that their moduli is represented by
the formal scheme Ω̂Qp⊗̂Ẑnr

p , and in this way one obtains an isomorphism of functors.
One the local theorem has been proved, Drinfeld easily derives the original result of

Cerednik: one sees in fact that SU parameterises a family of abelian varieties classified
by Ω̂Qp⊗̂Ẑp

nr
. The theorem of Drinfeld thus reveals a profound structure underlying

the result of Cerednik. Moreover, the local theorem allows one to define a natural
projective system of etale coverings Σn of ΩQp ⊗Qnr

p : these coverings, which are a lit-
tle mysterious, allow one to uniformise the curves SU at a place p where ∆ is ramified
and where Up is not maximal, something which was not possible using the methods
of Cerednik. One can also apply the local theorem in other cases and obtains p-adic
uniformisation results: for example, one can uniformise Shimura curves defined over
totally real fields (which was already treated by Cerednik); the specialists in the sub-
ject know in principle how to do this, but it has not, to our knowledge, been written
down. Moreover, Rapoport and Zink have, using the local theorem in higher dimen-
sions, uniformised Shimura varieties associated to certain unitary groups. Finally we
mention that Drinfeld knows how to uniformise “Elliptic Modules II” by the coverings
Σn.

Drinfeld proved his theorem in a very brief article ([Dr 2]), which is very dense
and difficult to digest; our goal here is to expand on his method, and prove the the-
orem in detail. The present work is divided into three distinct chapters. The first
treats the non-archimedean half-plane, and its different perspectives (rigid-analytic
or formal), as well as the different moduli problems that it represents. The second
chapter constitutes the heart of the work: the local theorem is described and proved.
Essential points regarind the method Drinfeld used in his proof were explained to us
by Thomas Zink, who lectured to us a number of times on the subject in Strasbourg.
Our debt in this regard is difficult to estimate: we wish to extend here our thanks,
and we hope that our work is satisfactory. After a lot of hesitation, we made the, per-
haps questionable, choice to restrict our treatment of the theorem to the case of the
“half-plane”, which is to say the case of dimension 1 (over an arbitrary p-adic field,
however); this choice allows us to keep certain diagrams small, and discuss different
cases more explicitely (however the necessary ideas to prove the theorem in higher
dimensions are essentially similar). The third and final chapter treats the global situ-
ation: we describe, comment upon and finally prove the theorem of Cerednik (in the
case of the base field Q).

I. THE NONARCHIMEDEAN HALF PLANE

Let K be a non-archimedean local field and C the completion of the algebraic
closure of K. The non-archimedean “half-plane” Ω over K is defined set-theoretically
as Ω = P1(C)−P1(K).

In section 1 we recall the construction of the tree I associated with PGL(2, K) [Se]
and its geometric realisation IR. Then we define a map λ : Ω → IR which allows us
to describe the rigid analytic structure of Ω, in the sense of Tate [Ta 1], as the inverse
image under λ of edges of the tree. This description was given by Drinfeld [Dr 1] and
has been described in detail (in arbitrary dimensions) by Deligne and Husemoller
[De-Hu]. For basics on rigid analytic geometry, one can consult [B-G-R] or [Fr-VdP].

In section 3 we define a formal model, in the sense of Raynaud [Ra 1], of the
rigid analytic space Ω. It is a formal scheme Ω̂ over the ring of integers of K, which
we define by glueing formal schemes Ω̂[s,s′] corresponding to edges [s, s′] of the tree
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I. This model was first introduced by Mumford [Mu 2] in his article on the non-
archimedean analogue of Schottky uniformisation of Riemann surfaces.

Section 4 gives Deligne’s (unpublished) functorial description of the formal scheme
Ω̂[s,s′] in terms of edges adjacent to vertices s and s′ of I. By glueing constructible
sheaves along these edges, one obtains (in section 5) the functorial description of Ω̂
used by Drinfeld [Dr 2]. One can find another treatment of this material in the recent
article of Teitelbaum [Te].

We end this chapter in section 6 by describing the action of PGL(2, K) on the formal
scheme Ω̂ and on the corresponding functor.

1. The building of PGL2(K).

1.0. Let K be a local non-archimedean field, O the ring of integers of K and π a
uniformiser of O. Let k = O/πO be the residue field, p its characteristic and q its
order. We write C for the completion of the algebraic closure of K and |·| for the
norm on C normalised so that |π| = q−1. The valuation v is given by: v(x) = logq |x|.

1.1. A lattice M of K2 is an O-submodule which is free of rank 2. Two lattices M and
M ′ are homothetic if there exists λ ∈ K× such that M ′ = λM . We write S for the
collection of homothety classes of lattices and [M ] for the class of the lattice M .

The building of PGL(2, K) is the graph I with vertices given by S, and where
s = [M ] is joined to s′ by an edge if and only if there exists a representative lattice
M ′ for s′ such that πM ( M ′ ( M . Then I is a tree such that each vertex has q + 1
adjacent edges: the edges leaving a vertex s = [M ] are in bijection with the lines in
M/πM , in other words with P1(k).

1.2. The points of the geometric realisation IR of I are identified with proportionality
classes of norms on the K-vectorspace K2 (cf. [G-Iw]):

a) To a vertex s = [M ] corresponds the class of the norm |·|M such that the cor-
responding unit ball is M . If (e1, e2) is a basis for M and if v = a1e1 + a2e2, one
has

|v|M = sup{|a1| , |a2|}.
b) If s and s′ are two adjacent edges and if s = [M ] and s′ = [M ′], with πM ⊂

M ′ ⊂ M , there exists a basis (e1, e2) of M such that (e1, πe2) is a basis for M ′. For
v = a1e1 + a2e2, one has

|v|M = sup{|a1| , |a2|},
|v|M ′ = sup{|a1| , q |a2|}.

To a point x = (1−t)s+ts′, with 0 < t < 1, on the edge between s and s′, corresponds
the class of the norm |·|t defined by

|v|t = sup |a1| , qt |a2|.
One has

M = {v ∈ K2 | |v|t ≤ λ} for qt ≤ λ < q,

M ′ = {v ∈ K2 | |v|t ≤ λ} for 1 ≤ λ < q2.

c) Conversely let |·| be a norm on K2. For real λ > 0, the collection Mλ = {v ∈
K2 | |v| ≤ λ} is a lattice in K2. One has Mλ′ ⊂ Mλ if λ′ ≤ λ and Mq−1λ = πMλ, thus
[Mλ] takes at most two values in S as λ varies.

If [Mλ] = s is constant, then |·| corresponds to s.
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Otherwise [Mλ] equals s or s′ for two adjacent vertices of I. After possibly replacing
|·| by a proportional norm, one has [Mλ] = s for qt ≤ λ < q and [Mλ] = s′ for
1 ≤ λ < qt, with 0 < t < 1. Then |·| corresponds with the point x = (1 − t)s + ts′ of
the edge joining s and s′.

2. The rigid analytic space Ω.

2.1. We write Ω = P1(C)−P1(K). If one identifies P1(C) with the collection of C×-
homothety classes of nonzero K-linear maps of K2 into C, then P1(K) corresponds
to those maps with K-rank equal to one. Thus Ω is identified with the collection of
C×-homothety classes of K-linear injective maps of K2 into C.

2.2. By composing a K-linear injective map z : K2 → C with the norm on C, one
obtains a norm |·|z on K2:

|v|z = |z(v)| , for v ∈ K2.

This defines a map λ : Ω→ IR

λ(class of z) = class of |·|z .
One can verify that the image of λ is IQ.

2.3. Let s = [M ] and s′ = [M ′] be two adjacent vertices of I and (e1, e2) a basis
adapted to the pair, so that (e1, πe2) is a basis of M ′. Identify Ω with C − K and
choose a representative z for a point of Ω such that z(e2) = 1 and z(e1) = ζ ∈ C−K.
Then one has

λ−1(s) ={ζ ∈ C | |ζ| ≤ 1} −
⋃

a∈O/πO

{ζ ∈ C | |ζ − a| < 1},

λ−1(x) ={ζ ∈ C | |ζ| = q−t} if x = (1− t)s+ ts′, 0 < t < 1,

λ−1(s′) ={ζ ∈ C | |ζ| ≤ q−1} −
⋃

b∈πO/π2O

{ζ ∈ C | |ζ − b| < q−1},

λ−1([s, s′]) ={ζ ∈ C | |ζ| ≤ 1} −
⋃

a∈(O−πO)/πO

{ζ ∈ C | |ζ − a| < 1}

−
⋃

b∈πO/π2O

{ζ ∈ C | |ζ − b| < q−1}.

In other words λ−1(s) [resp. λ−1(s′)] is the closed disc of radius 1 [resp. q−1] centered
on 0, but with the q open discs of radius 1 [resp. q−1] centered on the K-rational
points of the disc removed, while λ−1(]s, s′[) is the open anulus of interior radius q−1

and exterior radius 1 centered on 0.

Proof. The norms |·|z = |ζa1 + a2| and |·|t = sup{|a1| , qt |a2|} are proportional on K2

if and only if |·|z = q−t |·|t. This equality is satisfied if and only if it is so for a1 = 1,
which is to say if

(∗) |ζ + a2| = sup q−t, |a2| for a2 ∈ K.
If 0 < t < 1, one has |a2| 6= q−t for all a2 ∈ K, so that (∗) is equivalent with |ζ| = q−t.

On the other hand, if t = 0, (∗) is equivalent with |ζ| = 1 and |ζ + a2| = 1 for all
a2 ∈ K such that |a2| = 1, or |ζ| ≤ 1 and |ζ − a| ≥ 1 for a ∈ O.

Finally if t = 1, (∗) is equivalent with |ζ| = q−1 and |ζ + a2| = q−1 for all a2 ∈ K
such that |a2| = q−1, or |ζ| ≤ q−1 and |ζ − b| ≥ q−1 for b ∈ πO. �
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Remark. Missing a picture of a standard affinoid.

2.4. The collections λ−1(s), λ−1(s′) and λ−1([s, s′]) possess natural structures as rigid
analytic spaces defined over K; they are connected affinoid subsets of P1

K , that is,
they are each a complement of a finite number of open discs in P1

K . Moreover λ−1(s)
and λ−1(s′) are opens of λ−1([s, s′]).

More generally, if T is a finite subtree of I, λ−1(T ) is a connected affinoid subset of
P1
K; it is obtained by glueing the affinoids λ−1([s, s′]) along the λ−1(s) for [s, s′] edges

of T and s interior vertices of T .
Thus Ω =

⋃
λ−1(T ), for all finite subtrees T of I, has a natural structure as a rigid

analtyic space defined over K; it is a connected analytic subspace of P1
K .

2.5. In this way one can imagine Ω as a tubular neighbourhood of IR.
Remark. Missing nice picture of λ−1([s, s′]) as tubular neighbourhood of IR.

3. The formal scheme Ω̂.

3.1. If M is a lattice in K2, the generic fiber of the projective line P(M) over O is
canonically identified with P1

K . Moreover, if M1 is a homothetic lattice, the homoth-
ety between M and M1 defines a unique O-isomorphism between P(M) and P(M1)
inducing the identity on the generic fibers. We may thus write Ps, where s = [M ] is
the vertex of I corresponding to M , for the projective line P(M) over O along with
the identification of its generic fiber with P1

K . The points λ−1(s) are exactly the points
of P1

K(C) which do not specialize to k-rational points of the special fiber of Ps. We
write Ωs for the open subscheme of Ps with is the complement of the rational points
of the special fiber and Ω̂s for the formal completion of Ωs along its special fiber. The
canonical bijections P1

K(C) = Ps(OC) = P̂s(OC) induce a bijection λ−1(s) = Ω̂s(OC);
more precisely, the rigid analytic space λ−1(s) is the generic fiber (in the sense of
Raynaud) of the formal scheme Ω̂s. As an affine formal scheme, this means simply
that the Tate algebra corresponding to λ−1(s) is Γ(Ω̂s)⊗O K.

3.2. A vertex s′ of I adjacent to s defines a k-rational point of the special fiber of
Ps: if s = [M ] and s′ = [M ′] with πM ⊂ M ′ ⊂ M , this point is defined by the map
M → M/M ′ ∼= k. The O-scheme P[s,s′] obtained by blowing up Ps at this point is
equal to the blowup of Ps′, at the point defined by s. Its generic fiber, which is the
same as that of Ps and Ps′, is canonically identified with P1

K .
We write Ω[s,s′] for the open subscheme of P[s,s′] with is the complement of the

rational points of the special fiber, except for the singular point, and we write Ω̂[s,s′]

for the formal completion of Ω[s,s′] along its special fiber. Identifying the generic fiber
of P[s,s′] with P1

K induces a bijection λ−1([s, s′]) = Ω̂[s,s′](OC); in particular, the points
of the annulus λ−1(]s, s′[) are those with specialise to the singular point of the special
fiber of P[s,s′]. In fact, retaining the notation of (2.3), the natural coordinates along
the two components of the special fiber are ζ and ζ/π (modulo the maximal ideal),
over one component the singular point corresponds to 0 after reduction of ζ, and on
the other component ζ/π gives a coordinate for the reduction about∞.

Remark. Picture of components and coordinates omitted.
Here we can say more precisely that the rigid analytic space λ−1([s, s′]) is the generic

fiber of the formal scheme Ω̂[s,s′]. Moreover the canonical maps inducing the open
immersions of Ω̂s and Ω̂s′ in Ω̂[s,s′] corresponds on the generic fibers (or over the
points with values in OC) with the inclusions of λ−1(s) and λ−1(s′) in λ−1([s, s′]).
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3.3. More generally, if T is a finite subtree of I, one obtains, by glueing the formal
schemes Ω̂[s,s′] along the Ω̂s for [s, s′] an edge of T and s an interior vertex of T
(according to the incidence relations of T ), a formal scheme Ω̂T whose generic fiber
is canonically identified with λ−1(T ).

If T ⊂ T ′, the open immersion Ω̂T ⊂ Ω̂T ′ induce the inclusions λ−1(T ) ⊂ λ−1(T ′)

on the generic fibers. One constructs in this way a formal scheme Ω̂ =
⋃
T Ω̂T whose

generic fiber is Ω; in particular, Ω̂(OC) = Ω. The special fiber of Ω̂ is a tree of
projective lines over k intersecting at k-rational points, which is dual to the tree I.

4. The functor Ω̂ of Deligne. We describe, following Deligne, the functors on the
category Compl of O-algebras that are separated and complete for the π-adic topol-
ogy which are represented by the formal schemes Ω̂s and Ω̂[s,s′].

Definition 4.1. We write Fs for the functor which, to R ∈ Compl, associates the
collection of isomorphism classes of pairs (L, α), where L is a free R-module of rank
1 and α : M → L is a homomorphism of O-modules satisfying the condition:

(∗)
{

for all x ∈ Spec(R/πR), the map
α(x) : M/πM → L⊗R k(x) is injective.

Proposition 4.2. The functor Fs is representable by the formal scheme Ω̂s.

Proof. The condition on α implies that α(u) is a generator of L for all u ∈ M − πM ,
and in particular the map α⊗ idR : M ⊗O R→ L is surjective. Thus Fs is a subfunctor
of P̂s, the formal projective line over O defined by s = [M ].

To describe this subfunctor, choose a basis (e1, e2) for M , which determines points
{0, 1,∞} of P̂s. The pair (L, α) is determined up to isomorphism by the relation
α(e1)/α(e2) = ζ ∈ R. Thus Fs is identified with a subfunctor of the formal affine line
P̂s − {∞}.

The condition on α can be expressed in terms of the image ζ of ζ in R/πR: for all
α ∈ k, ζ − a does not vanish at any point of Spec(R/πR), or in other words, ζ − a is
invertible in R/πR. Thus Fs is the subfunctor of P̂s−{∞} which represents the open
which is the complement of the k-rational points of the special fiber, which is to say
Ω̂s. �

Definition 4.3. We write F[s,s′] for the functor which, to R ∈ Compl, associates the
collection of isomorphism classes of commutative diagrams:

πM
� � //

α/π

��

M ′ � � //

α′

��

M

α

��
L c // L′ c′ // L

where L and L′ are free R-modules of rank 1, α and α′ are homomorphisms of O-
modules, c and c′ are homomorphisms of R-modules, satisfying the condition:

(∗)

 for all x ∈ Spec(R/πR), one has
ker(α(x) : M/πM → L⊗R k(x)) ⊂M ′/πM,
ker(α′(x) : M ′/πM ′ → L′ ⊗r k(x)) ⊂ πM/πM ′.

Proposition 4.4. The functor F[s,s′] is represented by the formal scheme.
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Proof. Let (e1, e2) be a basis for M such that (e1, πe2) is a basis for M ′. The condition
(*) implies that α(e2) generates L and α′(e2) generates L′. Identify L with R by
putting α(e2) = 1 and L′ with R by putting α′(e1) = 1. Let ζ = α(e1) and η = α′(πe2).
The commutativity of the diagram implies that c = η, c′ = ζ and ζη = π.

Thus the choice of (e1, e2) allows us to identify F[s,s′] with a subfunctor of the formal
scheme Spf(O{ζ, η}/(ζη−π)). The same choice identifies Spf(O{ζ, η}/(ζη−π)) with
the open subscheme of P̂[s,s′] which is the complement of the points at infinity ζ =∞
and η = infty of the two components of the special fiber.

The condition (*) can be expressed in terms of the images ζ and η of ζ and η in
R/πR: for all a ∈ k − {0}, ζ − a and η − a are invertible in R/πR. Thus F[s,s′] is
the subfunctor of P̂[s,s′] − ({ζ = ∞} ∪ {η = ∞}) which represents the open which is
the complement of the k-rational points of the two components of the special fiber
Spec(k[ζ, η]/(ζη)) with the exception of the singular point ζ = η = 0, which is to say
Ω̂[s,s′]. �

4.5. The open immersion Ω̂s ↪→ Ω̂[s,s′] is, with the identifications made above, the
restriction of the open immersion Spf(O{ζ, ζ−1}) ↪→ Spf(O{ζ, η}/(ζη − π)). The ar-
row Fs → F[s,s′] defined by functorially associating to each arrow α : M → L the
commutative diagram:

πM
� � //

��

M ′ � � //

��

M

α

��
L π // L id L

identifies Fs with the subfunctor of F[s,s′] consisting of the diagrams above where c′ is
invertible.

Similarly the open immersion Ω̂s′ ↪→ Ω̂[s,s′] is the restriction of the immersion
Spf(O{η, η−1}) ↪→ Spf(O{ζ, η}/(ζη − π)). By functorially associating to each arrow
α′ : M ′ → L′ the commutative diagram:

πM
� � //

��

M ′ � � //

��

M

α

��
L′ id L′ π // L′

on identifies Fs′ with the subfunctor of F[s,s′] consisting of the diagrams where c is
invertible.

5. The functor Ω̂ of Drinfeld. From the functors Fs and F[s,s′] defined above, one
obtains a “modular” description of the open affines Ω̂s and Ω̂[s,s′] which make up the
formal scheme Ω̂. A variant due to Drinfeld, which we will now describe, allows one
to describe Ω̂ directly in terms of a unique functor F defined on the category Nilp of
O-algebras where π is nilpotent.

If B is an O-algebra, we write B[Π] for the quotient of the algebra of polynimals
B[X] by the ideal generated by X2−π: it’s thus a free B-module of rank 2, generated
by 1 element Π (the image of X), which satisfies Π2 = π. The algebra B[Π] carries a
Z/2Z-grading, such that the elements of B are of degree 0 and Π is of degree 1.

Definition 5.1. Let B ∈ Nilp and S = SpecB. Let F (B) – or sometimes F (S) –
denote the collection of isomorphism classes of quadruples (η, T, u, r) consisting of
the following:



p-ADIC UNIFORMIZATION OF SHIMURA CURVES: THE THEOREMS OF CEREDNIK AND DRINFELD 9

(i) η is a constructible sheaf of flat Z/2Z-graded O[Π]-modules, on S with the
Zariski topology.

(ii) T is a sheaf of Z/2Z-graded OS[Π]-modules such that the homogeneous com-
ponents T0 and T1 are invertible sheaves on S.

(iii) u is an O[Π]-linear homomorphism of degree 0 of η in T , such that u ⊗O OS :
η ⊗O OS → T is injective.

(iv) r is a K-linear isomorphism of the constant sheaf K2 with the sheaf η0 ⊗O K.
These data are required to satisfy the following conditions:
[C1] Write Si ⊂ S for the zero locus of the morphism Π: Ti → Ti+1 (i = 0, 1); the

restriction ηi|Si is a constant sheaf with stalk isomorphic to O2.
[C2] For all geometric points x of S, write T (x) = T ⊗B k(x); the map ηx/Πηx →

T (x)/ΠT (x) induced by u is injective.
[C3] For i = 0, 1, (

∧2 ηi)|Si = π−1(
∧2(ΠirO2))|Si.

We conclude this definition with some remarks:
(a) It is clear that the above definition of F (S) makes sense for S which are not

necessarily affine, but also for all O-schemes S such that the image of π is nilpotent
(i.e. an (O/πnO)-scheme).

(b) From the flatness of the O[Π]-module η, and from the existence of r, one de-
duces that the homogeneous components η0 and η1 are flat sheaves of O-modules
such that each stalk is free of rank 2. The action of Π defines injective maps

· · · η0
Π→ η1

Π→ η0 · · ·
which compose to Π2 = π.

(c) Giving a triple (η, T, u) amounts to giving a commutative diagram which is
periodic of period 2:

// η0 //

u0

��

η1 //

u1

��

η0 //

u0

��
// T0

// T1
// T0

//

(d) Using r, one can define sub-sheaves N0 and N1 of the constant sheaf K2
S:

N0 = r−1η0

N1 = r−1(Π⊗Q)−1(η1) = π−1r−1(Π(η1)).

These are sub-sheaves ofO-modules of maximal rank (the “edges”) which are isomor-
phic respectively to η0 and η1. At each geometric point x of S, one has the inclusions:

N0,x ⊂ N1,x ⊂ π−1N0,x ⊂ K2,

and thus a simple (vertex and edge) of the tree. More precisely, one sees via condition
[C2] that:

– If Π|T0(x) is invertible, then N0,x = N1,x. Moreover the normalization condition
[C3] gives us:

∧2N1,x = π−1
∧2(O2).

– If Π|T1(x) is invertible, then N1,x = π−1N0,x. From [C3] one obtains in this case:∧2N0,x =
∧2(O2).

– The case where Π|T0(x) and Π|T1(x) are both zero remains. One obtainss (using
the surjectivity of ui ⊗O OS) a branch N0,x ( N1,x ( π−1N0,x, with:

2∧
N0,x =

2∧
(O2) and

2∧
N1,x = π−1

2∧
(O2).
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5.2. Our goal is now to prove the following:

Proposition 5.3. The functor F is representable by the formal scheme Ω̂.

For this, we will define for each vertex s (resp. for each edge [s, s′]) a morphism
of functors Fs → F (resp. F[s,s′] → F ), in a manner compatible with patching, which
is to say compatible with the open immersions Fs ↪→ F[s,s′] and Fs′ ↪→ F[s,s′]. In this
way we define a morphism of functors Ω̂ → F , and we will show later that it is an
isomorphism.

We begin by remarking that each vertex s of the tree is represented by a lattice M ⊂
K2, so that we hae

∧2M =
∧2(O2), or

∧2M = π−1
∧2(O2); such a representative M

is unique, and the two possibilities are mutually exclusive: they define a partition on
the collection of vertices, into even vertices (represented by M with

∧2M =
∧2(O2))

and odd vertices (admitting a representative M such that
∧2M = π−1

∧2(O2))).
Note that a neighbouring vertex of an even vertex (resp. odd) is odd (resp. even).
We suppose in what follows that the representatives M of vertices are chosen so that∧2M =

∧2(O2) or
∧2M = π−1

∧2(O2). Similarly, we always orient the edges [s, s′]
so that s is odd and s′ is even: that is we have representatives M and M ′ satisfying:∧2M = π−1

∧2(O2),
∧2M ′ =

∧2(O2) and πM ⊂M ′ ⊂M .

5.4. It is easiest to begin by defining Fs → F . We distinguish two cases, according to
whether s is even or odd:

I.5.3.1 – Definition of Fs → F for s = [M ] odd [
∧2M = π−1

∧2(O2)].
Giving a point of Fs(B) corresponds with giving an invertible sheaf L on S = SpecB

and an O-linear morphism α : M → L, such that the map α(x) : M/πM → L⊗B k(x)
is injective for all points x of S.

To such a point corresponds the point of F (B) defined by the following diagram:

η0 = M
Π=id //

u0=α

��

η1 = M
Π=π //

u1=α

��

η0 = M

u0=α

��
T0 = L Π=id // T1 = L Π=π // T0 = L

and by the isomorphism r : K2 ∼→M⊗K which corresponds to the inclusionM ↪→ K2.
It is easy to see that all of the definitions of (5.1) are satisfied.

I.5.3.2 – Definition of Fs′ → F for s′ = [M ′] even [
∧2M ′ =

∧2(O2)].
To a point of Fs′(B), represented by α′ : M ′ → L′, one associates the point of F (B)

defined by the diagram:

η0 = M ′ Π=π //

u0=α′

��

η1 = M ′ Π=id //

u1=α′

��

η0 = M ′

u0=α′

��
T0 = L′ Π=π // T1 = L′ Π=id // T0 = L′

and by the isomorphism r : K2 ∼→ M ′ ⊗ K which corresponds with the inclusion
M ′ ↪→ K2.

5.5. The case of an edge. It remains to define the maps F[s,s′] → F for an edge [s, s′].
Suppose that the orientation and the representatives M and M ′ are chosen as in
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(5.2). Giving a point of F[s,s′](R) corresponds with giving an isomorphism class of
commutative diagrams satisfying condition (*) of (4.3):

πM
� � //

α/π

��

M ′ � � //

α′

��

M

α

��
L c // L′ c′ // L

One sees that S = SpecR is the union of two closed subschemes S0 and S1, where
S0 (resp. S1) is the locus of points where c (resp. c′) vanishes. Write U ⊂ S1 (resp.
U ′ ⊂ S0) for the open where c′ (resp. c) is invertible.

On U , the points of F[s,s′] under our consideration comes from points of Fs defined
by α : M → L. The construction (5.3.1) yields the following point of F (U):

M
id //

α

��

M
π //

α

��

M

α

��
L

id
// L π

// L

and where r is defined by the inclusion M ↪→ K2.
Or, what amounts to the same thing by using the isomorphism c′ : L′ ∼→ L, the point

defined by the diagram:

M
id //

(c′)−1α

��

M
π //

α

��

M

((c′)−1α

��
L′

c′

∼ // L c
// L′

(∗)

Note that (c′)−1α is an extension to M of the arrow α′ : M ′ → L′ (it is not defined
above U).

Similarly, over U ′, the point under consideration corresponds to points of Fs′ de-
fined by α′ : M ′ → L′. It is associated with the point of F (U ′) defined by:

M ′ π //

α′

��

M ′ id //

α′

��

M ′

α′

��
L′ π

// L′
id

// L′

(with r defined by the inclusion M ′ ↪→ K2).
Again, using c : L ∼→ L′, this is the same as the diagram:

M ′ π //

α′

��

M ′ id //

c−1α′

��

M ′

α′

��
L′

c′
// L c

∼ // L′

(∗∗)

where c−1α′ extends the arrow α/π : πM → L to M ′.
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Finally, the complement of the union U ∪U ′ is equal to the intersection J = S0∩S1.
One verifies immediately that one can define a point of F (J) via the diagram:

M ′ � � //

α′

��

M
π //

α

��

M ′

α′

��
L′

c′
// L c

// L′

(∗ ∗ ∗)

with r corresponding again with the inclusion M ′ ↪→ K2.
We thus have three points of F with valued respectively in the schemes U , U ′ and

J , which are described by the three diagram (*), (**) and (***) above. We must now
explain how they glue to yield a single point (η, T, u, r) of F (S).

The most simple part is to define T : we take T0 = L′ and T1 = L on all of S, where
the morphism Π is given by c′ and c.

Turn next to the definition of the sheaf η: consider a sheaf on S0 q S1 which is
constant with value M on S1 and of value M ′ on S0. Its direct image under the
morphism S0 q S1 → S, which we write φ, is such that the restriction to J is constant
of value M ⊕M ′. We define the sheaf η0 (resp. η1) as the subsheaf of sections of φ
which, above J , take values in the submodule M ′, via the inclusion into M⊕M ′ given
by m′ 7→ (m′,m′) (resp. in the submodule M , given by the map m 7→ (m,πm)). The
morphisms Π: η0 → η1 and η1 : η0 are obtained by restriction from the endomorphisms
of φ given respectively by:{

M
id→M

M ′ π→M ′ and

{
M

π→M

M ′ id→M ′

Alternatively, the definition of η is summarized by the following diagram:

η0
Π // η1

Π // η0

restriction to U :

S1 �O
�O
�O

M
� � id // M

� � π // M

restriction to J :

S0 �O
�O
�O

M ′

OO

� � //

id
��

M

id

OO

� � π //

π

��

M ′

OO

id
��

restriction to U ′ : M ′ � � π // M ′ � � id // M ′

Note in particular that η0|S0 is constant of value M ′ and that η1|S1 is constant of value
M .

The isomorphism r : K2 ∼→ η0 ⊗O K is defined by the (compatible) inclusions of M
and M ′ into K2.

Finally, the morphism u0 is given by α′ on S0 = U ′∪J and by (c′)−1α on U . Similarly,
u1 is equal to α on S1 = U ∪ J and with c−1α′ on U ′.

It is clear that we have thus constructed a point (η, T, u, r) of F (S), and have thus
defined the morphism F[s,s′] → F that we were after. Moreover, our construction
shows that these morphisms glue the morphisms Fs → F and Fs′ → F defined in
(5.3).

We thus obtain a morphism of functors: Ω̂→ F .
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5.6. We must still show that the morphism above is an isomorphism of funcotrs: in
other words, for an arbitrary point of F (R) there is a unique corresponding point of
Ω̂(R).

Thus fix a point (η, T, u, r) ∈ F (R). We associate to each edge [s, s′] of the tree,
which we suppose is represented by two lattices M and M ′ such that πM ( M ′ ( M
with the conventions of (5.2), an (open) subscheme S[s,s′] of S = SpecR defined in
the following way: it’s the collection of points x which satisfy, with the notations of
remark (d) of (5.1), the inclusions:

M ′ ⊂ N0,x and M ⊂ N1,x.

If one prefers to distinguish the separate cases, then this amounts to: case where Π|T0(x) is invertible: N0,x = N1,x = M
case where Π|T1(x) is invertible: N0,x = πN1,x = M ′

case where neither is invertible: N0,x = M ′, N1,x = M.

Proof that S[s,s′] is a Zariski open subscheme of S: It suffices to verify that the inter-
sections S[s,s′] ∩ S0 and S[s,s′] ∩ S1 are Zariski opens, in S0 and S1 respectively. The
intersection S[s,s′] ∩ S0 is the locus of points of S0 which satisfy:

N0,x = M ′ and N1,x = M or π−1M ′.

As the sheaf η0 is constant on S0, N0 is locally constant. The first condition above
thus defines a subset A ⊂ S0 which is both open and closed. On the open subset of
A where Π|T1 is invertible, one has automatically N1,x = π−1M ′. In other words, the
complement ofS[s,s′] ∩ S0 in A is contained in S0 ∩ S1. This complement is defined in
S0∩S1 by the condition N1,x 6= M , and is thus closed (as well as open) since the sheaf
N1,x is locally constant on S1.

It follows that S0 ∩ S[s,s′] is open in S0; one shows similarly that S1 ∩ S[s,s′] is open
in S1. Thus S[s,s′] is open in S.

Using as always remark (d) of (5.1), one sees that the S[s,s′] cover S. If [s, s′] and
[s, s′′] are two distinct edges which intersect in s, then S[s,s′] ∩ S[s,s′] is the open Ss,
which is the locus of points satisfying N0,x = N1,x = M ; note that Ss can also be
defined in S[s,s′] or S[s,s′′] by the condition: Π|T0(x) is invertible. Moreover, for two
edges [s, s′] and [s′′, s′] with intersection s′, the intersection S[s,s′] ∩ S[s′′,s′] is the open
Ss′ “made up of” the points x which satisfy N0,x = πN1,x = M ′, and which is also
defined in S[s,s′] or S[s′′,s′] by the condition: Π|T1(x) is invertible.

The following diagram defines a point of the functor F[s,s′] with values in S[s,s′]:

πM
� � //

��

M ′ � � //

��

M

��
πN1

� � //

l
��

N0
� � //

r l
��

N1

l
��

η1
Π //

u1

��

η0
Π //

u0

��

η1

u1

��
T1

Π // T0
Π // T1



14 BOUTOT-CARAYOL

It is clear that the points thus obtained glue: on Ss for example, one obtains the
points of the functor Fs defined by the composition

M = N − 1
∼→ η1 → T1.

By glueing one thus obtains a point of Ω̂(R), and it is easy to show that it maps to the
initial point (η, T, u, r). One also verifies easily that this is the only point which maps
to (η, T, u, r).

6. Action of the group PGL2(K).

6.1. The group GL2(K) acts naturally, through its quotient PGL2(K), on the tree I:
an element g ∈ GL2(K) transforms the vertex [M ] (resp. the edge [[M ], [M ′]]) to the
vertex [gM ] (resp. to the edge [[gM ], [gM ′]]).

One also has an action of the same group PGL2(K) on the set Ω = P1(C)−P1(K).
It is clear that the map λ : Ω → IR is equivariant for this action, and it thus follows
that this group acts by automorphisms of the rigid analytic space Ω: the action per-
mutes the different affinoid opens defined in §2. One sees without difficulty that the
constructions of §§1 − 4 are equivariant, and thus this action yields an action on the
formal scheme Ω̂. This last action admits a description in terms of Deligne’s functors:
for s = [M ] and gs = [gM ], one has a morphism of functors:

g : Fs → Fgs,

given by g · (L, α) = (L, β) where β denotes the composition

gM
g−1

−→M
α−→ L.

Moreover, for s′ = [M ′] such that [s, s′] is an edge, the morphism g : F[s,s′] → F[gs,gs′] is
given by:

g · (L,L′, c, c′, α, α′) = (L,L′, c, c′, α ◦ g−1, α′ ◦ g−1).

It is a little more difficult to describe the action of PGL2(K) on Ω̂ in terms of the
functor F of Drinfeld. One such description is furnished by the following proposition:

Proposition 6.2. The action of an element g ∈ GL2(K) on the functor F is given by the
following formula:

g · (η, T, u, r) = (η[n], T [n], u[n],Πn ◦ r ◦ g−1),

where n denotes the valuation of det g, and [n] the shift by n (mod 2) of the grading of
(η, T, u).

Note that the shift ensures that the normalisation condition [C3] of definition (5.1)
is satisfied for the image. In fact, we write r1 for the composition:

r1 : K2 g−1

→ K2 r→ η0 ⊗O K
Πn→ η[n]0 ⊗OK.
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The zero locus of the morphism Π: T [n]i → T [n]i+1 is Si′, with i′ ≡ i + n (mod 2),
above which one has:

2∧
η[n]i =

∧
ηi′ = π−1

(
2∧

(Πi′rO2)

)
=

= π−i−n
2∧

(Πi+nrO2) =

= π−i
2∧

(Πi+nrg−1O2) =

= π−i
2∧

(Πir1O2).

It is clear that the formula of the proposition defines a morphism of F into itself.
To show that it is the one we want, we verify for example that, for s = [M ] and
g ∈ GL2(K), the following diagram is commutative:

Fs(B) //

g

��

F (B)

g

��
Fgs(B) // F (B)

(checking this is sufficient, since the union of the images of the Fs is dense and open).
For (L, α) ∈ Fs(B), one obtains: g · (L, α) = (L, α ◦ g−1). One can express the two

cases (5.3.1) and (5.3.2) via a similar formula: the image of (L, α) in F (B) is given
by the following diagram:

ηe = M
Π=π //

α

��

ηe+1 = M
Π=id //

α

��

ηe = M

α

��
Te = L Π=π // Te+1 = L Π=id // Te = L

where e = logq[
∧2M :

∧2O2] denotes the exponant of the (virtual) index of O2 in
M (we do not assume here that M is normalised for e ∈ {0, 1}). The “rigidification” r
is the composite of the morphism K2 ∼→ ηe⊗K associated with the inclusion M ⊂ K2,
with the morphism Π−e : ηe ⊗K

∼→ η0 ⊗K.
The image of (L, α ◦ g−1) corresponds with the diagram:

η′e−n = gM Π=π //

α◦g−1

��

η′e−n+1 = gM Π=id //

α◦g−1

��

η′e−n = gM

α◦g−1

��
T ′e−n = L Π=π // T ′e−n+1 = L Π=id // T ′e−n = L

and with r′ = K2 ∼→ η′0 ⊗K obtained by composing K2 ∼= η′e−n (associated with the
inclusion gM ↪→ K2) with Π−e+n.

One sees, via the isomorphism g : M
∼→ gM , the point (η′, T ′, u′, r′) obtained from

(η, T, u, r) is the one predicted by the proposition (6.2).

II. DRINFELD’S THEOREM

We assume henceforth that the local field K is of characteristic zero.
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In this chapter we consider certain p-divisible formal groups with an action of the
ring of integers OD of a quaternion algebra D over K: the special formal OD-modules
of height 4 (defined in §2.2). Over an algebraic closure k of k, these form a single
isogeny class; choose one and denote it Φ. Drinfeld’s theorem (given precisely in
§2.8) states that the formal scheme Ω̂⊗̂OÔnr parameterizes those special formal OD-
modules X of height 4 with a quasi-isogeny ρ : Φ→ X of height 0.

In other words, the functor G on the category Nilp of Onr-algebras B where π is
nilpotent in B, which to B associates the collection G(B) of isomorphism classes of
pairs (X, ρ), where the isomorphisms are taken over B, is isomorphic to the functor
H represented by Ω̂⊗̂OÔnr. The functor H is the restriction to Nilp of the functor
F classifying quadruples (η, T, u, r) defined in §1.5. In order to construct an isomor-
phism ξ : G → H, it therefore suffices to associate to each pair (X, ρ) a quadruplet
(η, T, u, r). The difficulty is to find the constructible sheaf η and the map u : η → T ,
where T = Lie(X).

Rather than work with the p-divisible group X itself, we work instead with its
Cartier (-Dieudonne) module M . This amounts to the same thing, thanks to the
theory of Cartier (which is recalled briefly in §2.1), whose main advantage here is
that it is valid for all base algebras B. The action of OD on X yields an action on
M , as described in §2.2, and with T = Lie(X), a Z/2Z-grading and an operator Π of
degree 1 such that Π2 = π. The usual operators F and V are also of degree 1, and the
identification of T with M/VM is compatible with the grading and the action of Π.

We say that an index i ∈ Z/2Z is critical if Π is zero on Ti, in other words if
ΠMi ⊆ VMi. Over k there always exists at least one critical index i; for this index,
Mi and the operator V −1Π are a “unit crystal” and the invariants MV −1Π

i are a free
O-module of rank 1. Putting ηi = MV −1π

i , we establish a natural bijection between
G(k) and H(k) in §2.5.

Drinfeld’s genius was to extend this bijection to all algebras B in Nilp. We give
his ingenius construction of a triple (η, T, u) over any base B in §2.3. We explain the
link between this construction of η and the MV −1Π

i in §2.4. Once we have defined the
proper filtrations, we show in §2.6 that η is a constructible sheaf in the π-adic sense.
The introduction of a rigidification, the quasi-isogeny ρ : Φ→ X, allows us to recover
the isomorphism r : K2 → η ⊗O K in §2.7 and to show that η is strictly constructible.
The morphism of functors ξ : G→ H is then well-defined.

After this it remains to compare the deformation theories (§2.10) and to show that
ξ induces a bijection on tangent spaces (§2.11) of the geometric points of G and H.
A final argument of relative representability (§2.12) allows us to conclude that ξ is an
isomorphism! Also, we describe in §2.9 the action of GL2(K) and D× on everything
in sight.

To close the chapter we construct in §2.13, with the aid of torsion points of the
universal special formal OD-modules of height 4 over Ω̂⊗̂OÔnr, a projective system
of etale coverings Σn of the rigid analytic space Ω ⊗K K̂nr whose Galois group is the
profinite completion Ô×D.

1. Cartier theory for formal O-modules. We briefly recall Cartier theory for formal
O-modules. For the most familiar case of formal groups with O = Zp, the reader can
consult M. Lazard [La] or Th. Zink [Zi 3]; this is the case required for the theorem of
Cerednik. The general case is treated by M. Hazewinkel [Ha].
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1.1. There exists a unique functor WO from the category of commutative O-algebras
to itself such that, for every O-algebra B, one has WO(B) = BN and, for all n ≥ 0,
the map wn : WO(B)→ B defined by

wn(a0, a1, . . .) = aq
n

0 + πaq
n−1

1 + · · ·+ πnan

is a homomorphism of O-algebras.
There is an O-linear endomorphism τ of this functor defined by

τ(a0, a1, . . .) = (0, a0, a1, . . .)

and an endomorphism of O-algebras σ such that

wnσ = wn+1, for all n ≥ 0.1

These endomorphisms satisfy the relations

στ = π
τx.y = τ (x.σy), x, y ∈ WO(B).

For each a ∈ B, we write [a] = (a, 0, 0, . . .). We have:

[ab] = [a] · [b]
σ[a] = [aq].

If B is a k-algebra, we have:
σ(a0, a1, a2, . . .) = (aq0, a

q
1, a

q
2, . . .)

τσ = στ = π.

When O = Zp, the functor WO is the functor W of Witt vectors.

1.2. For each O-algebra B, consider the noncommutative O- algebra WO(B)[F, V ]
where F and V satisfy the relations:

Fx = σxF

xV = V σx

V xF = τx

FV = π.

The Cartier ringEO(B) is the completion of the algebra above for the topology defined
by the right ideals generated by the V n, called the V -adic topology.

Every element of EO(B) can be written in a unique way as∑
m,n≥0

V m[am,n]F n, am,n ∈ B,

subject to the condition: for each m, one has am,n = 0 for n large enough. The map:

(a0, a1, . . .) 7→
∑
n≥0

V n[an]F n

is an O-algebra homomorphism which identifies WO(B) with its image in EO(B). It
follows that every element of EO(B) can be written in a unique way as∑

m>0

V mxm + x0 +
∑
n>0

ynF
n, xm, yn ∈ WO(B),

1I think this should be a congruence mod πn+1, but this is what is written in Boutot-Carayol.
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subject to the condition: yn → 0 in the τ -adic topology 2 as n→∞.

1.3. For a ∈ O, we take care to distinguish the element a = a.1 giving the O-algebra
structure to WO(B) and EO(B) from the multiplicative representative [a] of the ele-
ment a.1 of B. For every n ≥ 0, we have wn(a) = a and wn([a]) = aq

n. In particular

wn(π − [π]) = π(1− πqn−1).

There exists a unit ε of WO(B), contained in WO(O), whose phantom components are
given by

wn(ε) = 1− πqn+1−1,

such that
π − [π] = τε = V εF.

1.4. A formal O-module over an O-algebra B is a smooth formal group X over B
with an action of O, which is to say a ring homomorphism i : O → End(X), such that
the action induced in the tangent space Lie(X) coincides with that provided by the
B-module structure of Lie(X).

A Cartier O-module over B is by definition a left EO(B)-module such that

(i) M/VM is a free B-module of finite rank,
(ii) V is injective on M ,

(iii) M is separated and complete for the V -adic filtration.

Such a module is often described as reduced in the literature. The fundamental result
of the theory of Dieudonne-Cartier is the following ([Zi 3] 4.23; [Ha] 26.3):

Theorem. The category of formal O-modules over B is equivalent with the category
of Cartier O-modules over B. Moreover, if M is the Cartier O-module associated to the
formal O-module X, we have M/VM = Lie(X).

If B′ is a B-algebra, the Cartier module of the formal O-module XB′ obtained by
base-change is

M ′ = EO(B′)⊗̂EO(B)M,

the completion of EO(B′)⊗EO(B) M for the V -adic topology.

1.5. Let M be a Cartier O-module over B. We say that elements γ1, . . . , γd of M form
a V -basis of M if their images γ1, . . . , γd mod V form a basis for the free B-module
M/VM . Every element of M can be described in a unique way as

∑
m≥0

d∑
i=1

V m[cm,i]γi

with cm,i ∈ B.
In particular, the choice of the γi’s determines a family cm,i,j (m ∈ N; i, j ∈

{1, . . . , d}) of elements of B such that

F (γj) =
∑
m≥0

d∑
i=1

V m[cm,i,j]γi, j = 1, . . . , d.

2Same as the V -adic topology
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Conversely, given a family cm,i,j of elements WO(B), there exists a Cartier O-module
M , unique up to isomorphism, and a V -basis γ1, . . . , γd ∈M satisfying the relations

(∗) F (γi) =
∑
m≥0

d∑
i=1

V mcm,i,jγi j = 1, . . . , d.

This module has a presentation

0→ EO(B)d
ψ−→ EO(B)d

φ−→M → 0

where, denoting by (εi) the canonical basis for EO(B)d, the maps φ and ψ are the
EO(B)-linear maps defined by

φ(εi) = γi

ψ(εj) = F (εj)−
∑
m≥0

d∑
i=1

V mcm,i,jεi.

1.6. It is more convenient for what follows to use a modified version of the relations
(*). The choice of a V -basis γi of M determines a family dm,i,j (m ∈ N×; i, j ∈
{1, . . . , d}) of elements of B such that

πγj = [π]γj +
∑
m≥1

d∑
i=1

V m[dm,i,j]γi, j = 1, . . . , d.

Conversely, given a family dm,i,j of elements of WO(B), there exists a Cartier O-
module M , unique up to isomorphism, and a V -basis γ1, . . . , γd of M satisfying the
relations

(∗∗) πγj = [π]γj +
∑
m≥1

d∑
i=1

V mdm,i,jγi, j = 1, . . . , d.

Since π − [π] = V εF , where ε is a unit in WO(B), and since V is injective on M , we
have

Fγj = ε−1V −1

(∑
m≥1

d∑
i=1

V mdm,i,jγi

)

=
∑
m≥1

d∑
i=1

V m−1 σm−1

ε−1dm,i,jγi

which is the relation (*) with cm,i,j = σmε−1dm+1,i,j.

2. Cartier theory for formal OD-modules.

2.1. Let D be a quaternion algebra over K and OD its ring of integers. Let K ′ be a
quadratic unramified extension of K contained in D, let O′ be the ring of integers in
K ′ and let σ denote the nontrivial Galois automorphism of K ′/K. Let Π denote an
element of OD such that Π2 = π and Πa = σaΠ for all a ∈ K ′.

A formal OD-module over an O-algebra B is a formal O-module X over B with an
action i : OD → End(X) extending the action of O. A formal OD-module is said to be
special if the action of O′ makes Lie(X) a free B ⊗O O′-module of rank one.
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If B is an O′-algebra and X is a formal OD-module over B, the B-module Lie(X)
is Z/2Z-graded by the action of O′:

(Lie(X))0 = {x ∈ Lie(X) | i(a)m = am for all a ∈ O′}
(Lie(X))1 = {x ∈ Lie(X) | i(a)m = σam for all a ∈ O′}.

Then X is special if each graded component of Lie(X) is a free B-module of rank one.

2.2. Give the Cartier ring EO(B) the Z/2Z-grading defined by

deg V = degF = 1,

deg[b] = 0 for all b ∈ B.

Note that the subring WO(B) of EO(B) is contained in the homogeneous component
of degree 0; indeed, any element in WO(B) can be written as

∑
n≥0 V

n[an]F n for
an ∈ B.

A Z/2Z-graded Cartier O-module M = M0 ⊕M1 with an EO(B)-linear endomor-
phism Π of degree 1, such that Π2 = π, is called a graded Cartier O[Π]-module. As
above, both M0 and M1 are automatically WO(B)-submodules of M .

We say that M is special if M0/VM1 and M1/VM0 are free B-modules of rank one.

Theorem 2.3. If B is an O′-algebra, the category of formal OD-modules is equivalent
with the category of graded Cartier O[Π]-modules over B. Moreover, a formal OD-
module is special if and only if the corresponding Cartier O[Π]-module is special.

Proof. (cf. T. Zink [Zi 2], Satz 2.2). Note first that, if B is an O′-algebra, the O-
algebra structure of WO(B) and EO(B) extend to a structure of O′-algebra. If fact, O′
is generated over O by the (q2 − 1) roots of unity; for ζ ∈ O′ such that ζq2−1 = 1 we
have the multiplicative representative [ζ] in WO(B) for the image of ζ in B and the
mapping ζ 7→ [ζ] is an isomorphism between the groups of (q2−1)th roots of unity inB
and WO(B); there thus exists a unique homomorphism of O-algebras j : O′ → WO(B)
such that j(ζ) = [ζ].

We write σ for both the conjugation homomorphism of O′ over O and for the
Frobenius endomorphism of WO(B). The homomorphism j is compatible with σ,
since σζ = ζq in O′ and σ[ζ] = [ζq] in WO(B), so that j( σa) = σj(a) for all a ∈ O′.

Thus every EO(B)-module, in particular every Cartier O-module M over B, carries
two natural O′-module structures via j and jσ. We write simply am and σam, a ∈ O′,
m ∈M , for these structures.

By (1.4), the category of formalOD-modules over B is equivalent with the category
of CartierO-modules M over B with an action i : OD → End(M) extending the action
of O. In particular such Cartier modules also have an action of O′ via i, and one has
a decomposition of the O-module M as M = M0 ⊕M1, where

M0 = {m ∈M | i(a)m = am, a ∈ O′},
M1 = {m ∈M | i(a)m = σam, a ∈ O′}.

The operators V , F , [b] are O-module homomorphisms of degree 1, 1 and 0, respec-
tively, since

aV = V σa

Fa = σaF a ∈ O′, b ∈ B.
a[b] = [b]a
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Conversely, giving a Z/2Z-grading to an O-module M , such that deg V = degF = 1
and deg[b] = 0 for all b ∈ B is equivalent to giving an action of O′ to M compatible
with the O-action.

Giving an action of OD amounts to giving an action of Π; we write Π for the endo-
morphism of the EO(B)-module M defined by i(Π). Since Π2 = π in OD, the endo-
morphism Π of M satisfies Π2 = π, where π is defined by the O-algebra structure of
EO(B). It’s an operator of degree 1 since Π(a) = σaΠ for all a ∈ O′.

Finally, the grading on the Lie algebra of a formal OD-module X and on its Cartier
module M are both defined by the action of O′, and these are compatible:

(Lie(X))0 = M0/VM1,

(Lie(X))1 = M1/VM0.

This shows that M is special if and only if X is special. �

2.4. Let M be a graded special Cartier O[Π]-module over B. Let (γ0, γ1) be a homo-
geneous V -basis (γ0 ∈ M0, γ1 ∈ M1) for M . Every element of M can be written in a
unique manner as

x =
∑
m≥0

(V m[cm,0]γ0 + V m[cm,1]γ1), cm,i ∈ B.

Since V is of degree 1 and [cm,i] of degree 0, the decomposition of x into homogeneous
components x0 ∈M0 and x1 ∈M1 is given by

x0 = [c0,0]γ0 +
∑
m>0

V m[cm,m]γm

x1 = [c0,1]γ1 +
∑
m>0

V m[cm,m+1]γm+1

where m is the class of m in Z/2Z = {0, 1}.
In particular, the choice of a homogeneous V -basis (γ0, γ1) determines elements

am,i (m ∈ N, i = 0, 1) of B such that

Πγ0 = [a0,0]γ1 +
∑
m>0

V m[am,0]γm+1,

Πγ1 = [a0,1]γ0 +
∑
m>0

V m[am,1]γm.

We deduce that

Π2 ≡ [a0,0.a0,1] (mod VM).

Since Π2 = π and π ≡ [π] (mod VM) we have

a0,0.a0,1 = π.

Conversely,

Proposition 2.5. Let B be an O′-algebra. Given elements am,i (m ∈ N, i = 0, 1) of
B such that a0,0.a0,1 = π, there exists a graded special Cartier O[Π]-module M over
B, unique up to isomorphism, and a homogeneous V - basis (γ0, γ1) of M satisfying the
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relations

Πγ0 = [a0,0]γ1 +
∑
m>0

V m[am,0]γm+1,

Πγ1 = [a0,1]γ0 +
∑
m>0

V m[am,1]γm.

Proof. Knowledge of the formulas giving the action of Π allows one to determine
those giving the action of Π2 = π (since Π is an endomorphism of EO(B)-modules,
which commutes with V and with [am,i]). Since a0,0.a0,1 = π, one finds elements dm,i
(m ∈ N×, i = 0, 1) of B such that

πγi = [π]γi +
∑
m>0

V m[dm,i]γm+i, i = 0, 1.

By (1.6), there exists a Cartier O-module M over B, unique up to isomorphism,
and a V -basis (γ0, γ1) of M such that these relations are satisfied. Put

Mi =

{∑
m≥0

V mxmγm+i | xm ∈ WO(B)

}
, i = 0, 1.

Thus M0 and M1 are WO(B)-submodules of M such that M = M0⊕M1. By construc-
tion the operators Π, V and [b] (b ∈ B) are of degree 1, 1 and 0, respectively. Hence
π−[π] : V → VM is of degree 0 and, since V is injective onM and F = ε−1V −1(π−[π])
where ε is a unit in WO(B) (1.3), F is of degree 1. Thus M is a graded Cartier O[Π]-
module. It is special since M0/VM1 is free with basis γ0 and M1/VM0 is free with
basis γ1. �

2.6. Let B′ be a B-algebra and M ′ = EO(B′)⊗̂EO(B)M the Cartier module over B′

obtained from M by change of base. Then M ′ is a graded Cartier O[Π]-module over
B′; the image (γ′0, γ

′
1) in M ′ of (γ0, γ1) is a homogeneous V -basis of M ′ satisfying the

relations
Πγ′i = [a′0,i]γ

′
i+1 +

∑
m>0

V m[a′m,i]γ
′
m+1+i

, i = 0, 1,

where the a′m,i are the images of the elements am,i of B inside B′.

3. Construction of (ηM , TM , uM).

3.1. For eachO′-algebraB, we consider the noncommutativeO′-algebraWO(B)[V,Π]
where Π and V satisfy the relations:

ΠV = VΠ

Πx = xΠ

xV = V σx x ∈ WO(B)

Π2 = π.

We write E ′O(B) for the completion of this algebra for the topology defined by the
right ideal generated by the V ns. An element of E ′O(B) can be writen in a unique way
as ∑

m≥0

V mxm +
∑
m≥0

V mx′mΠ, xm, x
′
m ∈ WO(B).
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We endow E ′O(B) with the Z/2Z-grading defined by

deg x = 0, x ∈ WO(B)

deg V = deg Π = 1.

Every graded Cartier O[Π]-module over B is in particular a graded E ′O(B)-module
(by forgetting the action of F ).

3.2. If M is a WO(B)-module, we write W σ for the WO(B)-module obtained by re-
striction of scalars via σ : WO(B) → WO(B). If M is an E ′O(B)-module, then Mσ is
also an E ′O(B)-module and V defines an E ′O(B)-linear homomorphism of Mσ into M .
If M = M0 ⊕M1 is graded, then Mσ = Mσ

0 ⊕Mσ
1 is as well and V : Mσ → M is of

degree 1.
For every E ′O(B)-module M , we define an E ′O(B)-module N(M) via the exact se-

quence

Mσ αM−→M ⊕Mσ βM−→ N(M)→ 0

αM(m) = (V m,−Πm).

If M is graded, then N(M) is also graded with

N(M)i = βM(Mi ⊕Mσ
i ), i = 0, 1.

Note that, since V is injective on M , the map αM is injective.
This defines a covariant functor N from the category of E ′O(B)-modules into itself

which is right exact. Moreover, if the sequence of E ′O(B)-modules

0→M ′ →M →M ′′ → 0

is exact and if V is injective on M ′′, the sequence

0→ N(M ′)→ N(M)→ N(M ′′)→ 0

is exact.

3.3. We write βM(m,m′) = ((m,m′)).
The canonical E ′O(B)-linear map Mσ → N(M) defined by m 7→ ((0,m)) is injective

if V is injective on M .
The map

M ⊕Mσ →M/VM

(m,m′) 7→ m (mod VM)

defines a canonical surjection N(M)→M/VM .
Finally the map

M ⊕Mσ →M

(m,m′) 7→ Πm+ V m′

defines a canonical E ′O(B)-linear map λM : N(M)→M (of degree 1).

Lemma 3.4. If B is a K-algebra, then λM is bijective.

Proof. If B is a K-algebra, the family of maps wn defines an isomorphism of O −
algebras, WO(B) ∼= BN3; in particular, π is invertible in WO(B). Since Π2 = π, it
follows that Π is invertible in E ′O(B).

3Since B is characteristic 0 in this case.
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Thus the map M → N(M) defined by m 7→ ((m, 0)) is bijective and hence so is λM ,
since λM((m, 0)) = Πm. �

Lemma 3.5. Let B be an O′-algebra without torsion and M a Cartier O′-module over
B. Let BK = B⊗OK and MK = M⊗̂EO(B)EO(BK). Then the canonical map M →MK

is injective and V is injective on MK/M .

Proof. Let γ0, γ1 denote a V -basis for M . If

x =
∑
i,m

V m[am,i]γi, am,i ∈ B,

is an element of M , its image xK in MK can be written

xK =
∑

V m[am,i;K ]γi,K

where γi,K is the V -basis for MK obtained from γi and am,i;K is the image of am,i in
BK . If xK = 0 we have am,i;K = 0 for all m, i; thus, since B is without torsion, am,i = 0
and x = 0.

Moreover if
x′ =

∑
i,m

V m[a′m,i]γi,K , a′m,i ∈ BK

is an element of BK , we have

V x′ =
∑
i,m

V m+1[a′m,i]γi,K .

If V x′ ∈M , we have a′m,i ∈ B for all m, i; thus x′ ∈M . �

Lemma 3.6. Let B be an O′-algebra without torsion and M a Cartier O[Π]-module over
B. Then the map λM : N(M)→M is injective.

Proof. By (3.5) we have an exact sequence of E ′O(B)-modules

0→M →MK →MK/M → 0

and V is injective on MK/M . Therefore by (3.2), the canonical map N(M)→ N(MK)
is injective. The commutative diagram

N(M)
λM //

��

M

��
N(MK)

λMK // MK

and the injectivity of λMK
(3.4) shows that λM is injective. �

Lemma 3.7. Let B → B′ be a surjection ofO′-algebras with kernel I. Let M be a Cartier
O-module over B and M ′ = M⊗̂EO(B)EO(B′). Let {γi} be a V -basis for M and

MI =

{∑
m,i

V m[am,i]γi | am,i ∈ I

}
.

Then we have an exact sequence of EO(B)-modules

0→MI →M →M ′ → 0

and an exact sequence of E ′O(B)-modules

0→ N(MI)→ N(M)→ N(M ′)→ 0.
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Proof. An element
∑

m,i V
m[am,i]γi of M maps to zero in M ′ if and only if the am,i map

to zero in B′, so that the first sequence is exact. Exactness of the second follows from
(3.2). �

Proposition 3.8. For all O′-algebras B and all special graded Cartier O[Π]-modules M
over B, there is exactly one way to define a map LM : M → N(M) such that

(i) if B → B′ is a homomorphism of O′-algebras and if M ′ = M⊗̂EO(B′)EO(B′),
the diagram

M
LM //

��

N(M)

��

M ′
LM′// N(M ′)

is commutative.
(ii) we have F = λM ◦ LM .

Proof. a) Suppose first that B is an O′-algebra without torsion. Since λM is injective
(3.6), it suffices to show that F (M) ⊂ λM(N(M)), where λM(N(M)) = ΠM + VM is
an E ′O(B)-submodule of M .

Let (γ0, γ1) be a homogeneous V -basis for M . Every element of M can be written
[a0]γ0 + [a1]γ1 (mod VM) with ai ∈ B. As FVM = πM = Π2M and F [ai]γi = [aqi ]Fγi,
it suffices to show that Fγi ∈ ΠM + VM for i = 0, 1. We have V εF = π − [π], where
ε is a unit in WO(B) (1.3) and V is injective on M ; it is therefore equivalent to show
that

(π − [π])γi ∈ V ε(ΠM + VM) = V (ΠM + VM).

We have

Πγ0 = [a0,0]γ1 + V x0

Πγ1 = [a0,1]γ0 + V x1

where a0,0 and a0,1 are elements of B such that a0,0.a0,1 = π and x0 ∈ M0, x1 ∈ M1.
Therefore

(π − [π])γ0 = (Π2 − [π])γ0 = [a0,0]V x1 + ΠV x0.

Since

ΠV x0 = VΠx0

[a0,0]V x1 = V [a0,0][aq−1
0,0 ]x1 ∈ V [a0,0]M1,

but [a0,0]γ1 = Πγ0 − V x0, we have [a0,0]M1 ⊂ ΠM + VM . We have shown that
(π − [π])γ0 ∈ V (ΠM + VM).

We also have
(π − [π])γ1 = [a0,1]V x0 + ΠV x1

and we thus conclude that [a0,1]M0 ⊂ ΠM + VM .
Note that LM is additive and satisfies

LM(ax) = σaLM(x), a ∈ WO(B), x ∈M,

Lm(V x) = ((Πx, 0)).

Thus

λMLM(ax) = F (ax) = σaFx = σλMLM(x) = λM(σaLM(x))

λMLM(V x) = FV x = Π2x = ΛM((Πx, 0)).
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b) Let I be an ideal of B, let B′ = B/I and M ′ = M ⊗̂EO(B) EO(B′). To show the
existence of LM ′ making the diagram in (i) commute, it is necessary and sufficient,
by (3.7), to show that LM(MI) ⊂ N(MI). Every element of MI can be written in the
form

x = [c0]γ0 + [c1]γ1 + V y

with c0 and c1 ∈ I, and y ∈MI . Thus one has

LM(x) = [cq0]LM(γ0) + [cq1]LM(γ1) + ((Πy, 0)).

It is clear that each term of the right side of this formula maps to zero in N(M ′), so
that LM(x) ∈ N(MI).

c) Let B now be an arbitrary O-algebra and M a special graded Cartier O[Π]-
module over B. Let (γ0, γ1) be a homogeneous basis for M and am,i the elements of
B such that

Πγ0 = [a0,0]γ1 +
∑
m>0

V m[am,0]γm+1

Πγ1 = [a0,1]γ0 +
∑
m>0

V m[am,1]γm.

Let B̃ = O′[Xb; b ∈ B]/(Xa0,0 .Xa0,1 − π), where the Xb are independent variables
indexed by B. Let M̃ be the special graded Cartier O[Π]-module over B̃ with homo-
geneous basis (γ̃0, γ̃1) satisfying

Πγ̃i = [Xa0,i
]γ̃i+1 +

∑
m>0

V m[Xam,i ]γ̃m+i+1.

Then B̃ is an O′-algebra without torsion while B is a quotient via Xb 7→ b, and
M is obtained from M̃ by basechange. From (a) and (b), there exist unique maps
LM̃ : M̃ → N(M̃) and LM : M → N(M) such that the diagram

M̃
L
M̃ //

��

N(M̃)

��

M
LM // N(M)

is commutative, and such that λM̃LM̃ = F and λMLM = F .
d) If B → B′ is an O′-algebra homomorphism and if M ′ = M ⊗̂EO(B) EO(B′), the

preceding construction furnishes a commutative diagram of O′-algebras

B̃ //

��

B

��

B̃′ // B′

where B̃ and B̃′ are without torsion. The commutative diagram

M
LM //

��

N(M)

��

M ′
LM′// N(M ′)
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is deduced from the corresponding diagram for M̃ and M̃ ′ by passing to the quotient.
The commutativity of this analogous diagram follows by injectivity of λM̃ , and from
the commutativity of the two diagrams:

N(M̃)
λ
M̃ //

��

M̃

��

N(M̃)
λ
M̃

//
M̃ ′

M̃
F //

��

M̃

��

M̃ ′
F

//
M̃ ′

This completes the proof of proposition (3.8). �

Remark 3.9. The map LM : M → N(M) so defined is additive and satisfies

LM(ax) = σaLM(x)

LM(V x) = ((Πx, 0)) a ∈ WO(B), x ∈M.

That this follows in the case where B is torsion free follows by the remark in (a); it
holds generally by passage to the quotient.

An additive map L : M → N(M) satisfying

L([a]x) = [aq]L(x)

L(V x) = ((Πx, 0)) a ∈ B, x ∈M,

is completely determined by giving L(γ0) and L(γ1). In fact every element in M can
be written in a unique way as

x = [a0]γ0 + [a1]γ1 + V y,

with a0, a1 ∈ B and y ∈M . Then L is defined by

L(x) = [aq0]L(γ0) + [aq1]L(γ1) + ((Πx, 0)).

Moreover to have λML = F it suffices that λML(γi) = Fγi for i = 0, 1. Indeed, we
then have

λML(x) = [aq0]Fγ0 + [aq1]Fγ1 + Π2y

= F ([a0]γ0 + [a1]γ1 + V y) = F (x).

The essential point is to show that there exist elements yi in N(M) such that λM(yi) =
Fγi. This may be verified in the “universal” case where B is without torsion and λM
is injective, as in (a) above.

Remark 3.10. Note also that LM commutes with Π. Indeed, it suffices again to check
in the case where B is torsion-free and after composition with λM ; since λMLM = F
and both F and λM commute with Π, so does LM . This also shows that LM is of
degree 0, since F and λM are both of degree 1.

Definition 3.11. The map M ⊕Mσ → N(M) given by (x, x′) 7→ LM(x) + ((x′, 0)) de-
fines a map φM : N(M)→ N(M). Indeed, (V x,−Πx) 7→ 0 since LM(V x) = ((Πx, 0)).

The map φM is additive of degree 0, it commutes with Π, and satisfies

φM(ay) = σaφM(y), a ∈ WO(B), y ∈ N(M).

In particular φM is O[Π]-linear.
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Proposition 3.12. Let B → B′ be a surjective map of O′-algebras with kernel I such
that I2 = 0 and πI = 0. Let M be a special graded Cartier O[Π]-module over B and
M ′ = M ⊗̂EO(B) EO(B′). Then the kernel of the map N(M)→ N(M ′) is killed by φ3

M .

Proof. Let (γ0, γ1) be a homogeneous V -basis for M . Every element of Mf = ker(M →
M ′) can be written (3.7):

x = [a0]γ0 + [a1]γ1 + V x′, ai ∈ I, x′ ∈Mf .

Moreover we have N(Mf ) = ker(N(M)→ N(M ′)). Thus

φM((x, 0)) = LM(x)

= [aq0]LM(γ0) + [aq1]LM(γ1) + ((Πx′, 0))

= ((Πx′, 0))

since aq0 = aq1 = 0. By writing:

x′ = [a′0]γ0 + [a′1]γ1 + V x′′, a′i ∈ I, x′′ ∈MI ,

it follows that:
φ2
M((x, 0)) = ((Π2x′′, 0)) = ((πx′′, 0)) = 0,

since πMI = 0. In fact since x ∈MI we have:

x =
∑
m,i

V m[am,i]γi, am,i ∈ I,

πx =
∑
m,i

V mπ[am,i]γi.

But π[a] = 0 if a ∈ I, since:

π[a] = ([π] + V εF )[a]

= [πa] + V ε[aq]F.

We conclude that φM((0, x)) = ((x, 0)). �

Definition 3.13. To each special graded Cartier O[Π]-module M over B associate a
graded O[Π]-module ηM defined by

ηM = N(M)φM = {x ∈ N(M) | φM(z) = z}
and an O[Π]-linear map of degree zero uM : ηM → M/VM , by composing the inclu-
sion ηM ↪→ N(M) with the canonical map N(M)→M/VM of (3.3).

Moreover, if B′ is a B-algebra and M ′ = M ⊗̂EO(B) EO(B′), the canonical map
M →M ′ induces an O[Π]- linear map of degree zero ηM → ηM ′ such that the diagram

ηM
uM //

��

M/VM

��
ηM ′ uM′

// M ′/VM ′ (= (M/VM)⊗B B′)

is commutative.

Proposition 3.14. If B′ is a quotient of B by a nilpotent ideal killed by a power of π,
then the canonical map ηM → ηM ′ is bijective.

Proof. The proposition is true if I2 = 0 and πI = 0, since N(M)→ N(M ′) is surjective
(3.7) and 1 − φM is invertible on the kernel (3.12). The general case is treated by
induction. �
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4. Calculation of the homogeneous components of ηM .

4.1. In this subsection B is an O′-algebra such that πB = 0 and M = M0 ⊕M1 is a
graded Cartier O[Π]-module over B. An index i ∈ Z/2Z is said to be critical if the
map Π: Mi/VMi−1 →Mi+1/VMi is zero, or in other words, if ΠMi ⊂ VMi.

If B is integral, at least one of the two indices 0 or 1 is critical. In fact Mi/VMi−1 is
a free B-module of rank 1 (i = 0, 1) and the composition Π ◦ Π = π is zero.

Lemma 4.2. If i is a critical index and x ∈ Mi, then we have LMx = ((V −1Πx, 0)).
[Note that V −1Πx is well-defined since ΠMi ⊂ VMi and V is injective]

Proof. We have already seen that if x = V x′, then we have LMx = ((Πx′, 0)) and
Πx′ = V −1Πx, since ΠV = VΠ. Moreover, for a ∈ B, we have LM [a]x = [aq]LMx and
V −1Π[a]x = [aq]V −1Πx. Since every element of Mi is of the form [a]γi + V x′, it thus
suffices to prove the lemma when x = γi.

Let, as in (3.8), B̃ be a torsion-free O′-algebra and let B be a quotient of B̃ and M̃
a lifting of M to a special graded Cartier O[Π]-module over B̃. Letting γ̃i lift γi, we
have

Πγ̃i = [ãi]γ̃i+1 + V x̃i

with ãi ∈ B̃ and x̃i ∈ M̃i. Since i is critical, the image ai of ãi in B is zero and

Πγi = V xi

where xi is the image of x̃i in Mi.
This shows that LMγi = ((xi, 0)). By definition LMγi is the image of LM̃ γ̃i. Recall

the calculation of LM̃ γ̃i made in (3.8), supposing that i = 0 to simplify the notations:
4

V εF γ̃0 = (Π2 − [π])γ̃0

= [ã0]V x̃1 + ΠV x̃0, x̃i ∈ M̃i.

Moreover
[ã0]V x̃1 = V [ãq0]x̃1

and
[ã0]x̃1 ∈ ΠM̃0 + V M̃0

so that there exist ũ0, ṽ0 ∈ M̃0 such that

[ã0]V x̃1 = VΠ[ã0]ũ0 + V 2[ã0]ṽ0.

Since F = λM̃LM̃ , it follows:

λM̃LM̃ γ̃0 = Π
(
ε−1x̃0 + ε−1[ã0]ũ0

)
+ V

(
σε−1[ã0]ṽ0

)
so that the injectivity of λM̃ gives:

LM̃ γ̃0 =
((
ε−1x̃0 + ε−1[ã0]ũ0,

σε−1[ã0]ṽ0

))
The image of ε in WO(B) is 1 since πB = 0; in fact τε = π − [π] = π =τσ 1, so that
ε =σ 1 = 1. The image of ã0 in B is zero. Thus:

LMγ0 = ((x0, 0)).

�

4bad translation of this sentence, I think
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Lemma 4.3. If i is a critical index, then the map

π : N(M)i →Mi/VMi−1 ⊕Mσ
i

((m,m′)) 7→ (m,V −1Πm+m′))

is a WO(B)-linear isomoprhism. [We write m for the class of m modulo V . Note that
V −1Πm+m′ = V −1λM((m,m′))].

Proof. We define the inverse map

ρ−1 : Mi/VMi−1 ⊕Mσ
i → N(M)i

(m,m′′) 7→ ((m,−V −1Πm+m′′)).

The map ρ−1 is well-defined: in fact, for m ∈ Mi, the element V −1Πm is defined
and the map m 7→ ((m,−V −1Πm)) of Mi in N(M)i is trivial on VMi−1 since V m1 7→
((VMi,−Πm1)) = 0. The map is clearly WO(B)-linear and inverse to the one of the
lemma, which concludes the proof. �

Lemma 4.4. If i is a critical index, the endomorphism ρφMρ
−1 of Mi/VMi−1 ⊕ Mσ

i

induced by φM via the isomorphism ρ is given by

ρφMρ
−1(m,m′′) = (m′′, V −1Πm′′).

Proof. This follows immediately from the definitions of φM and ρ, and from lemma
(4.2):

(0,m′′)
ρ−1

7→ ((0,m′′))
φM7→ ((m′′, 0))

ρ7→ (m′′, V −1Πm′′)

(m, 0)
ρ−1

7→ ((m,−V −1Πm))
φM7→ LMm+ ((−V −1Πm, 0)) = 0.

�

We deduce that:

Proposition 4.5. If i is a critical index for M , the map V −1λM induces an O-linear
isomorphism

ηM,i = N(M)φMi
∼=→MV −1Π

i .

More precisely ηM,i =
{

((m, 0)) | m ∈MV −1Π
i

}
and the restriction of V −1λM to ηM,i is

the map ((m, 0)) 7→ m.

When there does not exist a critical index, one has the following result:

Lemma 4.6. If the map Π: Mj/VMj−1 →Mj+1/VMj is an isomorphism, the map

λM : N(M)j →Mj+1

((m,m′)) 7→ Πm+ V m′

is a WO(B)-linear isomorphism.

Proof. By the hypothesis on Π, every element of Mj+1 can be written Πm + V m′, so
that λM is surjective.

Now we show that λM is surjective. Let m,m′ ∈ M be such that Πm + V m′ = 0.
Since Πm ∈ VMj, there exists m′′ ∈Mj−1 such that m = V m′′. Moreover Πm+V m′ =
V (Πm′′ +m′) = 0 and thus m′ = −Πm′′. So ((m,m′)) = (V m′′,−Πm′′)) = 0. �

Lemma 4.7. Under the hypotheses of (4.6), the endomorphism λMφMλ
−1
M of Mj+1 in-

duced by φM is equal to V −1Π.
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Proof. We note that j + 1 is necessarily critical, since Π2 = 0 on M/VM . For m,m′ ∈
Mj, we have:

φM((m,m′)) = LMm+ ((m′, 0))

λMφM((m,m′)) = Fm+ Πm′

λM((m,m′)) = Πm+ V m′

(V −1Π)λM((m,m′)) = V −1πm+ Πm′ = Fm+ Πm′,

which proves the assertion. �

Proposition 4.8. Under the hypotheses of (4.6), the map λM induces an O-linear iso-
morphism

ηM,j = N(M)φMj
∼=→MV −1Π

j+1 .

Moreover the diagram

MV −1Π
j+1

id
MV −1Π

j+1

ηM,j

λM ∼=
OO

Π
// ηM,j+1

V −1λM∼=
OO

is commutative.

Proof. The isomorphism follows from the previous two lemmas. The commutativity
of the diagram above follows from the commutativity of the diagram

Mj+1
V −1Π // Mj+1

N(M)j

λM

OO

Π
// N(M)j+1

V −1λM

OO

since V −1Π restricts to id on MV −1Π
j+1 . �

5. Special formal OD-modules over an algebraicaly closed field. In this subsec-
tion we suppose that B = L is an algebraically closed field of characteristic p. We
writeW = WO(L) and let K denote the field of fractions ofW. The ringW is a com-
plete discrete valuation ring with uniformizer π and residue field L, equipped with
an automorphism σ such thatWσ = O.

If X is a formal (smooth) O-module over L, its Cartier module M is a free W-
module of finite rank. We call rank of M overW the height of X.

Proposition 5.1. If X is a special formal OD-module, its height is a multiple of 4.

Proof. For M ′ ⊂ M ′′ two free W-modules, we write [M ′′ : M ′] for the length of the
W-module W ′′/W ′. By hypothesis we have [M0 : VM1] = [M1 : VM0] = 1 and V is
injective, so that M0 and M1 have the same rank r over W and M = M0 ⊕M1 is of
rank 2r. We have Π2 = π, so that Π is injective and

r = [M0 : πM0] = [M0 : ΠM1] + [ΠM1 : Π2M0]

= [M0 : ΠM1] + [M1 : ΠM0].
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The inclusions
VM1� q

""FFFFFFFF

ΠVM0

, �
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M0

ΠM1

- 

<<xxxxxxxx

yield the equality

[M0 : VM1] + [VM1 : ΠVM0] = [M0 : ΠM1] + [ΠM1 : ΠVM0].

Since
[ΠM1 : ΠVM0] = [M1 : VM0] = [M0 : VM1] = 1

and
[VM1 : ΠVM0] = [M1 : ΠM0]

we deduce that
[M1 : ΠM0] = [M0 : ΠM1],

and hence that r is even. �

Proposition 5.2. There exists a single isogeny class of special formal OD-modules of
height 4.

Proof. We know that the isogeny class of a formal O-module X is determined by the
isocrystal (M⊗WK, V ). This is in turn determined by the isocrystal (M0⊗WK, VΠ−1),
since M1 ⊗W K is identified with M0 ⊗W K by Π.

But (M0 ⊗W K, VΠ−1) is a unit isocrystal: if i is critical, Mi is a lattice stable under
VΠ−1 in Mi ⊗W K and VΠ−1|Mi

is bijective. Since L is algebraically closed, such an
isocrystal is unique up to isomorphism; there exists a basis e1, e2 of Mi over W such
that VΠ−1e1 = e1 and VΠ−1e2 = e2. �

Remark (5.2’). The formal O-module X is isogenous to the sum of two formal O-
modules of dimension 1 and height 2. In other words, the isocrystal (M ⊗W K, V ) is
of dimension 2 and of slope 1/2.

Proposition 5.3. We have End0
DX
∼= M2(K), where we write End0

DX = EndOD X ⊗Z

Q.

Proof. The correspondence X 7→ (M ⊗W K, V ) 7→ (M0 ⊗W K, VΠ−1) induces isomor-
phisms

End0
DX = EndD(M ⊗W K, V ) = EndK(M0 ⊗W K, VΠ−1).

Finally EndK(M0 ⊗W K, V ) ∼= M2(K), since (M0 ⊗W K, VΠ−1) is a unit isocrystal of
rank 2: a K-linear endomorphism of M0 ⊗W K commutes with the σ−1-linear map
VΠ−1 if and only if its matrix in the basis e1, e2 has coefficients in Kσ = K. �

We suppose henceforth that X is a special formal OD-module of height 4. Then

[M1 : ΠM0] = [M0 : ΠM1] = 1

In particular, if i is critical, we have ΠMi = VMi.
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5.4. Recall that, for all O-algebras B, we write B[Π] for the commutative Z/2Z-
graded algebra generated by B in degree 0 and an element Π of degree 1 such that
Π2 = π (I.5).

We associate to X a triple (η, T, u) where
(i) η is a graded O[Π]-module,

(ii) T is a graded L[Π]-module whose homogeneous components T0 and T1 are of
dimension 1,

(iii) u : η → T is an O[Π]-linear map of degree 0, with η = ηM , T = M/VM and
where u is defined by composing the inclusion ηM ⊂ N(M) with the map
((m,m′)) 7→ m of N(M) into M/VM .

Proposition 5.5. The homogeneous components η0 and η1 of η are free O-modules of
rank 2 and the map η ⊗O L→ T is surjective.

Proof. If i is critical, we have seen in (4.5) that ηi is identified with MV −1Π
i and

ui : ηi → Ti with the composition MV −1Π
i ↪→ Mi → Mi/VMi−1. The σ-linear en-

domorphism V −1Π: Mi → Mi is bijective, that is, (Mi, V
−1Π) is a unit crystal over L

and L is algebraically closed. Therefore MV −1Π
i is a free O-module of rank 2 and the

map MV −1Π
i ⊗O L→Mi/VMi−1 is surjective.

If j is not critical, we have a commutative diagram

ηj

uj
��

Π // ηj+1

uj+1

��
Tj

Π // Tj+1

as in (4.8), where the horizontal arrows induced by Π are isomorphisms, and j + 1 is
critical. �

Proposition 5.6. The map η/Πη → T/ΠT , induced by u, is injective.

Proof. To show that ηi/Πηi−1 → Ti/ΠTi−1 is injective, we distinguish three cases.
First case: i is critical and i−1 is not – We have Πηi−1 = ηi and the assertion is clear.
Second case: i and i− 1 are both critical – We have a commutative diagram

ηi−1
Π //

∼
��

ηi

∼
��

MV −1Π
i−1

Π //

��

MV −1Π
i

��
Ti−1

Π=0 // Ti

If x ∈ MV −1Π
i maps to zero in Ti, there exists y ∈ Mi−1 such that x = V y. But, since

Πx = V x, we deduce that Πy = V y, that is y ∈MV −1Π
i−1 and x = Πy.

Third case: i is not critical but i− 1 is critical – The commutative diagram

ηi−1
Π //

ui−1

��

ηi
Π

∼
//

ui
��

ηi−1

ui−1

��
Ti−1

Π=0
// Ti Π

∼ // Ti−1
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shows that is suffices to prove that the map ηi−1/πηi−1 → Ti−1 induced by ui−1 is
injective. Moreover ui−1 : ηi−1 → Ti−1 is identified with MV −1Π

i−1 →Mi−1/VMi.
If x ∈ MV −1Π

i−1 maps to zero in Mi−1/VMi, there exists y ∈ Mi such that x = V y.
From Πx = V x, we deduce Πy = V y; in particular the image y of y in Mi/VMi−1

is zero, because Πy = x = 0 and Π: Mi/VMi−1 → Mi−1/VMi is an isomorphism.
So there exists z ∈ Mi−1 such that y = V z. But again since Πy = V y, we deduce
Πz = V z; thus z ∈MV −1Π

i−1 and x = πz. �

Proposition 5.7. The triple (η, T, u) determines X up to isomorphism.

Proof. It suffices to show that M0, M1, Π and V are determined by (η, T, u).
If i is a critical index and σ the automorphism id⊗σ of ηi ⊗O W, the inclusion

ηi ⊂Mi induces an isomorphism (ηi ⊗OW , σ) ∼= (Mi,ΠV
−1). Moreover if

H = ker
{
ηi ⊗OW

ui⊗id→ Ti

}
,

the isomorphism above identifies H with VMi−1 and σ(H) with ΠMi−1. So the dia-
gram

Mi−1

Π
++

V

33 Mi

Π ,,

V
22 Mi−1

is identified with the diagram

σ(H)
incl ..

incl◦σ−1

00 ηi ⊗OW
π ,,

π◦σ−1

22 σ(H).

�

Definition 5.8. A triple (η, T, u) is said to be admissible if it satisfies the conditions of
(5.5) and (5.6). An index i ∈ {0, 1} is said to be critical for (η, T, u) if Π: Ti → Ti+1 is
zero.

Lemma 5.9. An admissible triple (η, T, u) is determined up to isomorphism by (ηi, Ti, ui)
for i critical.

Proof. Write H = kerui. We have πηi ⊂ H ⊂ ηi and H 6= ηi by (5.5).
If i− 1 is not critical, we have ΠTi−1 = Ti and thus Πηi−1 = ηi, by (5.6). Hence the

diagram

ηi
Π //

ui
��

ηi−1
Π //

ui−1

��

ηi

ui
��

Ti
0 // Ti−1

Π // Ti

is identified with the diagram

ηi
π //

ui
��

ηi−1
id //

ui−1

��

ηi

ui
��

Ti
0 // Ti−1

id // Ti

Moreover the condition (5.6) implies in this case that H = πηi.
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If i−1 is critical, we have Πηi−1 6= ηi; otherwise we would have ui = 0, contradicting
(5.5). Moreover, since i is critical, we have Πηi 6= ηi−1, thus πηi 6= Πηi−1. Then, by
(5.6), ui and ui−1Π−1 induce isomorphisms

ηi/Πηi−1 ⊗k L
∼→ Ti and Πηi−1/πηi ⊗k L

∼→ Ti−1.

In this case we have H = Πηi−1 6= πηi and the diagram

ηi
Π //

ui
��

ηi−1
Π //

ui−1

��

ηi

ui
��

Ti
0 // Ti−1

0 // Ti

is identified with the diagram

ηi
π //

��

H
incl //

��

ηi

��
ηi/H ⊗k L

0 // H/πηi ⊗k L
0 // ηi/H ⊗k L

where the vertical arrows are the canonical maps.
Note that we recognize whether i − 1 is or is not critical depending on whether

H 6= πηi or H = πηi, respectively; the proof of the lemma is complete. �

Proposition 5.10. Every admissible triple (η, T, u) is isomorphic to a triple associated
to a special formal OD-module of height 4.

Proof. Let i be a critical index, σ the automorphism id⊗σ of ηi⊗OW andH = ker{ui⊗
id : ηi ⊗O W → Ti}. Since ηi ⊗O L → Ti is surjective, we have π(ηi ⊗O W) ( H (
ηi ⊗OW; the same is true for σ(H).

We define the diagram

Mi−1

Π
++

V

33 Mi

Π ,,

V
22 Mi−1

to be equal to the diagram

σ(H)
incl ..

incl◦σ−1

00 ηi ⊗OW
π ,,

π◦σ−1

22 σ(H).

Thus V is σ−1-linear, Π is linear, Π2 = π and

[Mi : VMi−1] = [Mi−1 : VMi] = [Mi : ΠMi−1] = [Mi−1 : ΠMi] = 1,

thus (M,Π, V ) is a special formal Cartier OD-module of height 4.
The index i is critical for M , the homogeneous component of index i of the triple

associated to M is

(MVΠ−1

i ,Mi/VMi−1, can) ∼= (ηi, ηi ⊗OW/H, can) ∼= (ηi, Ti, ui),

because this triple is isomorphic with (η, T, u). �

We can summarize the preceding propositions in a single theorem:

Theorem 5.11. Over an algebraically closed field of characteristic p, the correspondence
X 7→ (η, T, u) gives an equivalence of categories between on the one hand the groupoid
of special formal OD-modules of height 4 and their isomorphisms, with the groupoid of
admissible triples and their isomorphisms.
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Lemma 5.12. Let (η, T, u) be an admissible triple associated to a special formal Cartier
OD-module M of height 4. Then, for i ∈ {0, 1}, the isocrystal (Mi ⊗W K, VΠ−1) is
canonically isomorphic with (ηi ⊗O K, σ−1).

Proof. For i critical, (Mi, VΠ−1) is a unit crystal, that is VΠ−1 is a bijective σ−1-linear
endomorphism of Mi, such that ηi is identified with MVΠ−1

i (4.5). It follows then from
the structure theorem for unit crystals ([Zi 3], Satz 6.26) that (Mi, VΠ−1) is identified
with (ηi⊗OW , σ−1), and so a fortiori (Mi⊗WK, VΠ−1) is identified with (ηi⊗OK, σ−1).

Also Π induces isomorphisms of isocrystals:

(Mi ⊗W K, VΠ−1)
∼→ (Mi+1 ⊗W K, VΠ−1),

(ηi ⊗O K, σ−1)
∼→ (ηi+1 ⊗O K, σ−1).

which are compatible with the preceding isomorphisms when 0 and 1 are both critical.
�

Definition 5.13. Let X and X ′ be two special formal OD-modules of height 4 over L.
We call a quasi-isogeny between X and X ′ an element of HomOD(X,X ′)⊗O K which
is invertible in HomOD(X ′, X)⊗O K. That is, if α is a quasi-isogeny of X in X ′, there
exists n ≥ 0 such that πnα gives an OD-isogeny of X in X ′. We say that α is of height
zero if h(πnα) = h(πn).

Proposition 5.14. Let (η, T, u) and (η′, T ′, u′) be admissible triples associated to X and
X ′. We have a canonical isomorphism:

QIsog(X,X ′) ∼= IsomK(η0,⊗OK, η′0 ⊗O K).

Proof. Let M and M ′ be the Cartier modules of X and X ′. We have, following (2.2),
a canonical isomorphism:

QIsog(X,X ′) = Isom((M ⊗W K, V ), (M ′ ⊗W K, V )),

where the isomorphisms of the isocrystals on the right must be compatible with the
grading and the action of Π; they are determined by their action on the homgeneous
component of degree 0, more precisely, we have:

Isom((M ⊗W K, V ), (M ′ ⊗W K, V )) = Isom((M0 ⊗W K, VΠ−1), (M ′
0 ⊗W K, VΠ−1)).

Lemma (5.12) now finishes the proof. �

Proposition 5.15. Suppose that 0 is critical for X. Then, in the preceding isomorphism,
the quasi-isogenies of height 0 correspond to isomorphisms r : η0 ⊗O K

∼→ η′0 ⊗O K such
that:

[η′0 : r(η0)] = 0 if 0 is critical for X ′,

[η′1 : Πr(η0)] = 1 if 1 is critical for X ′;

that is, such that Λ2η′i = π−iΛ2Πir(η0) if i ∈ {0, 1} is critical for X ′.

Proof. A quasi-isogeny is of height 0 if and only if the corresponding isomorphism
α : M ⊗W K

∼→ M ′ ⊗W K is such that [M ′ : α(πnM)] = [M : πnM ] for n such that
α(πnM) ⊂M ′, that is if [M ′ : α(M)] = 0. Since [M1 : ΠM0] = [M0 : ΠM1] = 1, and the
same for M ′, the conditions [M ′

0 : α(M0)] = 0 and [M ′
1 : Πα(M0)] = 1 are equivalent.

Since 0 is critical for X, M0 is identified with η0⊗OW. If 0 is also critical for X ′, M ′
0

is identified with η′0 ⊗O W and [M ′
0 : α(M0)] = [η′0 : r(η0)]. If 1 is critical for X ′, then

M ′
1 is identified with η′1 ⊗OW and [M ′

1 : Πα(M0)] = [η′1 : Πr(η0)]. �
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5.16. Let k be an algebraic closure of k = O/πO. Choose a special formalOD-module
Φ of height 4 over k such that 0 is critical for Φ (such a module is unique up to isogeny
by (5.2)) and fix an isomorphism O2 ∼= η0,Φ.

A special formal OD-module of height 4 over a field extension L of k is said to be
rigidified if it is equipped with a quasi-isogeny ρ : ΦL → X of height 0.

An admissible triple (η, T, u) over L is said to be rigidified if it is equipped with an
isomorphism r : K2 ∼→ η0⊗OK such that [ηi : Πir(O2)] = i if i ∈ {0, 1} is critical for η,
that is Λ2ηi = π−iΛ2Πir(O2) if i is critical.

Following what we have seen above, if (η, T, u) is associated to X, a rigidification ρ
of X corresponds to a rigidification r of (η, T, u), and we have:

Theorem 5.17. Let L be an algebraically closed field extension of k. The correspondence
(X, ρ) 7→ (η, T, u, r) gives a bijection between the collection of isomorphism classes of
special formal OD-modules of height 4, rigidified over L, with the isomorphism classes of
rigidified admissible triples over L.

Recall (I.5.2) that this latter collection is identified with Ω̂(L).

6. Filtrations on N(M) and ηM .

6.1. In this subsection, B is anO′-algebra such that πB = 0 and M is a graded special
Cartier O[Π]-module over B. We moreover suppose that i ∈ {0, 1} is a critical index,
that is ΠMi ⊂ VMi. To ease notations we write simply N = N(M), φ = φM and
η = ηM .

Consider the filtrations of Ni and Ni−1 given by the O-submodules

V 2nMi = ((0, V 2nMi)) ⊂ Ni

V 2n−1Mi = ((0, V 2n−1Mi)) ⊂ Ni−1

for n > 0. Let Ni,n = Ni/V
2nMi and Ni−1,n = Ni−1/V

2n−1Mi. For j ∈ {0, 1}, we put
ε = 0 if j = i and ε = 1 if j = i− 1, so that Nj,n = Nj/V

2n−εMi.

Lemma 6.2. For all r > 0, we have φ(V rMi) ⊂ V rMi.

Proof. For m ∈Mi, we have

φ((0, V rm)) = ((V rm, 0)) = ((0,ΠV r−1m)),

but Πm ∈ ΠMi ⊂ VMi, so that ΠV r−1m = V r−1Πm ∈ V rMi. �

Thus φ induces an O-linear endomorphism of Nj,n. In what follows, we write
ηj,n = {z ∈ Nj,n | φ(z) = z}.

Lemma 6.3. We have Nj = lim←−Nj,n and ηj = lim←− ηj,n.

Proof. Consider the exact sequence of O-modules defining Nj:

(6.3.1) 0→Mj−1
α→Mj ⊕Mj → Nj → 0

where α(m) = (V m,−Πm). Since V is injective, we have α(Mj−1) ∩ (0, V 2n−εMi) =
{0}; we thus have a projective system of exact sequences:

0→Mj−1 →Mj ⊕Mj/V
2n−εMi → Nj,n → 0,

and, by passing to the projective limit, an exact sequence:

0→Mj−1 →Mj ⊕ lim←−Mj/V
2n−εMi → lim←−Nj,n → 0.
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But M is complete for the V -adic topology, hence Mj = lim←−Mj/V
2n−εMi and Nj =

lim←−Nj,n.
The assertion for ηj is deduced by taking the kernel of 1− φ. �

6.4. In the remainder of this subsection we consider Mj, Nj, ηj, Nj,n and ηj,n as func-
tors on the category of B-algebras: for such an algebra B′, M(B′) = M⊗̂E′O(B)E

′
O(B′)

is a special graded Cartier O[Π]-module over B′ and Nj(B
′), ηj(B′), Nj,n(B′), ηj,n(B′)

are obtained from M(B′) by the preceding constructions; the transition maps are
defined in the obvious way, given the fact that φ is compatible with basechange.

Lemma 6.5. The functor Nj,n is representable by a scheme in an affine O-module over
B such that the underlying scheme is the affine space of dimension 2n+ 1− ε over B.5

Proof. Let (γ0, γ1) be a homogeneous V -basis for M and let Mj,(0) be the subfunctor of
Mj defined by

Mj,(0)(B
′) = {[a]γj | a ∈ B′}.

The exact sequence (6.3.1) defines a natural map:

Mj,(0) ×Mj/V
2n−εMi → Nj,n.

This map is bijective.
Indeed, let m, m′ ∈ Mj; we have m = m0 + V m1 with m0 ∈ Mj,(0) and m1 ∈ Mj−1,

where ((m,m′)) = ((m0,m
′ + Πm1)) in Nj.

Moreover, let m0 and l0 ∈Mj,(0), m′ and l′ ∈Mj, be such that ((m0,m
′)) and ((l0, l

′))
have the same image in Nj,n; by (6.3.1), there exists m1 ∈Mj−1 such that

m0 + V m1 = l0

m′ − Πm1 ≡ l′ (mod V 2n−εMi).

The first equality implies that necessarily m1 = 0, and the assertion of bijectivity
follows.

Thus the maps

B′ →Mj,(0)(B
′)

a 7→ [a]γj

and

(B′)2n−ε →Mj/V
2n−εMi(B

′)

(ak) 7→
∑

0≤k<2n−ε

V k[ak]γj−k

are functorial and bijective. We thus obtain a functorial bijection between A2n+1−ε

and Nj,n. �

Lemma 6.6. The functor ηj,n is representable by an affine scheme of O-modules which
is of finite presentation and étale over B.6

Proof. Indeed ηj,n = ker(1−φ) is the inverse image of the zero section of Nj,n by 1−φ
and this section, which coincides with the zero section of A2n+1−ε under the previous
isomorphism, is a closed immersion of finite presentation. Hence ηj,n ↪→ Nj,n is also
a closed immersion of finite presentation.

5not happy with this translation
6similar to above; what is un schema en O-modules affine?
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To show that ηj,n is étale overB it remains to show that, ifB′ → B′′ is a surjection of
B-algebras defined by an ideal of square zero, the map ηj,n(B′)→ ηj,n(B′′) is bijective.
In the commutative diagram with exact rows:

0 // V 2n−εMi(B
′) //

α

��

Nj(B
′) //

β

��

Nj,n(B′) //

γ

��

0

0 // V 2n−εMi(B
′′) // Nj(B

′′) // Nj,n(B′′) // 0,

α and β are surjective by (3.7), thus γ is surjective and φ is nilpotent on ker γ, because
it is on ker β by (3.12) and ker γ is a quotient of ker β. �

In other words, ηj,n is a constructible sheaf for the étale topology on Spec(B) and
its formation is compatible with basechange. Write S = Spec(B) and let Si−1 be the
closed subset of S where i− 1 is critical. We have:

Proposition 6.7. (1) ηi,n is a smooth sheaf over S of free O/πn-modules of rank 2.
Smooth here means locally constant for the étale topology.

(2) ηi−1,n is constructible over S and Π: ηi−1,n → ηi,n is injective, moreover:
(2a) ηi−1,n is smooth above S − Si−1 and Π is an isomorphism above S − Si−1.
(2b) ηi−1, n is smooth over Si−1 and (ηi,n/Πηi−1,n) is smooth over Si−1 “en O/π-

vectoriels de rang 1”7.

Proof. Given what we have just seen, to prove that the sheaves in question are smooth,
it suffices to prove that the size of their fibers above geometric points of S is constant.
To prove the proposition we may thus suppose that B = L is an algebraically closed
field of characteristic p.

(1) By (4.3), we have an isomorphism

Ni,n
∼= Mi/VMi−1 ⊕Mi/V

2nMi

such that the endomorphism φ of Ni,n corresponds with

(m,m′′) 7→ (m′′, V −1Πm′′).

We thus have an isomorphism:

ηi,n ∼= (Mi/V
2nMi)

V −1Π.

Identify (Mi, V
−1Π) with (ηi ⊗O W,σ); then V 2 is identified with π.σ−2 and V 2nMi

with πnηi ⊗O W ; thus
ηi,n ∼= ηi/π

nηi ∼= (O/πn)2.

(2) The map Π: Ni−1 → Ni is injective and ΠNi−1 ∩ V 2nMi = V 2nMi = ΠV 2n−1Mi,
thus Π is injective. This shows, in particular, that the map Π: ηi−1,n → ηi,n induced on
the φ-invariants is injective.

(2a) If i− 1 is not critical, we have by (4.6) an isomorphism:

Ni−1,n
∼= Mi/V

2nMi

such that φ corresponds with V −1Π, thus an isomorphism

ηi−1,n
∼= (Mi/V

2nMi)
V −1Π ∼= ηi,n.

(2b) If i− 1 is critical, we have by (1) an isomorphism

ηi−1,n
∼= (Mi−1/V

2n−1Mi)
V −1Π.

7what?
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Moreover the diagram

Mi−1

Π
++

V

33 Mi

Π ,,

V
22 Mi−1

is identified with the diagram

ηi−1 ⊗OW
Π --

Π◦σ−1

11 ηi ⊗OW
Π ..

Π◦σ−1

00 ηi−1 ⊗OW .

The inclusions ΠV 2n−1Mi = V 2nMi ⊂ ΠMi−1 ⊂ Mi are σ-invariant and by tensoring
withW we deduce inclusions πnηi ⊂ Πηi−1 ⊂ ηi. Thus

ηi−1,n
∼= Πηi−1/π

nηi;

moreover we have in this case [ηi : Πηi−1] = 1, so that

ηi,n/Πηi−1,n
∼= O/π.

�

Remark 6.8. The preceding calculations show moreover that, for j ∈ {0, 1} and m ≥
n, the canonical maps ηj,m ⊗O O/πn → ηj,n are isomorphisms. Thus the projective
system of ηj,n’s defines a π-adic sheaf ηj. Proposition (6.7) may be rewritten as:

Proposition 6.9. (1) ηi is a smooth π-adic sheaf of free O-modules of rank 2.
(2) ηi−1 is a constructible π-adic sheaf of free O-modules of rank 2 and Π: ηi−1 → ηi

is injective. Moreover:
(2a) ηi−1 is smooth over S − Si−1 and Π is an isomorphism over S − Si−1.
(2b) ηi−1 is smooth over Si−1 and (ηi/Πηi−1) is smooth ”en O/pi-vectoriels de rang 1”

over Si−1.8

7. Rigidification.

7.1. Let B be a k-algebra and X a special formal OD-module of height 4 over B. A
rigidification of X is a quasi-isogeny ρ : ΦB → X of height 0, where ΦB is obtained by
basechange from the formal OD-module Φ over k chosen in (5.16).

By definition, an isogeny α : ΦB → X is a homomorphism of formal OD-modules
such that the kernel is representable by a finite group scheme which is locally free
over B. We say that α is of height h if kerα is of degree qh over B.

Over k, multiplication by π is an isogney of height 4 from Φ into itself; by base-
change, the same is true for multiplication by π from ΦB into itself. In particular, ΦB

is π-divisible and the O-module HomOD(ΦB, X) is torsion-free ([Zi 3], 5.31).
By definition, a quasi-isogney ρ : ΦB → X is an element of HomOD(ΦB, X) ⊗O K

such that πnρ is an isogeny for n a sufficiently large integer. Note that, by preceding
work, πnρ determines ρ without ambiguity. We say that ρ is of height zero if πnρ is of
height 4n.

One can show that a homomorphism α : ΦB → X is an isogeny if and only if there
exists an integer m and a homomorphism β : X → ΦB such that β ◦ α = πm ([Zi 3],
Satz 5.25). Therefore, and element ρ of HomOD(ΦB, X) ⊗O K is a quasi-isogeny if
and only if it admits an inverse in HomOD(X,ΦB)⊗O K.

We also note the following result of T. Zink ([Zi 3], Satz 5.15, or [Zi 1]): if B is
noetherian, a homomorphism α : ΦB → X is an isogeny of height h if and only if for

8again!
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all prime ideals p of B, the homomorphism αk(p) : Φk(p) → Xk(p), obtained from α by
restriction of scalars to an algebraic closure k(p) of the residue field k(p) = Bp/pBp,
is an isogeny of height h.

Write S = Spec(B) and, for j ∈ {0, 1}, let Sj be the closed subscheme of S above
which j is critical for X.

Suppose first that there exists an index i ∈ {0, 1} such that S = Si schematically, or
in other words that i is critical for X, and consider the π-adic sheaf ηj associated to
X in section 6.

Proposition 7.2. Suppose S = Si and X is rigidified. Then:
(1) The π-adic sheaf ηi is constant on S.
(2) The restrictions to S − Si−1 and to Si−1 of the constructible π-adic sheaf ηi−1 are

constant.
(3) To each rigidifaction ρ of X is associated an isomorphism of sheaves r : K2 ∼→

η0 ⊗O K such that [ηj|Sj : ΠjrO2] = j for j ∈ {0, 1}.
Proof. Recall that 0 is a critical index for Φ and choose an identification of ηΦ,0 with
O2. By the following lemma, the isogeny πnρ : ΦB → X induces a homomorphism of
π-adic sheaves πnr : O2 → η0, thus a homomorphism r : K2 → η0 ⊗O K.

Lemma 7.3. Let α : X → X ′ be a homomorphism of special formal OD-modules of
height 4 over S. Suppose that i ∈ {0, 1} (resp. j) is critical for X (resp. X ′) over
S. Let η (resp. η′) denote the corresponding π-adic Z/2Z-graded sheaf associated to
X (resp. X ′) along with the filtration V rMi (resp. V rM ′

j). Then α induces a natural
homomorphism of π-adic sheaves of ηi into η′j.

Proof. The problem is that the construction of φ, and therefore η, is not functorial
in X; however this lemma establishes a partial functoriality and also the complete
functoriality of η ⊗O K.

For all n > 0, we have following (4.3) isomorphisms

Ni,n
∼= MiVMi−1 ⊕Mi/V

2nMi

N ′j,n
∼= M ′

j/VM
′
j−1 ⊕M ′

j/V
2nM ′

j

such that the endomorphism φ of the left side above corresponds with the map

(m,m′′) 7→ (m′′, V −1Πm′′)

on the right side.
Write ε = |i− j|. The natural map of Mi in M ′

j induced by Πεα commutes with
V and Π; it therefore defines a map of Ni,n into N ′j,n which commutes with φ and
hence a map of ηi,n into η′j,n. As n varies, these maps are compatible and thus define
a homomorphism of ηi into η′j.

When j 6= i, we show that the homomorphism factors through the natural injection
Π: η′i → η′j. This claim can be verified on stalks, so that we may suppose S is the
spectrum of an algebraically closed field. There are then two cases:

a) i is not critical for X ′. Then Π induces an isomorphism of η′i in η′j, so that
there is nothing to prove.

b) i is critical for X ′. In this case we have isomorphisms

N ′i,n
∼= M ′

i/VM
′
i−1 ⊕M ′

i/V
2n−1M ′

j

such that the endomorphism φ of the left side corresponds with the previ-
ously described map of the right side. Therefore the map of Ni,n into N ′j,n
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induced by Πα factors through the map induced by α of Ni,n into N ′j,n (note
that α(V 2nMi) ⊂ V 2nM ′

i ⊂ V 2n−1M ′
j) followed by the map induced by Π of

N ′i,n into N ′j,n. These maps commute with φ and define maps ηi,n → η′i,n and
η′i,n → η′j,n, whose compositions gives maps ηi,n → η′j,n which are induced by
Πα. One obtains the desired factorisation by taking a projective limit in n.

�

Return now to the proof of Proposition (7.2). For every geometric point s of S, the
homomorphism rs induced on the fiber over s is an isomorphism, which follows by
our study of the situation in (5.14) over algebraically closed fields; therefore r : K2 →
η0 ⊗O K is an isomorphism. In particular the sheaf η0 ⊗O K is constant; the same is
true for η1⊗OK, since Π: η0 → η1 induces an isomorphism η0⊗OK

∼→ η1⊗OK, since
this is true for the fibers.

The π-adic sheaf ηi is smooth over S and ηi ⊗O K is constant, thus ηi is constant.
In fact, to prove this we may suppose that S is connected; then ηi corresponds to
a representation of the fundamental group Π1(S, s) in ηi,s ∼= O2 and ηi ⊗O K to
the respresentation in K2 obtained by tensoring; since this last one is trivial, the
representation in O2 is as well.

Thus, since the restrictions of the π-adic sheaf ηi−1 to S − Si−1 and Si−1 are smooth
and since ηi−1 ⊗O K is constant, these restrictions are also constant.9

Finally the properties of the isomorphism r : K2 → η0⊗OK relative to the constant
sheaves ηj|Sj hold for the fibers above a geometric point, as we established in (5.15).

�

Remark 7.4. We note that the construction of the sheaves ηj and the isomorphism r
associated to (X, ρ) commute with arbitrary basechange from B to a B-algebra B′.
We have seen this in (6.6) with respect to ηj and the lemma proves the result for r.

We have implicitely used properties of fields in the proof when we reduced to the
case of an algebraically closed field to calculate the fibers.

Consider now the general case (that is, no longer suppose S = Si) and regard η as
a functor of B-algebras (and no longer as a π-adic sheaf).

Proposition 7.5. Suppose X is rigidified. Then for j ∈ {0, 1}:
(1) ηj is a constructible sheaf for the Zariski topology on S, of free O-modules of

rank 2.
(2) The restriction of ηj to Sj is a constant sheaf.
(3) To a rigidification ρ of X is associated an isomorphism of sheaves r : K2 ∼→

η0 ⊗O K such that [ηj|Sj : ΠjrO2] = j.
Moreover the formation of (n, r) from (X, ρ) commutes with arbitrary basechange by
B-algebras B′.

Proof. When one of the indices i ∈ {0, 1} is critical over all of S, the analogous asser-
tions for the π-adic sheaves ηj follow by (7.2), given the fact that ηj(B′) = lim←− ηj,n(B′)
for all B-algebras B′ (6.3). In particular (7.5.2) follows by (7.2.1).

Thanks to the following lemma, the constructibility of η in the general case is de-
duced by reducing to the case where B is reduced, which does not change η (3.14),
and then from the case when B is integral; for then one of the indices is critical over
all of S, and one concludes by gluing irreducible components:

9Not sure about this one
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Lemma 7.6. Let I1 and I2 be two ideals of B such that I1 ∩ I2 = 0. Let i1, i2 and i12 be
closed immersions of the subschemes of S defined by I1, I2 and I1 + I2, respectively. Then
we have an exact sequence

0→ η → i1∗i
∗
1η ⊕ i2∗i∗2η → i12∗i

∗
12η

of presheaves on S.

Proof. For every B-algebra B′, let B′1 = B′/I1B
′, B′2 = B′/I2B

′ and B′12 = B′/(I1 +
I2)B′. From the exact sequence:

0→ B′ → B′1 ×B′2 → B′12 → 0

(a, b) 7→ a− b
we obtain an exact sequence of Cartier modules:

0→MB′toMB′1
×MB′2

→MB′12
→ 0

and an exact sequence of modified Cartier modules:

0→ N(MB′)→ N(MB′1
)×N(MB′2

)→ N(MB′12
)→ 0.

By taking the kernel of 1− φ, we obtain an exact sequence:

0→ η(B′)→ η(B′1)× η(B′2)→ η(B′12)

which proves the lemma. �

Finally note that the isomorphism r : K2 → η0 ⊗O K associated to the rigidification
ρ given by lemma (7.3) does not depend on the choice of i ∈ {0, 1} when both indices
0 and 1 are critical; therefore the isomorphisms r|S0 and r||S1 can be glued to make
an isomorphism r defined on all of S. �

8. Drinfeld’s theorem. Recall that we have fixed an algebraic closure k of k, a special
formalOD-module Φ of height 4 over k such that 0 is critical for Φ and an isomorphism
O2 ∼= ηΦ,0. We write Onr for the strict henselization (that is, maximal unramified
extension) of O with residue field k.

Definition 8.1. Let Nilp denote the category of Onr-algebras such that the image of
π is nilpotent. We define a functor G on Nilp which associates to B ∈ Ob Nilp the set
G(B) of isomorphism classes of pairs (X, ρ) consisting of:

1) a special formal OD-module X of height 4 over B.
2) a quasi-isogeny ρ : ΦB/πB → XB/πB of height zero.

However in this definition, it is convenient to take a more general definition of
formal OD-module: we ask only that Lie(X) is a projective B-module. Locally for the
Zariski topology on B, we recover the formal OD-modules defined in 2.2.

Drinfeld’s fundamental result is the following:

Theorem 8.2. The functor G is represented by the formal Ônr-scheme Ω̂⊗̂OÔnr.

Definition 8.3. Let Nilp denote the category of O-algebras such that the image of π
is nilpotent. We define a functor G on Nilp which associates to B ∈ Ob Nilp the set
G(B) of pairs made up of

1) a k-homomorphism ψ : k → B/πB
2) an isomorphism class of pairs (X, ρ) consisting of:

(2.1) a special formal OD-module X of height 4 over B.
(2.2) a quasi-isogeny ρ : ψ∗Φ→ XB/πB of height 0.
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If B → B′ is a morphism in Nilp, we define a map G(B)→ G(B′) in the obvious way
by associating to ψ its composition with B/πB → B′/πB′ and to the pair (X, ρ) the
pair (XB′ , ρB′/πB′) obtained by extension of scalars from B to B′.

The functor G is none other than the functor obtained from G by restriction of
scalars from Onr to O. Indeed, it is the same to give a k-homomorphism ψ : k →
B/πB or an O-homomorphism ψ̃ : Onr → B making B an Onr-algebra Bψ ∈ Ob Nilp,
and an element of G(B) corresponds to a couple consisting of ψ̃ and an element of
G(Bψ).

From theorem (8.2), we thus obtain the following theorem by restriction of scalars:

Theorem 8.4. The functor G is representable by the formal O-scheme Ω̂⊗̂OÔnr.

Write H for the restriction to the category Nilp of the functor F on Nilp defined in
(I.5.1). We saw in section (I.5.2) that F is representable by the formal O-scheme Ω̂;
it follows that H is representable by the formal Ônr-scheme Ω̂⊗̂OÔnr.

For B ∈ Ob Nilp, we define a map ξB : G(B) → H(B) which associates to a pair
(X, ρ) the quadruple (ηX , TX , uX , r(X,ρ)) where, if M is the Cartier module of X over
B, we have:

1) ηX = ηM viewed as a sheaf on Spec(B): if B′ is a B-algebra and if M ′ = MB′,
we have ηX(B′) = ηM ′;

2) TX = Lie(X) = M/VM ;
3) UX : ηX → TX is the sheaf homomorphism such that uX(B′) = uM ′ : ηM ′ ↪→

N(M ′)→M ′/VM ′ = (M/VM)⊗B B′ (cf. (3.13));
4) r(X,ρ) : K2 ∼→ ηX,0 is the isomorphism associated to the rigidification of X.

The propositions (7.5), (5.5) and (5.6) show that the quadruple (ηX , TX , uX , r(X,ρ))
satisfies the conditions of definition (I.5.1) and thus yields a well-defined element of
H(B) = F (B).

Moreover, if B → B′ is a morphism in Nilp, the diagram:

Ĝ(B)
ξB //

��

H(B)

��

Ĝ(B′)
ξB′

// H(B′)

is commutative. This follows from the fact that the construction of ηX and r(X,ρ) from
(X, ρ) commutes with basechange (cf. (6.6) and (7.4)). Thus ξB defines a natural
transformation ξ : G→ H.

Theorem (8.2) follows from the precise statement:

Theorem 8.5. The natural transformation ξ : G→ H is an isomorphism of functors.

We will prove this theorem in subsections 10 through 12.
Let H denote the functor on Nilp obtained from H by restriction of scalars from

Onr to O. For B ∈ Ob Nilp, an element of H(B) consists of a k-homomorphism
ψ : k → B/πB and an element of H(Bψ) = F (B). It is clear that H is representable
by the formal O-scheme Ω̂⊗̂OÔnr.

We define a natrual transformation ξ : G→ H by restriction of scalars, which asso-
ciates to a pair (ψ, a), where a ∈ G(Bψ), the pair (ψ, ξBψ(a)). Theorem (8.5) implies:
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Theorem 8.6. The natural transformation ξ : G→ H is an isomorphism of functors.

We take care to note that the map ξBψ : G(Bψ) → H(Bψ) = F (B) depends on
the Onr-algebra structure of Bψ, and in particular the Z/2Z-grading of ηX and TX
associated to X depends on its structure as an O′-algebra.10

9. Action of the groups GL2(K) and D∗.

9.1. Frobenius morphism. We write Fr: k → k for the Frobenius homomorphism
Fr(x) = xq and Frob: Fr−1

∗ Φ → Φ for the Frobenius morphism. The latter is a k-
morphism of formal OD-modules from the formal OD-module Fr−1

∗ Φ obtained from
Φ by extension of scalars via Fr−1 (sometimes written Φq−1) into Φ. It is an isogeny of
height 2 (equal to the dimension of Φ).

If MΦ is the graded Cartier O[Π]-module of Φ over k, then Fr−1
∗ is identified with

Mσ
Φ[1], which follows by restricting scalars of MΦ via σ : WO(k)→WO(k) and shifting

the grading (since the action of O′ via OD is unchanged). The Frobenius morphism
corresponds to theWO(k)-linear homomorphism V : Mσ

Φ[1]→MΦ of degree 0.
Since 0 is critical for Φ, 1 is critical for Fr−1

∗ Φ and the identification MFr−1
∗ Φ = Mσ

Φ[1]
induces an identification:

ηFr−1
∗ Φ,1 = MV −1Π

Fr−1
∗ Φ,1

= MV −1Π
Φ,0 = ηΦ,0

and thus an identification ηFr−1
∗ Φ⊗OK = (ηΦ⊗OK)[1]. The Frobenius morphism thus

corresponds to the K-linear isomorphism Π: (ηΦ ⊗O K)[1]→ ηΦ ⊗O K of degree 0.

9.2. Action of GL2(K) on the functor G. Let v denote the valuation of K normalized
by v(π) = 1. Via the identification (5.14): GL2(K) = GL(ηΦ,0 ⊗O K) = (End0

OD Φ)∗,
an element g of GL2(K) defines a quasi-isogeny of Φ of height 2n, where v(det g) = n.
Thus g−1 ◦ Frobn : Fr−n∗ Φ → Φ is a quasi-isogeny of height 0. We define an action of
GL2(K) on the functor G by putting, for B ∈ Ob Nilp and (ψ;X, ρ) representing an
element of G(B):

g · (ψ;X, ρ) = (ψ ◦ Fr−n;X, ρ ◦ ψ∗(g−1 ◦ Frobn)).

We write F̃r : Onr → Onr for the lifting of the k-homomorphism Fr: k → k to an
O-homomorphism.

Theorem 9.3. The action of GL2(K) on the functor G corresponds with the action on
the formal scheme Ω̂⊗̂OÔnr defined by the natural action of PGL2(K) on Ω̂ and the

action g 7→ F̃r
−v(det g)

on Onr.

Proof. After (I.6.2), the latter action is described on elements of H(B) by:

g · (ψ; η, T, u, r) = (ψ ◦ Fr−n; η[n], T [n], u[n],Πnrg−1).

It thus suffices to verify, if ξBψ(X, ρ) = (η, T, u, r), that we have:

ξBψ◦Fr−n
(X, ρ ◦ ψ∗(g−1 ◦ Frobn)) = (η[n], T [n], u[n],Πnrg−1).

The shift in the grading of (η, T, u) associated to X depends on whether we are using
the k-algebra structure of Bψ or Bψ◦Fr−n, which changes the action of O′ on MX via
WO(k) by σn, while the action of O′ via OD remains unchanged.11

10This should be cleaned up!
11Not too sure about this paragraph
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To calculate the rigidification, we will write

g−1 : ηΦ ⊗O K
∼→ ηΦ ⊗O K and r : ψ∗(ηΦ ⊗O K)

∼→ η ⊗O K
for the isomorphism defined, in light of the identificationK2 = ηΦ,0⊗OK, by g−1 and r
on the components of degree 0 and extended by conjugation by Π to the components
of degree 1, so that we have g−1 ◦ Π = Π ◦ g−1[1] and r ◦ Π = Π ◦ r[1].

Since the quasi-isogeny

g−1 ◦ Frobn : Fr−n∗ Φ→ Φ

corresponds via ξk with:

(ηΦ ⊗O K)[n]
Πn→ ηΦ ⊗O K

g−1

→ ηΦ ⊗O K,
the quasi-isogeny

ρ ◦ ψ∗(g−1 ◦ Frobn) : ψ∗ ◦ Fr−n∗ Φ→ X

correpsonds via ξBψ with:

ψ∗(ηΦ ⊗O K)[n]
Πn→ ψ∗(ηΦ ⊗O K)

g−1

→ ψ∗(ηΦ ⊗O K)
r→ η ⊗O K,

or, by switching Πn with g−1 and r and shifting the grading by n, via ξBψ◦Fr−n
with:

ψ∗(ηΦ ⊗O K)
g−1

→ ψ∗(ηΦ ⊗O K)
r→ η ⊗O K

Πn→ (η ⊗O K)[n].

The result is obtained from above by taking degree 0 components and composing
with the fixed identification K2 = ηΦ,0 ⊗O K. �

9.4. Action of D∗ on the functor G. Let ND/K : D∗ → K∗ denote the reduced norm:
every element of D∗ can be written as g = Πng0 with g0 ∈ O∗D and n = v(ND/Kg).

For g ∈ D∗, write gX for the formal OD-module which is equal to X as an O-
module, but where the action of a ∈ OD on gX is equal to the action of g−1ag on
X.

The action ofOD on Φ associates to g−1 anOD- equivariant quasi-isogeny g−1 : Φ→
gX of height −2n, if v(ND/Kg) = n. Thus g−1 ◦ Frobn : Fr−1

∗ Φ → gΦ is an OD-
equivariant quasi-isogeny of height 0. We define an action of D∗ on the functor G by
putting, for B ∈ Ob Nilp and (ψ;X, ρ) a representative of an element of G(B):

g · (ψ;X, ρ) = (ψ ◦ Fr−n; gX, ρ ◦ ψ∗(g−1 ◦ Frobn)).

Theorem 9.5. The action of D∗ on the functor G corresponds with the action of D∗ on
the formal scheme Ω̂⊗̂OÔnr defined by g 7→ F̃r

−v(ND/Kg) over Onr.

Proof. Note first that O∗D acts trivially since, if g ∈ O∗D, the map g−1 : X → gX is an
isomorphism of (X, ρ) onto ( gX, ρ ◦ ψ∗(g−1)).

It remains to verify that the action of Π on G corresponds with F̃r
−1

on Onr; in
other words that, if ξBψ(X, ρ) = (η, T, u, r), we have:

ξBψ◦Fr−1
( ΠX, ρ ◦ ψ∗(Π−1 ◦ Frob)) = (η, T, u, r).

Let MX and MΠX be the graded Cartier O[Π]-modules over Bψ associated to X

and ΠX. As MΠX coincides with MX as WO(k)[V,Π]-modules 12, but the action of
a ∈ O′ via OD on MΠX is identified with the action of Π−1aΠ = σ(a) on MX , we have
MΠX = MX [1]. Thus the triple over B associated to ΠX is (η, T, u)[1] if B is equipped

12should this beW?
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with the same k-algebra structure as Bψ, and (η, T, u) if B is equipped with the same
k-algebra structure as Bψ◦Fr−1.

The quasi-isogeny
Π−1 ◦ Frob: Fr−1

∗ Φ→ ΠΦ

correponds via ξk with:

(ηΦ ⊗O K)[1]
Π→ ηΦ ⊗O K

Π−1

→ ηΦ ⊗O K[1],

that is to say with idηΦ⊗OK[1]. Therefore the quasi-isogeny

ρ ◦ ψ∗(Π−1 ◦ Frob) : ψ∗ Fr−1
∗ Φ→ ΠX

corresponds via ξBψ with

r[1] : ψ∗(ηΦ ⊗O K)[1]→ η[1]

and via ξBψ◦Fr−1
with r. �

10. Deformation theory. Here we work in the category Nilp of Onr-algebras such
that the image of π is nilpotent. We call a surjective homomorphism B′ → B with
nilpotent kernel an infinitesimal extension.

Proposition 10.1. Let B′ → B be an infinitesimal extension. Let B′0 = B′/πB′ and
B0 = B/πB. Let X ′ be a special formal OD-module of height 4 over B′ and X = X ′B.
Suppose X is equipped with a rigidification ρ, which is to say a quasi-isogeny ρ : ΦB0 →
XB0 of height 0. Then:

(i) X ′ is π-divisible (that is, π : X ′ → X ′ is an isogney).
(ii) ρ lifts in a unique way to a rigidification of X ′, which is to say a quasi-isogeny

ρ′ : ΦB′0
→ B′0.

Proof. (i) Let n be such that α = πnρ is an isogeny. Since ΦB0 is π-divisible, α ◦ π is
also an isogeny. But α ◦ π = π ◦ α, thus π : XB0 → XB0 is also an isogeny ([Zi 3],
5.10). By deformation, the same is true for π : X ′ → X ′ ([Zi 3], 5.12).

(ii) By induction, we may suppose that I = ker(B′ → B) is of square zero. The
isogeny α = πnρ : ΦB0 → XB0 does not always lift, but β = πα = πn+1ρ does always
lift ([Zi 3], 4.47) to an isogeny β′ : ΦB′0

→ X ′B0
; thus ρ lifts to ρ′ = β/πn+1. Moreover

this lifting is unique by the rigidity of p-divisible groups ([Zi 3], 5.30). �

We may thus ignore rigidification to study deformation theory. Moreover, there do
not exist infinitesimal automorphisms, by rigidity.

Proposition 10.2. Let B′ → B and B′′ → B be two infinitesimal extensions. Then the
canonical map

G(B′ ×B B′′)→ G(B′)×G(B) G(B′′)

is bijective.

Proof. One can prove this by making the obvious changes to the usual proof in the
case of p-divisible groups ([Zi 3], 5.40). Let X ′ and X ′′ be deformations over B′ and
B′′, respectively, of X over B. There exists a unique simultaneous deformation X̃ of
X ′ and X ′′ over B′×BB′′; its graded CartierO[Π]-module is MX̃ = MX′×MX

MX′′. �

For x ∈ G(B) and C → B an infinitesimal extension, we write Gx(C) the the
inverse image of x in G(C) and Hx(C) for the inverse image of ξ(x) in H(C).
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Corollary 10.3. Let B′ → B an an infinitesimal extension with a kernel of square zero,
and let B[I] denote the B algebra B ⊕ I with I2 = 0. Then:

(i) Gx(B[I]) is an abelian group,
(ii) if Gx(B

′) is nonempty, it is a principal homogeneous GX(B[I])-set.
These structures are canonical.

Proof. This is a consequence of a classical result, since G commutes with fibre prod-
ucts, which is usually stated for local artinian rings, but is true in the present context
(cf. Schlessinger [Sc], Artin [A]). The group structure is defined by the homomor-
phism

B[I]×B B[I]→ B[I]

(b+ i)×b (b+ j) 7→ b+ i+ j

which yields, in view of (10.2), a map:

Gx(B[I])×Gx(B[I])→ Gx(B[I]).

The isomorphism

B′ ×B B′
∼→ B′ ×B B[I]

a×b c 7→ a×b b+ (c− a)

gives a bijection
Gx(B

′)×Gx(B
′)
∼→ Gx(B

′)×Gx(B[I])

inducing the identity on the first factors; this describes the structure of principal
homogeneous space if Gx(B

′) 6= ∅. �

The functor H, being representable, also commutes with fibre products of infini-
tesimal extensions; thus, under the hypotheses of (10.3), the set Hx(B[I]) has the
structure of a group and Hx(B

′) has the structure of a principal homogeneous space
over Hx(B[I]) whenever Hx(B

′) is nonempty. It follows from the definitions of these
structures that the maps ξB[I] : Gx(B[I]) → Hx(B[I]) and ξB′ : Gx(B

′) → Hx(B
′) are

compatibles.

Proposition 10.4. If Hx(B
′) 6= ∅, then Gx(B

′) 6= ∅.

Proof. Let (X, ρ) represent x ∈ G(B) and let M be the graded Cartier O[Π]-module
over B associated to X. One reduces easily by localisation to the case where M/VM
is a free B-module. In this case let (γ0, γ1) be a homogeneous V -basis for M and let

Πγi = [a0,i]γi+1 +
∑
m>0

V m[am,i]γm+i+1 (i = 0, 1)

be the equations defining M . To lift X to X ′ over B′, it suffices (2.3) to lift the
am,i ∈ B to some a′m,i ∈ B′ satisfying a′0,0 · a′0,1 = π.

The functor ξ associates to (X, ρ) the isomorphism class of T = M/VM equipped
with Π. The image (γ0, γ1) of (γ0, γ1) is a homogeneous basis for T such that Πγ0 =
a0,0γ1 and Πγ1 = a0,1γ0. If Hx(B

′) is nonempty, then there exists (T ′,Π) over B′

lifting (T,Π), since there then exist a′0,0 and a′0,1 ∈ B′ lifting a0,0 and a0,1 such that
a′0,0 · a′0,1 = π. �

We are now able to establish the essential result of this subsection:
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Proposition 10.5. To show that ξ : G → H is an isomorphism, it suffices to show that
its restriction to the category of k-algebras is an isomorphism.

Proof. Let Nilpn denote the full subcategory of Nilp of Onr-algebras such that the
image of πn is zero. In particular, Nilp1 is the category of k-algebras. Suppose by
induction that ξ|Nilpn

is an isomorphism. Let B′ ∈ Ob Nilpn+1 and B = B′/πnB′,

I = πnB′. Then B and B[I] are objects in Nilpn, and so ξB and ξB[I] are bijective. It
follows from the material above that ξB′ is bijective. �

11. Tangent spaces. Let k[ε] with ε2 = 0 denote the dual numbers. For x ∈ G(k),
the tangent space to G at x is tG(x) = {x′ ∈ G(k[ε]) mapping to x ∈ G(k)}. It follows
from proposition (10.2) that tG(x) is a k-vectorspace in a canonical way, and that the
tangent map tξ(x) : tG(x)→ tH(ξ(x)) induced by ξ is k-linear. Our goal in this section
is to prove the following

Proposition 11.1. For every x ∈ G(k), the tangent map tξ(x) : tG(x) → tH(ξ(x)) is
bijective.

To prove the proposition, we will both need to calculate the tangent space tG(x), as
well as identify the tangent map tξ(x) to show that it is injective.

Let (X, ρ) be a representative of x and let M be the graded Cartier O[Π]-module of
X over k. By (10.1), a deformation of (X, ρ) is simply a deformation of X, or in other
words a deformation of M . Thus:

tG(x) = {deformations of M to a graded Cartier O[Π]-module over k[ε]}.

11.2. We first recall how to calculate the deformations of Cartier modules of p-
divisible groups (cf. [No], [Zi 3] 5.41). If M ′ is a deformation of M over k[ε], then
there is an exact sequence:

0→Mε →M ′ →M → 0,

where Mε =
⊕∞

i=0 V
i[ε](M/VM), since [ε]V = V [εq] = 0.

This exact sequence splits, with a section of M being given by

M̃ = {m ∈M ′ | there exists l with V lm ∈ FM ′ ⊕
l−1⊕
i=0

V i[ε](M/VM)}.

This lifting ofM to M̃ extends the obvious lifting of FM to FM ′ with FM ′∩Mε = {0};
it is obtained by noting that the action of V on M/FM is nilpotent.

The splitting thus defined is WO(k)[F ]-equivariant; on the other hand, writing V ′

for the action of V on M ′, we have V ′M̃ ⊂ M̃ ⊕ [ε](M/VM). The structure of M ′

is determined by the k-linear map β : VM/πM → M/Vm such that V ′m = V m +

[ε]β(V m) for m ∈ M̃ . Conversely, such a map uniquely determines a deformation M ′

of M .

Lemma 11.3. The tangent space tG(x) is canonically identified with the space of k-linear
maps β : VM/πM → M/VM of degree zero and such that βΠ = Πβ. To such a map
corresponds the module M ′ = M ⊕Mε where V ′(m, 0) = (V m, [ε]β(V m)).

Proof. In this case M and M ′ are equipped with an action of OD, or equivalently with
a grading and an action of Π, and the exact sequence above is compatible with this
action. Since the action of OD commutes with WO(k[ε])[F, V ], we have OD · M̃ ⊂
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M̃ ; in other words the splitting is compatible with the grading and the action of
Π. Otherwise it is determined over Mε by its value on M/VM . Thus the splitting
M ′ = M̃ ⊕Mε determines a grading and action of Π on M ′ depending on those of M .
Moreover M ′ is a graded Cartier O[Π]-module over k[ε] if and only if V ′ is of degree
1 and commutes with Π, that is if β is of degree 0 and commutes with Π. �

Lemma 11.4. (i) If M has a single critical index then the tangent space tG(x) is one
dimensional. More precisely, if i is critical and i + 1 non-critical, then we neccessarily
have βi+1 = 0 and tG(x) is identified with the space of k-linear maps βi : VMi+1/πMi

→Mi/VMi+1.
(ii) If M has two critical indices, then the tangent space tG(x) is two dimensional.

More precisely, tG(x) is identified with the space of pairs of k-linear maps βi : VMi+1/πMi

→Mi/VMi+1 (i = 0, 1).

Proof. (cf. [Zi 2], 3.10). The following conditions are equivalent:
a) the index i is critical for M ,
b) the map Π: Mi/VMi+1 →Mi+1/VMi is zero,
c) the map Π: VMi/πMi+1 → VMi+1/πMi is zero.

Indeed, there are inclusions between submodules of the same index in Mi or Mi+1 if
and only if there is equality; the assertion thus follows from the equivalence between
the conditions ΠMi = VMi and πMi = ΠVMi.

Thus in the first case, the relations Πβi = βi+1Π 13 are satisfied if and only if βi+1 =
0, while in the second case they are always satisfied. �

Lemma 11.5. Suppose that i is critical for M . Then i is critical for M ′ if and only if
βi+1 = 0.

Proof. We first suppose βi+1 = 0 and show that i is critical for M ′, or in other words,
that ΠM ′

i ⊂ V ′M ′
i . We verify this separately for each factor of M ′

i = M̃i ⊕Mε,i.
We have ΠMε,i ⊂ V ′Mε,i. Indeed Mε,i = [ε](Mi/VMi+1) ⊕ V ′Mε,i+1 and Π is trivial

on Mi/VMi+1.
Now we must show ΠM̃i ⊂ V ′M̃i. For every m ∈ Mi, we have Π(m, 0) = (Πm, 0);

there exists m1 ∈ Mi such that Πm = V m1 and, since βi+1 = 0, we have (V m1, 0) =
V ′(m1, 0).

Conversely suppose that i is critical for M ′. Let m and m1 in Mi be such that
Πm = V m1 6∈ πMi+1. We have Π(m, 0) = (Πm, 0) = (V m1, 0); but (V m1, 0) is not
contained in V ′M ′ if βi+1(V m1) = 0, hence βi+1 = 0. �

Lemma 11.6. Suppose that i is critical for M ′. Then we have (M ′
i)
V ′−1Π = M̃V −1Π

i .

Proof. For m ∈ M̃i and n ∈ Mε,i, we have V ′(m,n) = (V m, V n), since βi+1 = 0.
Also Π(m,n) = (Πm,Πn). Since (m,n) ∈ M ′V ′−1Π

i if and only if m ∈ M̃V −1Π
i and

n ∈MV −1Π
ε,i .

But MV −1Π
ε,i = 0. In fact Mε,i =

⊕
j V

j[ε](Mi+j/VMi+j+1) is N-graded, and the same
is true for Mε,i+1; the map V : Mε,i → Mε,i+1 is of degree 1 for the gradings, while
Π is of degree 0. Thus n =

∑
nj satisfies V n = Πn if and only if Πn0 = 0 and

Πnj = V nj−1 for j ≥ 1. Moreover Πnj = 0 for even j, since i is critical for M . We
deduce that V nj−1 = 0, thus nj−1 = 0 and V nj−2 = Πnj−1 = 0, thus nj−2 = 0; hence
n = 0. �

13the index was j in the original text, but that must have been a typo
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Let (η, T, u, r) be a rigidified admissible triple (5.8 and 5.16) representing ξ(x). Let
η = η ⊗O k and let u : η → T be the k-linear map induced by u.

Lemma 11.7. (i) If (η, T, u) has a single critical index i, the tangent space tH(ξ(x)) is
one dimensional and is identified with the space of k-linear maps δi : kerui → Ti.

(ii) If (η, T, u) has two critical indices, the tangent space tH(ξ(x)) is two dimensional
and is identified with the set of pairs of k-linear maps δi : kerui → Ti (i = 0, 1).

Proof. Let (η′, T ′, u′) be a deformation of (η, T, u) over k[ε], let η′ = η′⊗Ok and u′ : η′ →
T ′ be the k-linear map induced by u′. The map η′ → η is an isomorphism and the
diagram:

η′
∼ //

u′

��

η

u

��
T ′ // T

determines a k-linear map δ : keru → εT = ker(T ′ → T ) of degree zero, such that
Πδ = δΠ. Each such map determines an isomorphism between a deformation of
(η, T, u) and the rigidification r of η defines a rigidification of η′.14

If i is a critical index, the maps Π: Ti → Ti+1 and Π: ηi → ηi+1 are zero; otherwise
if i is not critical then they are isomorphisms. Thus if there is a single critical index, Π
identifies δi and δi+1; if there are two critical indices, then δi and δi+1 are independent.

�

Remark 11.8. a) The dimension of the tangent space is obvious from the geometric
interpretation of H|k as represented by a tree of projective lines. The points of in-
tersection of two such lines correspond precisely with the triples having two critical
indices.

b) Note that δi = 0 if and only if the isomorphism η′i
∼→ ηi induces an isomorphism

keru′i
∼→ kerui.

Let M ′ be a deformation of M , corresponding to (β0, β1), and (η′, T ′, u′), corre-
sponding to (δ0, δ1), the deformation of (η, T, u) which is the image of M ′ under tξ(x).

Lemma 11.9. Suppose that i is critical for M ′. Then βi = 0 if and only if δi = 0.

Proof. Since i is critical for M and M ′, the diagram:

η′i //

u′i
��

ηi

ui

��
T ′i // Ti

is identified after (4.5) with the diagram:

(M ′
i)
V ′−1Π //

��

MV −1Π
i

��
M ′

i/V
′M ′

i−1
// Mi/VMi−1.

14Not so sure about this last sentence
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Moreover (M ′
i)
V ′−1Π = M̃V −1Π

i by (11.6). Thus the diagram:

η′i //

u′i
��

ηi

ui
��

T ′i // Ti

can be identified with the diagram

M̃i/πM̃i
//

��

Mi/πMi

��
M ′

i/V
′M ′

i−1
// Mi/VMi−1.

We have δi = 0 if and only if the isomorphism η′i
∼→ ηi induces a bijection keru′i

∼→
kerui (11.8). By the previous identifications, this is the case if and only if we have
V ′M ′

i−1 ∩ M̃i = (VMi−1)∼. By the description in (11.3) of V ′ as a function of βi, this
is equivalent with βi = 0. �

11.10. Proposition (11.1) now follows from the preceding lemmas:
If i is the sole critical index for x, then the tangent spaces tG(x) and tH(ξ(x)) are

one dimensional. We have βi+1 = 0 (11.4) and i is critical for M ′ (11.5). Finally
tξ(x)15 is injective (11.9), thus bijective.

If x has two critical indices, then the tangent spaces are two dimensional. The two
subspaces of tG(x) of dimension one given by the equations βi+1 = 0 for i = 0, 1 are
characterised by the equivalent condition: i is critical for M ′ (11.5). Moreover tξ(x)
is injective when restriced to these subspaces (11.9) and their images are distinct in
tH(ξ(x)); thus tξ(x) is bijective.

12. End of the proof. In this section we concldue the proof of Drinfeld’s theorem.
By (10.5), it suffices to show that ξ : G→ H is an isomorphism when restricted to the
category of k-algebras. We now confine ourselves to working in this category.

We have seen previously that the map ξ(k) : G(k) → H(k) on geometric points is
bijective (5.17), and the same is true on the tangent maps tξ for each of these points
(11.1). To conclude the proof it suffices now to show that ξ is representable by a
morphism of finite type.

Definition 12.1. For n and m integers ≥ 0, we define the subfunctor Gn,m of G which,
for a k-algebra B, associates the set of isomorphism classes of pairs (X, ρ), as in (8.1),
such that:

1) πnρ : ΦB → X is an isogeny,
2) ker(πnρ) ⊂ ΦB(πn+m).

We note here that ΦB(πn+m) is the kernel of πn+m in ΦB. Condition 2) is thus equiva-
lent with:

2’) there exists an isogeny β : X → ΦB such that βπnρ = πn+m.

Proposition 12.2. For every choice of n and m, the functor Gn,m is representable by a
projective k-scheme.

15the x was subscripted in BC, but I think this was a typo
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Proof. Let A be the algebra of Φ(πn+m) over k. Giving a couple (X, ρ) over a k-algebra
B is equivalent with giving the kernel Z of πnρ. The algebra OZ is a locally free
B-algebra of rank q4n which is a quotient of AB. Since Gn,m is a subfunctor of the
Hilbert scheme Hilb(A, q4n).

Moreover the inclusion of Gn,m into Hilb(A, q4n) is representable by a closed im-
mersion. In fact the condition that Z is a subscheme of OD-modules of ΦB(πn+m) is
closed.

To say for example that Z is stable under multiplication means that the map

µZ : Z × Z → ΦB(πn+m)× ΦB(πn+m)→ ΦB(πn+m)

factors through the immersion Z ↪→ ΦB(πn+m). Stated in terms of algebras of func-
tions, the homomorphism

µ∗Z : AB → AB ⊗B AB → OZ ⊗B OZ
kills the kernel JZ of the surjection AB → OZ . The B-modules JZ and OZ ⊗B OZ are
locally free of finite rank and their formation commutes with arbitrary basechange
B → B′. The condition µ∗Z(JZ) = 0 defines a closed subscheme of Spec(B).

One verifies in the same way that Z containing the identity and inverse are closed
conditions, as well as the stability of Z by the action of OD. �

It is clear that, for n ≥ n′ and m ≥ m′, the functor Gn,m is a subfunctor of Gn′,m′.
Moreover:

Lemma 12.3. For every k-algebra B, we have

G(B) =
⋃
n,m

Gn,m(B).

Proof. Let (X, ρ) represent an element of G(B). By definition ρ : ΦB → X is a quasi-
isogeny, so there exists an integer n such that πnρ is an isogeny. For this isogeny, there
exists an integer m and an isogeny β : X → ΦB such that βπnρ = πn+m ([Zi 3], Satz
5.25). �

Lemma 12.4. For x ∈ Gn,m(k), the tangent map tGn′,m′ (x)→ tG(x) is bijective whenever
n′ > n and m′ > m.

Proof. The tangent map of x is injective since Gn′,m′ is a subfunctor of G. We now
show that it is surjective.

Let (X, ρ) represent x and let (X ′, ρ′) be a deformation of (X, ρ) over k[ε]. By
hypothesis πnρ is an isogeny of Φk onto X. As πn+1ρ lifts to an isogeny of Φk[ε] over
X ′ ([Zi 3], 4.47) and by the rigidity of π-divisible groups, this isogeny is necessarily
πn+1ρ′.

Further assume ker(πnρ) ⊂ Φ(πn+m), or in other words that there exists an isogeny
β of X over Φk such that βπnρ = πn+m. As πβ lifts to an isogeny β′ of X ′ over Φk[ε]

such that β′πn+1ρ′ = πn+m+2, or equivalently ker(πn+1ρ′) ⊂ Φ(πn+m+2).
Thus (X ′, ρ′) represents an element of Gn′,m′(k[ε]) whenever n′ ≥ n + 1 and m′ ≥

m+ 1. �

12.5. Write ξn,m for the morphism of Gn,m in H obtained by composing the inclusion
of Gn,m into G with ξ. It is a morphism of finite type since Gn,m is a scheme of finite
type over k.
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For y ∈ H(k) there exists, by (5.17) and (12.3), a unique x ∈ G(k) such that
y = ξ(x) and indices ny andmy such that x ∈ Gny ,my(k). For n = ny+1 andm = my+1,
the tangent map at x of ξn,m is bijective, by (11.1) and (12.4). Thus ξn,m is etale in
a neighbourhood of x; more precisely, since the map induced by ξn,m on geometric
points is injective, it is an open immersion in a neighbourhood of x. In other words,
there exists an open neighbourhood Vy of y in H above which ξn,m is an isomorphism.

For n′ > n and m′ > m, the morphism ξn′,m′ restricted to Vy induces bijections on
geometric points and the tangent spaces at these points, and it is thus therefore also
an isomorphism. Thus we have Gn′,m′ |Vy = Gn,m|Vy and, by (12.3), G|Vy = Gn,m|Vy ;
the morphism ξ coincides with ξn,m above Vy, and is thus an isomorphism.

Since this is true in a neighbourhood of every point of H, it follows that ξ is an
isomorphism.

Remark 12.6. One can show easily by analogous reasoning that, for every n, there
exists m such that Gn,m′ = Gn,m for all m′ > m. The subfunctor Gn of G defined by
the single condition that πnρ is an isogeny is representable by a projective k-scheme.
Geometrically Gn is represented by a finite subtree of the infininte tree of projective
lines representing G over k.

13. Construction of a system of coverings of Ω⊗K K̂nr.

13.1. Since it represents the functor G of (8.3), Ω̂⊗̂OÔnr is equipped with a “uni-
versal” formal OD-module, denoted X. For all integers n ≥ 1, we write πn for the
endomorphism of X over Ω̂⊗̂OÔnr induced by πn ∈ OD. For every geometric point
s of Ω̂⊗̂OÔnr (that is to say, its special fiber), the restriction of πn to the fiber Xs is
an isogeny, with constant height equal to 4n. Using the results of Th. Zink ([Zi 1])
or (10.1), we deduce that πn is an isogeny: hence its kernel, which we write as Xn,
is representable by a formal group scheme, finite and locally free over Ω̂⊗̂OÔnr, of rank
q4n. It is clear that (OD/πnOD) acts on Xn. Note also that the module of differentials
Ω1
Xn/ Ω̂⊗̂OÔnr

is killed by πn: it suffices in fact to verify this on the zero section, and this
case follows from the definition of a formalOD-module; in fact, πn operates on Lie(X)

via the structural morphism and it follows that, locally on Ω̂⊗̂OÔnr, the affine algebra
Xn is generated by two “coordinates” x1 and x2 satisfying equations Fi(x1, x2) = 0
(i = 1 or 2), with:

Fi = πnxi + (terms of degree ≥ 2).

We thus have, on the zero section: πndxi = 0.
This can be phrased essentially in the same way by saying that Xn is “formally etale

over Ω̂⊗̂OÔnr outside the special fiber” ([El]).

13.2. Let Xn denote the rigid space associated to Xn, that is to say its generic fiber
in the sense of Raynaud ([Ra 1]). By what we have just seen, Xn is a finite etale
covering of Ω ⊗K K̂nr (the rigid space over K̂nr obtained from Ω by extension of
scalars), fibered in (OD/πnOD)-modules16. We have inclusions Xn−1 ↪→ Xn, where
Xn−1 is identified with the subspace of points of Xn killed by πn−1. We write Xn−1/2

for the intermediate space of points of Xn killed by Π2n−1.
We know furthermore that the cardinality of the fibers of Xn are all equal to q4n,

which is the cardinality of (OD/πnOD). One deduces immediately that these fibers

16Should this say instead that Xn is an (OD/π
nOD)-module?
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are free (OD/πnOD)-modules of rank 1 (each element of Xn − Xn−1/2 makes up a
basis).

Now consider the complement: Σn := Xn − Xn−1/2 consisting of the points of Xn
“killed by πn exactly”. It follows from the preceding work that Σn is an etale galois
covering of the Galois group (OD/πnOD)∗. As n varies, the Σn make up a projective
system, via the isogeny π which induces the morphisms: Xn+1 → Xn, Xn+1 → Xn,
Σn+1 → Σn; the Galois group of this system is the profinite completion Ô∗D of O∗D.

Finally, it is important to note that the coverings just constructed are equivariant
relative to the action of GL2(K) considered in (9.3): it is clear in fact that this action
lifts to an action on the universal formal OD-module X, and hence to an action on
Xn, Xn and Σn.

13.3. Some remarks. (a) Using for example the results of Elkik ([El]), one can show
that the category of finite etale coverings of Ω⊗K K̂nr is equivalent with the category
of finite etale coverings of Ω⊗K Knr. The construction just considered then defines a
system of etale coverings, also denoted Σn, of Ω⊗K Knr.

(b) The construction of Σn is purely rigid analytic: abstractly Σn should come from
a certain formal scheme Σ̂n, but this is not how it was constructed (this would require
the definition of a “Drinfeld basis” in this case).

(c) The article [Ca 2] provides one method which allows one to calculate glob-
ally – by using the theorem of Cerednik-Drinfeld – the cohomology of the coverings
Σn: they furnish a geometric realisation of the Jacquet-Langlands correspondence
(between representations of GL2(K) and D∗) and the Langlands correspondence (be-
tween representations of GL2(K) and the Weil group WK).

III. THE CEREDNIK-DRINFELD THEOREM

0. Introduction and notation.

0.1. In what follows we fix an indefinite division quaternion algebra ∆ over Q. It
defines a reductive group over Q, denoted ∆∗ (“the multiplicative group of ∆”) such
that one has, for all Q-algebras R:

∆∗(R) = (∆⊗R)∗ (and so ∆∗(Q) = ∆∗).

The group ∆∗(R), in particular, is isomorphic with GL2(R). By fixing such an
isomorphism, one obtains an action of the group ∆∗(R) on the “double” Poincare
upper-half plane:

H± = P1(C)−P1(R).

Let also U ⊆ ∆∗(AF ) be a compact open subgroup of the group of points of ∆∗

with values in the finite adeles. One associates to this a Shimura curve, denoted SU ,
defined over Q, such that its collection of complex points is defined by the following
formula:

SU(C) = ∆∗(Q)\[H±×∆∗(Af )/U ].

The quotient that we have just written is none other than the union of a finite
number of quotients Γi\H of the Poincare upper-half plane H by arithmetic subgroups
Γi (that is, commensurable with ∆∗(Z) for an arbitrary integral structure). It is in
particular a compact Riemann surface, but in general disconnected. The Q-structure
has been defined by Shimura, which is part of a much more general and extremely
beautiful theory; see [De]. Here we confine ourselves (in section 1) to a moduli
problem, defined over Q, and which is represented by SU . More general cases, where
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∆ is a quaternion algebra with center equal to a totally real field, have been described
in [Mi] and [Br-La] (in the totally definite case), as well as in [Ca 1] (in the case of
curves).

0.2. Write δ for the product of the ramified primes of ∆. The methods developed in
[Mi], [Br-La] and [Ca 1] describe the reduction of SU at a prime which is relatively
prime to δ. We will study the reduction of SU at a prime p (fixed in all that follows)
which divides δ.

The group ∆∗(Qp) = ∆∗p is the mutiplicative group of the field ∆p = ∆ ⊗ Qp.
It contains a unique maximal compact subgroup denoted U0

p (which consists of the
units of the unique maximal order of ∆p). This maximal subgroup is filtered by a
descending family (Un

p )n≥0 of distinguished subgroups, where Un
p consists of the units

which are congruent to 1 modulo the nth power of the maximal ideal. We will always
assume that our subgroup U ⊆ ∆∗(Af ) decomposes as a product U = Un

p · Up where
Up ⊆ ∆∗(Ap

f ) is an arbitrary compact open subgroup.

0.3. In its original form, the theorem of Cerednik gives, in the case n = 0 (which
is to say the case where U is “maximal at p”), a p-adic uniformisation of SU ⊗ Qp

as a quotient of the Mumford ([Mu 2]) non-archimedean half-plane Ω = ΩQp. The
modular proof of Drinfeld, which we explain here, allows one to recover this result,
by comparing the universal family of abelian varieties parameterised by SU and the
universal family of formal groups parameterised by Ω̂. From this one easily deduces,
for n > 0, a uniformisation of SU⊗Qp in terms of mysterious coverings Σn of Ω which
the fundamental local theorem allows one to define.

0.4. We place ourselves in the case n = 0. We begin by stating (§1) the moduli prob-
lems over Q and over Qp. Then in §3 we define a moduli problem over Zp which
is the natural “extension”. This extension is possible because the “level structure” is
concentrated away from p (because n = 0), and it therefore makes sense in charac-
teristic p. The only thing that one adds to pass from Qp to Zp is a single condition,
in characteristic p, imposed on the formal group of the abelian variety, a condition
which is analogous to one we encounter for the functor represented by Ω̂.

Then we show that the extended functor is representable by a proper curve over Zp

(but non-smooth) SU with generic fiber SU ⊗Qp; to prove this result, one must show
that the abelian varieties under consideration are equipped with a canonical principle
polarisation compatible with a well-chosen positive involution (which we will define)
of ∆: this is the subject of §4. Before this, we prove in §2 that all the Fp-points of SU
are in a single isogeny class: this is a fundamental difference from the case when p
does not divide δ.

After this we are able (in §5) to state the theorem of Cerednik-Drinfeld and its
variants. We prove this in §6 using the fundamental local theorem of chapter II.

0.5. Fix in all that follows a maximal order O∆ in ∆ (recall that all such orders are
conjugate, which follows by strong approximation). We impose that it is stable under
the canonical involution x 7→ x of ∆ (this is not imposed in [Br - La], nor in [Mi]);
it is possible to find such an order since one can find such orders locally at all places
(giving a global maximal order O∆ is equivalent to giving, for all finite places v, a
maximal order O∆v = O∆ ⊗ Zv in ∆v = ∆ ⊗ Qv, such that the local orders agree
almost everywhere with an arbitrary fixed global order).
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A positive involution x 7→ x∗ of ∆ is obtained, as is explained in (loc. cit.), by
conjugating the canonical involution by an element t ∈ ∆∗ such that the square t2 is
a negative element of Q:

x∗ = t−1xt.

It is useful to make our choice for t explicit now. Our choice is made as in the following
easy lemma, whose proof we leave to the reader:

Lemma 0.6. One can choose t such that: t ∈ O∆; t2 = −δ. [It suffices to remark that
Q(
√
−δ)) is a splitting field for ∆].

We suppose henceforth that t is fixed as above, and so we have defined the involu-
tion x 7→ x∗; note that it stabilises the order O∆.

To end this list of notations, we write W for the order O∆, but endowed with the
structure of a left O∆-module, and V = W ⊗Q (a left ∆-module). We are particularly
interested in the different completions Wl = W ⊗ Zl (viewed as left O∆l

-modules)
and in Vl = W ⊗ Ql (∆l-modules). Note that the group Aut∆l

(Vl) is identified with
∆∗(Ql) = ∆∗l , where an element g acts by multiplication on the right by g−1.

Finally, we use, for A an abelian variety, the standard notations: An designates the
n-torsion, Tl(A) denotes the Tate module and Vl(A) = Tl(A) ⊗ Q. Finally we write
Tf (A) for the product of all the Tate modules for all primes numbers l, and Vf (A) for
the restricted product of all the Vl(A).

1. The moduli problem over C; polarisations.

1.1. A moduli problem represented by SU is described in [Mi] and [Gi] in the most
general case where ∆ is an indefinite quaternion algebra over a totally real field. In
our particular case, one obtains:

Theorem 1.2. The curve SU/C represents, if U is small enough (see below), the functor
MU : Sch /C → Set defined as follows: for S ∈ Sch /C, MU(S) is the collection of
isomorphism classes of triples (A, ι, ν) such that:

(i) A is an abelian scheme over S of relative dimension 2.
(ii) ι : O∆ → EndS A is an action of O∆ on A.

(iii) ν is a level U structure on A (see below).

Remark 1.3. A pair (A, ι) as above is sometimes called a “false elliptic curve”. In the
introduction to [De-Ra], they explain why the reduction of such an object, at a prime
not dividing δ, is composed of usual elliptic curves.

1.4. We begin by recalling, following [Bo], how to define a “level U structure”:
(a) In the case where U = U(N) is the subgroup of units of O∆ ⊗ Ẑ which are

congruent to 1 modulo an integer N , a level U (or N) structure consists of an O∆-
linear isomorphism:

ν : AN ∼= W ⊗ (Z/NZ).

(b) In the general case one chooses an integer N such that U(N) ⊆ U . A structure
of level U is then the giving, locally for the etale topology, of a class ν modulo U
of isomorphisms ν as above. [One verifies without difficulty that this definition is
independent of the choice of N .]

(c) For S the spectrum of an algebraically closed field, one can also describe the
level structure as the giving of a class ν modulo U of isomorphisms:

ν : Tf (A) ∼= W ⊗ Ẑ.
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It is also possible, as explained in [De], to work in the category of abelian varieties
up to isogeny, and the level structures are given by classes modulo U of isomorphisms
Vf (A) ∼= W ⊗ Af . In this way one can easily write down the action of the group
∆∗(Af ) on the projective system of SU – or if one prefers, the action of the Hecke
operators.

1.5. Remarks on the condition “U small enough”: This is the condition which assures
the level U structure is rigid enough to eliminate nontrivial automorphisms. It suffices
for example (see [Bo]) that U is contained in U(M) for M an integer ≥ 3. When U is
of the form U0

p ·Up, it evidently suffices to suppose Up is small enough in order for U to
be so: since the theorem of Cerednik that we will prove is “invariant” upon replacing
Up by a subgroup, we may henceforth suppose that this condition is satisfied.

1.6. The moduli problem that we are describing is in fact defined and representable
over Q, and one can use this to define a Q-structure on SU . In [Mi] and [Bo], they
show that it is the generic fiber of a proper smooth curve over Z[1/δN ], where N is
an integer such that U(N) ⊆ U . However, we would like to study the curve SU over p
(recall that p divides δ). In what follows we define a moduli problem over Zp, which
is representable by a proper and flat curve (but which is not smooth!).

1.7. Polarisations. Recall (cf. loc. cit.) that, for all triples (A, ι, ν) as above, a ∗-
polarisation is a polarisation λ of A such that, for all geometric points s of S, the
Rosatti involution on End0(As) induces, via ι, the involution ∗ on O∆. One can equiv-
alently require that, for all d ∈ O∆, the following diagram is commutative:

A
λ //

ι(d∗)
��

A∗

ι(d)∗

��
A

λ // A∗

Proposition 1.8. Let S be a scheme in characteristic 0 and (A, ι, ν) ∈ MU(S). Then
there exists a principal ∗-polarisation of A. Such a polarisation is unique.

Proof. One reduces immmediately to the case where S = Spec(C). In loc. cit. (cf. for
example [Mi], Lemma 1.1 or [Bo] §8), they show the existence of a ∗-polarisation, and
its unicity up to a rational number. We must now consider the possibility of choosing
such a polarisation which is also principal (and, evidently, that there is a unique such
choice). This result is clear by the following lemma, which gives the existence of an
O∆-linear isomorphism TlA ∼= Wl. �

Lemma 1.9. For all prime numbers l, consider the collection of bilinear antisymmetric
maps:

ψ : Wl ×Wl → Zl,

which satisfy:
∀d ∈ O∆l

, ψ(dx, y) = ψ(x, d∗y).

This collection is naturally a free Zl-module of rank 1, and every generator ψ0 of this
module defines a perfect self-duality on Wl.

Proof. (cf. the proof of lemma 1.1 in [Mi]). Let ψ be as in the lemma. Remembering
that Wl can be identified with O∆l

, we can write:

ψ(x, y) = φ(x∗y)
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where φ is the linear form ψ(1, u). One can express φ in terms of the reduced trace
trd, by the expression:

φ(u) = trd(d0tu
∗) = trd(d0ut),

with d0 an element of ∆l. The antisymmetry of ψ follows from the identity φ(u∗) =
−φ(u), and a brief calculation shows that this is equivalent with d0 = d0, where
d0 ∈ Ql. One concludes the proof of this lemma by the following one. �

Lemma 1.10. The map ψ0 : Wl ×Wl → Ql defined by:{
if (l, δ) = 1, ψ0(x, y) = trd(ty∗x)
if (l, δ) 6= 1, ψ0(x, y) = l−1 trd(ty∗x)

takes values in Zl, and induces a perfect self-duality on Wl.

Proof. This sub-lemma can be verified immediately: in the first case (l 6 |δ), one can
suppose that O∆l

= M2(Zl), and it is well-known that the trace defines a perfect self-
duality. The involution ∗ defines an automorphism of M2(Zl), and our hypotheses on
t ensure that t ∈ GL2(Zl), which proves the lemma in this case. In the other case (l|δ),
the maximal orderO∆l

is a division quaternion algebra and t is a “uniformiser” for this
order; it is well-known that the reduced trace gives a duality betweenO∆l

and t−1O∆l
.

The lemma follows, and hence also the preceding lemma and proposition. �

Remark 1.11. Note that the truth of Lemma 1, and thus of Proposiiton 1, depends
entirely on the particular choice of the element t, and on the involution ∗.
2. Application of the Tate-Honda theorem. The next paragraph will be devoted
to extending the preceding moduli problem MU (with U = U0

pU
p) into a moduli

problem MU defined over Zp. The following proposition, which we place here for
expositional purposes, states that all points with values in Fp are in the same isogeny
class.

Proposition 2.1. There exists a single isogeny class of pairs (A, ι) where A is an abelian
variety of dimension 2 over Fp with an action ι of the order O∆. In particular, the variety
A is isogenous to a product of supersingular elliptic curves. The algebra End0

O∆
(A) =

EndO∆
(A)⊗Q of endomorphisms of a pair (in the category “up to isogeny”) is isomorphic

with the quaternion algebra ∆ obtained from ∆ by interchanging the invariants p and
∞ (that is to say ∆ is definite, unramified at p, and ∆l is isomorphic with ∆l for all
l 6= p,∞).

The proof of this theorem is a standard application of the theorem of Honda-Tate.
(a) One begins by showing that A is isogeneous to a product of two supersingular

elliptic curves:
– The p-divisible group Ap∞ of A has trivial etale part (and so, by duality, no mul-

tiplicative part); in fact, if the etale component is nontrivial, it is of dimension 1 or
2. But O∆ cannot operate on such a group, because there do not exist algebra ho-
momorphisms ∆p → Qp, nor ∆p → M2(Qp). This contradiction proves that Ap∞ is
isogeneous to two copies of the p-divisible group of a supersingular elliptic curve.

– One applies the theorem of Honda-Tate (cf. [Br] or [Ta 2]): if A is not isoge-
neous to a product of two elliptic curves (necessarily supersingular by the preceding
argument), it is simple. Suppose it is defined over a finite extension Fq of Fp, and
write π for the Frobenius endomorphism of Fq. From the structure of the p-divisible
group, one deduces that the element π2/q is a unit in the field Q(π): since this unit is
of absolute value one at every place, it is a root of unity: we may thus suppose that
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π =
√
q ∈ Q. But then A is a supersingular elliptic curve! This contradiction proves

that A is isogeneous to a product of two supersingular elliptic curves, as was claimed.
(b) It follows that End0(A) is isomorphic with the algebra M2(H), where H denotes

the quaternion algebra over Q ramified exactly at p and∞. The unicity up to isogeny
of a pair (A, ι) is equivalent to all the embeddings ∆ ↪→ M2(H) being conjugate, and
this follows from the theorem of Skolem-Noether.

(c) Place by place, one checks that ∆ ⊗ ∆ is isomorphic with M2(H). This proves
both the existence of an embedding ∆ ↪→ M2(H), and the fact that the algebra
End0

O∆
(A) (which is identified with the commutant of ∆ in M2(H)) is isomorphic

with ∆.

Remark 2.2. For A as above, if l 6= p, one sees that Vl(A) is isomorphic with Vl as ∆l-
modules (because the dimesion is 4 over Ql), with an action (∆l-linear) of the algebra
End0

O∆
(A). It is clear that End∆l

(Vl) can be naturally identified with the algebra ∆opp
l

which is opposite to ∆l (operating by multiplication on the right). The choice of
isomorphisms Vl(A) ∼= Vl and ∆ ∼= Aut0

O∆
(A) thus determine an isomorphism, for all

l 6= p: ∆l
∼= ∆opp

l , and an isomorphism:

∆⊗Ap
f
∼= ∆opp ⊗Ap

f .

3. The moduli problem over Zp.

3.1. We consider the case where the compact subgroup U is of the form U0
pU

p, that is,
it is “maximal at p”, and in this case we will extend the preceding moduli problem to
Zp (or, what is the same, over the localisation Z(p) of Z at p). We begin by remarking
that, in this setting, there exists an integer N which is prime to p such that one has:
U(N) ⊆ U (cf. §1.2). It follows that the notion of a level U structure, given in §1,
makes sense in characteristic p. This allows us to define a moduli problem MU over
Zp, in the same way that it was defined in characteristic 0; the only difference is the
introduction of a supplementary condition on the points of characteristic p.

Definition 3.2. If S is a Zp-scheme, then MU(S) is the set of isomorphism classes of
triples (A, ι, ν) such that:

(i) A is an abelian scheme over S of relative dimension 2.
(ii) ι : O∆ → EndS(A) is an action of O∆ on A.

We impose the following condition, for all geometric points s = Spec k(s) of charac-
teristic p of S: write Z

(2)
p for the ring of integers of the quadratic unramified extension

of Qp. The ring embeds into O∆p (the inclusion is well-defined up to conjugation).
We require that the action of Z

(2)
p on Lie(As) decomposes into a sum of two injections

Z
(2)
p ⊗ Fp

∼= Fp2 ↪→ k(s). (One says that the pair (A, ι) is “special”).
(iii) ν is a level U structure on A.

3.3. Some remarks on the “special” condition. (a) One sees that the condition is really
a condition on the formal completion of A at the origin – or if one prefers, on the
p-divisible group Ap∞; it is none other than the condition that we encountered in the
preceding chapter: to say that A is a special O∆-variety is the same as saying that the
associated formal group is a special formal O∆p-module (chap. II §2.1).

(b) Suppose that S is a Z
(2)
p -scheme (a condition which we may always, perhaps

after an etale base-change, suppose holds). The OS-module Lie(A) is equipped with
an action of the ring Z

(2)
p ⊗ Z

(2)
p , which is isomorphic with Z

(2)
p ⊕ Z

(2)
p . This action
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decomposes Lie(A) into a direct sum of two projective OS-modules Lie1(A)⊕Lie2(A),
such that Z

(2)
p ⊆ O∆p operates on the first term via the structural morphism Z

(2)
p →

OS, and on the second via the composition of this morphism with conjugation on
Z

(2)
p . The “special” condition, as was reformulated above, means that the rank of each

of these OS-modules is equal to 1 at each geometric point of characteristic p of S.
This condition also makes sense at points of characteristic 0, but then the condition
is automatically satisfied [because, for the unique representation ∆p ↪→ M2(Qp), it is
true that the action Z

(2)
p ↪→ ∆p involves each of the two embeddings Z

(2)
p ↪→ Qp].

Since the rank of an OS-module is locally constant, one sees that, for S connected,
the condition is satisfied once it is satisfied at a single geometric point. In particular,
the condition is automatic for flat Zp-schemes S (in fact, it is satisfied at the points of
characteristic 0). In other words, it is satisfied for all pairs (A, ι) which “come from
characteristic 0”. This condition is thus necessary if one wants MU to be representable
by a flat scheme over Zp.

3.4. Representability. To prove the representability of the functor MU , we need the
following proposition, which generalizes Proposition 1. The notion of ∗-polarisation
is defined as in §1 (cf. also [Bo] §8).

Proposition 3.5. Let (A, ι, ν) ∈MU(S), for S a Zp-scheme. Then there exists a principal
∗-polarisation, and it is uniquely determined.

We admit this result for the time being – the proof is the subject of the following
subsection. For now we use it to prove the following:

Theorem 3.6. The functor MU is representable – if UP is small enough – by a projective
Zp-scheme SU with generic fiber SU ⊗Qp.

Remark 3.7. One can show, for example by using the theorem of Cerednik that we
would like to prove, that SU is flat over Zp.

Proof of the theorem:
(a) The preceding proposition defines a morphism of functors between MU and the

functor “principally polarized abelian varieties”. To prove that MU is representable by
a quasi-projective scheme, it suffices to prove that it is relatively representable above
the Siegel moduli stack. But this is an easy consequence of the theory of Hilbert
schemes.

(b) The projectivity follows, using the valuative criterion of properness, from the
following lemma (“potential good reduction”):

Lemma 3.8. Let V be a Zp-algebra which is a discrete valuation ring with fraction field
denoted L, and let x = (A, ι, ν) be a point of MU(L). Then there exists a finite extension
L′ of L and a point x̃ = (Ã, ι̃, ν̃) of MU with values in the integral closure V ′ of V in L′,
such that the image of x̃ in MU(L′) coincides with x.

The proof of this lemma is standard: by the semi-stable reduction theorem, there
exists an extension L′ of L such that the Neron model of AL′ has special fiber equal
to an extension of an abelian variety by a torus T .

One proceeds by showing that T is trivial: indeed O∆ operates on the Neron model
by functoriality. If T is not trivial, then X∗(T ) is a Z-module of rank 1 or 2 with an
action of O∆, which is impossible.

Thus the Neron model is an abelian scheme Ã over V ′. By functoriality, it is
equipped with an action ĩ of O∆, which satisfies the “special” condition by virtue
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of remark (b) of (3.3). As for the level structure, it extends in a unique way, and this
concludes the proof of the lemma.

4. Polarisations [Proof of proposition (3.5)].

4.1. We begin by proving the existence of a ∗-polarisation (not necessarily principal)
when the base is Fp.

Lemma 4.2. Let A be an abelian variety over Fp, with an action ofO∆. Then there exists
a ∗-polarisation of A. Such a polarisation is unique up to multiplication by a positive
rational constant.

Proof. It suffices to prove the existence, and the uniqueness up to a scalar ( ∈ R∗+),
of an element in NS(A)⊗R, contained in the positive cone of polarisations, such that
the involution associated to End(A)⊗R induces the involution ∗ on ∆.

Following §2, A is isogeneous to a product of two supersingular elliptic curves. It
follows that we may indentify End(A) ⊗R with the algebra M2(H), and NS(A) ⊗R
with the subspace of elements of M2(H) that are fixed by the involution z 7→ zT

[where z 7→ z is the canonical involution of H]. With this identification, the Rosatti
involution of M2(H) associated to a symmetric element (β = β

T
) is given by:

x 7→ βzTβ−1.

Fix also an isomorphism between ∆ ⊗ R and M2(R), such that the positive invo-
lution ∗ corresponds to the transposition m 7→ mT . The action of O∆ on A defines
an injection ι : M2(R) → M2(H), which is conjugate by a certain α ∈ GL2(H) to the
obvious inclusion M2(R) ↪→M2(H) (in other words: ι(m) = αmα−1).

The condition for the involution associated to β, symmetric, to induce the involu-
tion ∗ on ∆ is:

∀m ∈M2(R) : αmTα−1 = βαmα−1
T
β−1

which is to say:
(α−1βαT

−1
)m(αTβ−1α) = m.

This is satisfied if and onlyif β is of the form

β = λααT , (λ ∈ R∗).

Moreover, β is the in the positive cone of polarisations if and only if λ ∈ R∗+ (for this
see [Mu 1], §21), and the lemma follows. �

4.3. The following lemma is crucial.

Lemma 4.4. Let X be a formal group of dimension 2 and height 4 over a local artinian
ring B with residue field Fp. Suppose that X is equipped with an action ι of the ring
O∆ ⊗ Zp = O∆p, such that the “special” condition is satisfied. We consider the collection
of symmetric morphisms λ : X → X∗ of X into its Cartier dual, which are compatible
with the involution ∗, in other words such that the diagram of (1.5) commutes (if one
prefers: formal polarisations). Then this collection is a free Zp-module of rank 1, and
the generators are the isomorphisms X ∼= X∗.

We momentarily admit this lemma and explain how Proposition 3.5 follows.
(i) In the case where the base S0 = Spec Fp, the lemma 4.2 yields the existence

of a polarisation, which we must adjust to obtain a principal one. As in the case of
an earlier proposition (1.5), the possibility to make such an adjustment is controlled
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place by place: if l 6= p, one proceeds exactly as in the case of the field C, and uses
lemma (1.6); otherwise, for l = p, one replaces that lemma with the one above.

(ii) Next we treat the case where the base S is the spectrum of an artinian ring
with residue field Fp. The possibility to deform the principal ∗-polarisation above the
closed points of S follows, by the theorem of Serre-Tate, from the preceding lemma.
By passing to the limit, this applies also to the case when the base is the spectrum of
a complete local ring with residue field Fp.

(iii) For the remaining cases, suppose S is of finite type over Zp. It follows from pre-
ceding remarks that the problem admits a unique solution in formal neighbourhoos of
every geometric point of S. Using the unicity, one sees that the local formal solutions
are algebraic and may be glued.

4.5. We now prove Lemma (4.4). Drinfeld proved it using a very original method, by
verifying the lemma in the case of a particular formal group Φ/Fp, and then using the
representability theorem (chapter II, §8) to prove the lemma in general.

We begin by defining Φ: write E for “the” formal group over Fp of dimension 1
and height 2, and choose an isomorphism End(E) ∼= O∆p. One may choose a “formal
polarisation” µ0 : E ∼→ E∗ (as in the statement of the lemma), and the associated
Rosatti involution is identified with the canonical involution of ∆p (to fix ideas, one
may take E to be the formal group of a supersingular elliptic curve, and take the
formal polarisation associated to the principal polarisation of the curve). We consider
the product Φ = E ×E of two copies of E , on which O∆p acts in the following way: an
element u ∈ O∆p acts (via the isomorphism O∆p

∼= End(E)) by u on the first factor,
and by tut−1 on the second (recall that the element t ∈ ∆∗ is a “uniformiser” of ∆p).
In this way, the condition to be “special” is satisfied: Φ is a special formalO∆p-module,
in the sense of the previous chapter (note that both indices 0 and 1 are critical).

Proof that lemma (4.4) holds for Φ: using the above identification of E with E∗, and
of O∆p with End(E), one sees that the collection of formal polarisations compatible
with the involution ∗ is identified with the matrices(

α β
γ δ

)
∈M2(O∆p), which are Hermitian symmetric:(

α β
γ δ

)
=

(
α β
γ δ

)
, and which satisfy, for all u ∈ O∆p, the relation:(
α β
γ δ

)(
u∗ 0
0 tu∗t−1

)
=

(
u 0

0 tut−1

)(
α β
γ δ

)
.

Using the formulae: u∗ = t−1ut = tut−1 = tut−117, one sees that the preceding
conditions are equivalent to: α = δ = 0, β = γ ∈ Zp. The set under consideration is
thus indeed a free Zp-module of rank 1, generated for example by(

0 1
1 0

)
.

We fix such a generator λ0 : Φ
∼→ Φ∗, that is, a “principal formal ∗-polarisation”.

Remark 4.6. One knows, by chapter II, §5, that End0
∆p

(Φ) is isomorphic with M2(Qp).
In this case the isomorphism is realised by the inclusion of M2(Qp) in M2(∆p) =

17Check if this and the above formula are correct; it’s different from in BC, but theirs looks funny
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End0(Φ) defined by: (
a b
c d

)
7→
(

a bt
ct−1 d

)
.

A calculation immediately shows that the Rosatti involution associated to λ0 induces
the canonical involution on M2(Qp).

4.7. We now treat the general case: in light of what we have just seen, it suffices to
establish – using the notations of lemma (4.4) – the existence of a formal principal
∗-polarisation λ : X

∼→ X∗. Broadening the hyptheses of the lemma a bit, suppose we
are given a Znr

p -algebra B such that the image of p is nilpotent, and a formal group
X, of dimension 2 and height 4 over B, with a special action of the ring O∆p. Suppose
moreover that we are given a quasi-isogeny ρ (compatible with the action of O∆p),
of height 0, of ΦB/pB into XB/pB. That that such a ρ exists due to the hypotheses
of lemma (4.4): for B = Fp this follows from the fact that all special formal O∆p-
modules over Fp are isogeneous with Φ (chapter II, §5), and so one may choose (by
composing with a suitable endomorphism of Φ) a quasi-isogeny of height 0. For B
artinian of residue field Fp, it follows from the previous case by deforming quasi-
isogenies (see for example [Zi 3] 5.31).

The lemma thus clearly follows from the following precise assertion: there exists
an isomorphism λ : X

∼→ X∗ such that the restriction λB/pB to special fibers makes the
following diagram commute:

XB/pB

λB/pB // X∗B/pB

ρ∗

��
ΦB/pB

ρ

OO

λ0 // Φ∗B/pB

(if such a λ exists, it is unique, and symmetric (since λ0 is); moreover, it is necessarily
compatible with the involution ∗).

Recall that, by the definitions of chapter II, §8, giving the isomorphism class of a pair
(X, ρ) is equivalent to giving a B-valued point of the functor G (which is represented
by the formal Ẑnr

p -scheme Ω̂⊗̂Ẑnr
p ). The preceding assertion says that the pairs (X, ρ)

and (X∗, (ρ∗)−1 ◦ λ0) are isomorphic. The formula:

j(X, ρ) = (X∗, (ρ∗)−1 ◦ λ0)

defines an automorphism of the functor G. To show that X∗ is special when X is,
we may work over an algebraically closed field k of characteristic p, and use the
fact that the reduction modulo p of the Dieudonne module of X is an extension of
Lie(X∗) by the dual of Lie(X); one easily sees that, for the action of Z

(2)
p on the

Dieudonne module, each of the two embeddings Z
(2)
p ↪→ W (k) appears twice (one

may also verify the last assertion on Φ, because all special formal O∆p-modules over
k are isogeneous).

In this way one obtains an automorphism, denoted j, of the Ẑnr
p -scheme Ω̂⊗̂Ẑnr

p . To
prove the preceding assertion, and thus finally lemma (4.4), it suffices for us to show
that this automorphsm is the identity.

4.8. We note that this automorphism – which is involutive – commutes with the
natural action of SL2(Qp) on Ω̂⊗̂Ẑnr

p : in fact, it follows from a result of chapter
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II §9.3 that the action of an element g ∈ SL2(Qp) on the functor G is given by:
g(X, ρ) = (X, ρ ◦ g−1). Hence:

j ◦ g(X, rho) = (X∗, ((ρ ◦ g−1)∗)−1 ◦ λ0) = (X∗, (ρ∗)−1 ◦ g∗ ◦ λ0);

g ◦ j(X, ρ) = (X∗, (ρ∗)−1 ◦ λ0 ◦ g−1).

The commutativity follows from the relation: λ−1
0 g∗λ0 = g = g−1 for g ∈ SL2(Qp) (by

the remark in (4.3)).
The following lemma will allow us to conclude the proof:

Lemma 4.9. An automorphism j of Ω̂⊗̂Ẑnr
p , which commutes with the action of SL2(Qp),

is necessarily the identity.

In fact, j operates on the special fiber Ω̂ ⊗ Fp, and also on its “dual graph”, which
is isomorphic with the tree of PGL2(Qp). It is a simple exercise to see that any au-
tomorphism of the tree that commutes with the action of SL2(Qp) is necessarily the
identity: therefore, j stabilises each irreducible component of the special fiber, and
fixes all points of intersection of the components. Each of the components is a projec-
tive line, and has p + 1 ≥ 3 points of intersection with its neighbouring components:
it follows that j acts trivially on the special fiber.

The “deviation” of j from the identity on the first infinitesimal deformation Ω̂ ⊗
(Znr

p /(p
2)) of the special fiber is measured by a derivation of the structure sheaf of

the special fiber; this is equivalent to giving a stack of tangent spaces, trivial at each
singuar point. Such a stack is necessarily trivial, and j is thus the identity on the first
deformation. Continuing on successive deformations by induction proves that j is the
identity.

Remark 4.10. A result analogous to Proposition (3.5) is proved in a more general case
in [Zi 2]. The method used by Zink is more direct than the one we just used.

5. The Cerednik-Drinfeld theorem: statement, variants and remarks.

5.1. We suppose throughout that our compact open subgroup U is of the form U0
pU

p,
with Up a compact open subgroup of ∆∗(Ap

f ). When Up is small enough, the curve
corresponding curve SU is a projective system (with an action of the group ∆∗(Ap

f )).
We write ∆

∗
to denote the reductive group over Q defined – in the same way as ∆∗

is obtained from ∆ – as the multiplicative group of the algebra ∆ considered in §2.
We fix an isomorphism between the groups:

∆∗(Ap
f ) = (∆⊗Ap

f )
∗ and ∆

∗
(Ap

f ) = (∆⊗Ap
f )
∗,

obtained via an anti-isomorphism between the algebras ∆ ⊗ Ap
f and ∆ ⊗ Ap

f (com-
posed with the inversion g 7→ g−1). Via this isomorphism, the group Up that we are
considering corresponds to a subgroup of ∆

∗
(Ap

f ).
We also fix an isomorphism ∆

∗
(Qp) ∼= GL2(Qp) obtained from an isomorphism

between ∆⊗Qp and M2(Qp).
Consider the following collection of double cosets, denoted ZU or ZUp:

ZU = Up\∆∗(Af )/∆
∗
(Q).

The group ∆
∗
(Qp) acts on the left of this group, and the quotient by action is finite.

All orbits contain the double coset of an element x whose pth component xp is equal
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to 1. The stabiliser Γx of x is given by:

Γx = ∆
∗
(Q) ∩ x−1Upx,

where the intersection is taken in ∆
∗
(Ap

f ) then, seen as a subgroup of ∆
∗
(Q), is

injected into ∆
∗
(Qp) ∼= GL2(Qp). One verifies without difficulty that the stabilisers

are discrete and cocompact subgroups of ∆
∗
(Qp), and that they contain a power of

the matrix
(
p 0
0 p

)
.

For Up small enough, the collection ZU is a projective system on which the group
∆
∗
(Ap

f ) acts.

5.2. The Cerednik-Drinfeld theorem. Retain the preceding notation and conventions,
in particular the isomorphisms:

∆∗(Ap
f )
∼= ∆

∗
(Ap

f ), ∆
∗
(Qp) ∼= GL2(Qp).

Theorem 5.3. For every compact open subgroup Up ⊆ ∆∗(Ap
f ) which is small enough,

one has (putting U = U0
pU

p) an isomorphism of formal Zp-schemes:

ŜU ∼= GL2(Qp)\[Ω̂⊗̂Ẑp

nr
× ZU ]

where ŜU denotes the formal completion of SU along its special fiber. This isomorphism
is compatible, as Up varies, with the projection maps. The isomorphism of the two
projective systems thus obtained is compatible with the action on the two members of the
group ∆∗(Ap

f )
∼= ∆

∗
(Ap

f ). Finally, this isomorphism lifts to an isomorphism between the
special formal O∆p-modules naturally associated to the two formal schemes.

The preceding theorem calls for a number of remarks: we’ll start with some back-
ground and some explanatory details that may be necessary for its formal understand-
ing; then, we explain why the quotient which figures, with a somewhat monstrous
appearance, in the theorem above, is none other than the finite union of twisted forms
of some Mumford curves. We then compute the graph of the irreducible components
of the special fiber. Finally we generalize the theorem to the case of a subgroup of the
form U = Un

p U
p.

We begin by giving some clarifying remarks regarding the statement of the theo-
rem:

a) Recall that the action of GL2(Qp) on Ω̂ ⊗̂ Ẑp

nr
that we consider is obtained from

the natural action on Ω̂ and from the action g 7→ F̃ r
−v(det g)

on Ẑp

nr
(cf. chapter II,

§9). This action is defined solely over Zp and not over Znr
p .

b) The natural action of the group ∆∗(Ap
f ) on the projective system of SU is a right

action, whil the action of the group ∆
∗
(Ap

f ) on the system of ZU is a left action. In
order to compare them, one must change the side of one of the actions: we use the
anti-isomorphism between the two groups associated to the anti-isomorphism of the
corresponding algebras.

c) The formal O∆p-module defined by ŜU is the formal completion of the universal
abelian variety given by the moduli problem MU . The one associated to the formal
scheme on the right of the theorem comes from the moduli description of Ω̂ ⊗̂ Ẑp

nr

(chapter II, §8).
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5.4. Remarks. 3.5.3.1 – Because the action of ∆
∗
(Qp) ∼= GL2(Qp) on ZU decomposes

the last collection into a finite number of orbits, we see that the quotient which ap-
pears in the statement of the theorem is the union of a finite number of quotients of
the form:

Γi\Ω̂ ⊗̂ Ẑp

nr
,

where the Γi = Γxi are the different stabilisers, which were described in (5.1). Since
each of these stabilisers contains a power pni · 1 of p · 1, we may begin by passing to a
quotient by the action of pni · 1 (which acts trivially on Ω̂), thus obtaining the tensor
product of Ω̂ by the unramified extension of Zp of degree 2ni, denoted Z

(2ni)
p . The

quotient can thus be written:
Γi\Ω̂ ⊗̂Z(2ni)

p .

After extending scalars to Z
(2ni)
p , is becomes isomorphic to a finite union of “Mumford

quotients”, of the form Γ′i\Ω̂ (cf. [Mu 2] or [Ra 2]), where Γ′i denotes the image in
the group PGL2(Qp) of the subgroup Γi consisting of elements of determinant equal
to a unit. Under the hypothesis that Up is small enough (it suffices, for example
that the same condition as in (1.3) holds), one sees that the groups Γ′i are Schottky
subgroups of PGL2(Qp) – in particular, they act freely on the tree I and on Ω̂. If we
suppose also that Up is sufficiently small so that the Γ′i operate “very” freely on I (all
vertices are shifted by a distance ≥ 2 by all nontrivial elements), then the Mumford
quotients are obtained simply from standard affines, indexed by the vertices of the
tree, as described in chapter I.

In what follows, we suppose that the quotients that appear in theorem are the union
of Galois twisted forms (by unramified extensions) of Mumford quotients.

3.5.3.2 – The theorem (5.2) is true in a partial sense without the hypothesis that “Up

is small enough”: there exists in fact in every case a distinguished subgroup of finite
index Up

1 ⊆ Up which is small enough. By applying the theorem to the group Up
1 ,

then passing to the quotient by the finite group Up/Up
1 , one obtains an analogous

isomorphism:
ŜU ∼= GL2(Qp)\[Ω̂ ⊗̂ Ẑp

nr
× ZU ]

where SU is the quotient SU1/(U/U1), and the right side is a union of twisted forms
of quotients of Mumford curves by finite groups. In other words, the set on the right
is always isomorphic to the formal completion of an integral model of SU . Note
that, without the hypothesis that Up is small enough, neither of the two sides of the
isomorphism above carry a natural formal O∆p-module.

Note finally that, in all cases, the isomorphism of the theorem yields a p-adic uni-
formisation:

SanU
∼= GL2(Qp)\[Ω ⊗̂ Q̂p

nr
× ZU ]

(where SanU denotes the rigid analytic space over Qp associated to SU). Moreover
we see that it is not necessary to complete (that is, we may write only ⊗Qnr

p in the
previous formula).

3.5.3.3 – There is a particular case where the above quotient takes a very simple
form; since this case – student in [Jo-Li] – is relevant for the work of Ribet ([Ri 2]), we
will say a few words about it. We impose in this paragraph the following hypotheses
on the group Up (we do not suppose that Up is “small enough”):

a) The image of Up by the reduced norm is maximal, that is, equal to
∏

l 6=p Z
∗
l .

b) The p-adic valuation maps the intersection of Up and the center Q∗ of ∆∗(Q)
surjectively onto Z.
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Under hypothesis (a), it is easy to see, by using the strong approximation theorem,
that ∆

∗
(Qp) acts transitively on ZU . The quotient that we are interested in thus takes

the form:
Γ\Ω̂ ⊗̂ Ẑnr

p , with Γ = ∆
∗
(Q) ∩ Up (seen as a subgroup of ∆

∗
(Qp) ∼= GL2(Qp)).

Moreover, thanks to the second hypothesis, the quotient of Spf Znr
p by the intersection

Γ ∩Q∗ is identified with Spf Z
(2)
p .

Write Γ+ for the subgroup of Γ consisting of elements whose reduced norm have
even p-adic valuation: one checks that Γ+ is of index 2 in Γ. Write W = Γ/Γ+ (a
group of two elements), and note that the above quotient can be written as:

W\[(Γ+\Ω̂)⊗ Z(2)
p ].

In other words, one obtains a twisted form of the quotient Γ+\Ω̂ (which is the quotient
of a Mumford curve by a finite group). The cocycle which describes the twist in
H1(Gal(Q

(2)
p /Qp,Aut(Γ+\Ω̂)) maps the nontrivial element in the Galois group to the

automorphism of Γ+\Ω̂ defined by ω ∈ Γ − Γ+. This can be described easily in the
adelic language: our quotient takes the form

W\[∆∗(Qp)+\Ω̂× ZU ]⊗ Z(2)
p ,

where ∆
∗
(Qp)+ is the subgroup of ∆

∗
(Qp) consisting of elements such that the valua-

tion of their determinant is even, and where W (isomorphic with Z/2Z) denotes the
quotient ∆

∗
(Qp)/∆

∗
(Qp)+. We thus obtain the twisted form of the quotient

∆
∗
(Qp)+\Ω̂× ZU

where the automorphism which describes the twist is defined by any element w ∈
∆
∗
(Qp)−∆

∗
(Qp)+.

5.5. Graphs. 3.5.4.1 – We have seen – in chapter I – that the “dual graph” of special
fiber of Ω̂ is isomorphic with the tree I of PGL2(Qp). If one considers a Mumford
quotient Γ\Ω̂, so that the image Γ of Γ in the projective group operates freely on I,
then it is well-known, and easy to see, that the graph of the special fiber of Γ\Ω̂ is
identified with the quotient graph Γ\I. Kurihara ([Ku], see also [Jo-Li]) has also ob-
tained an analogous result in the more general situation (as in (5.3.2)) of a subgroup
Γ, discrete and cocompact in PGL2(Qp), which is not necessarily Schottky (although
there always exists a subgroup of finite index in Γ which is Schottky). Below we
discuss the result of Kurihara.

3.5.4.2 – Let R be a discrete valuation ring, with residue field k, and let $ denote
a uniformiser. We adopt the terminology of Jordan and Livne and say that a curve
C/ Spec(R) is admissible if it satisfies the following conditions:

a) C is proper and flat over Spec(R), with smooth generic fiber.
b) The special fiber Ck is reduced; its singularities are ordinary double points which

are rational over k, as are the two branches which cross there. The normalizations of
the irreducible components of Ck are rational curves.

c) For all singular points x ∈ Ck, there exists an integer m such that the comple-
tion ÔC,k of the local ring at x is R-isomorphic with the completion of the local ring
R[[X, Y ]]/(XY −$m); it is easy to see that m is well-defined by x.

To such an admissible curve, one associates a graph in the following way: the
vertices of the graph are the irreducible components of Ck; the oriented edges of the
graph are the branches of the singularties of Ck; the inverse of an edge a corresponds
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to the other branch a meeting at the same singular double point. That is to say, the
origin of a is the component which contains a, and its endpoint is the origin of a. One
thus obtains a structure of a graph in the sense of Serre ([Se]). This graph admits an
additional structure, which is a map m on from the collection of edges to the integers
≥ 1: it is simply the map which assigns an edge a to the integer m = m(a) associated,
by condition (c) above, to the corresponding singular point. We say that the length
of an edge a is the integer m(a), and it satisfies: m(a) = m(a). We thus obtain an
additional structure on the graph, which Kurihara calls a graph with lengths.

3.5.4.3 – We next define a quotient structure associated to a discrete and cocompact
subgroup Γ ⊆ PGL2(Qp) operating on the tree I: the natural idea is to consider the
combinatorial object Γ\I whose vertices (resp. edges) are the quotient by Γ of the
collection of vertices (resp. edges) of I, with the obvious incidence and inversion
relations. However, one does not always obtain in this way a tree in the sense of
Serre, for example, if there exists an element of Γ which transforms an edge into its
inverse, then the quotient contains an edge which is equal to its inverse. We write
(Γ\I)∗ for the graph obtained from (Γ\I) by removing the edges which are equal to their
own inverses (note that this does not prevent (Γ\I)∗ from eventually containing its
“lacets” 18).

We also define the length m(a) of an edge a of (Γ\I)∗: it’s the order of the stabiliser
Γã of a lift ã of a to I.

We are now ready to give Kurihara’s result: let Γ ⊆ PGL2(Qp) denote a discrete
and cocompact subgroup as above, and let (Γ\Ω̂) denote the associated curve (the
quotient by a finite group of a Mumford curve).

Theorem 5.6 (Kurihara). The curve (Γ\Ω̂) is an admissible curve over Zp. The associ-
ated dual graph “with lengths” coincides with the quotient (Γ\I)∗ defined above.

For the proof, we refer to the article of Kurihara, where they also explain how to
obtain the dual graph of a regular model of the curve (see also [Jo-Li]). We are
content to illustrate the proof, in an intuitive fashion, of why it is necessary to remove
from (Γ\) the edges which are their own inverses, and why the “length” is given by
the order of the stabiliser:

a) If there exists an inversion γ ∈ Γ which exchanges two edges of the tree, then the
passage to the quotient identifies the two corresponding components of the special
fiber of Ω̂. One sees that the singularity disappears in the quotient.

b) An example of a stabiliser of a group which operates on the singular equation
XY = p is a cycle group of order m, with a generator of this group operating by:{

X → ζX
Y → ζ−1Y,

where ζ is a primitive mth root of unity.
Thus one sees that the quotient is the singular equation X ′Y ′ = pm, where the

projection is given by: X ′ = Xm, Y ′ = Y m.
3.5.4.4 – We apply the preceding work to a curve SU associated to a subgroup

U satisfying the simplifying hypotheses (5.3.3), and we adopt the notation of that
section. One obtains an integral model (defined over Zp) of the curve, and this model
is admissible after extension of scalars to Z

(2)
p . The graph “with lengths” associated

to the special fiber is equal to (Γ+\Ω̂)∗. Since one is dealing with a twisted form of

18what is this?
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the quotient (Γ+\Ω̂), this leads to a nontrivial action of the Frobenius automorphism
Frobp: this action on (Γ+\I)∗ is defined by any element w ∈ Γ− Γ+. If one prefers an
adelic expression, the graph above can also be described:

[∆
∗
(Qp)+\(I × ZU)]∗,

and the action of Frobenius can then be defined by any element w ∈ ∆
∗
(Qp) −

∆
∗
(Qp)+.

5.7. Generalisation to the case when Up is not maximal. 3.5.5.1 – One of the advan-
tages of the approach of Drinfeld is that it yields also a p-adic uniformisation of the
curves SU , for U of the form Un

p U
p (cf. (0.2)), in termms of the coverings Σn of

Ω⊗̂K̂nr defined in chapter II, § 13.

Theorem 5.8. For U of the form Un
p U

p, there exists an isomorphism of rigid analytic
spaces:

SanU
∼= GL2(Qp)\[Σn × ZUp ].

This isomorphism is compatible, as U and n vary, with the projection operations, and
the isomorphism thus obtained between the two projective systems is equivariant for the
action of the group ∆∗(Af ).

Remark 5.9. As above, one sees that the set on the right of the formula above is the
finite union of quotients Γi\Σn, for congruence subgroups Γi ⊆ GL2(Qp). One easily
sees, moreover, that it changes nothing to consider Σn as a covering of Ω⊗̂K̂nr or of
Ω⊗Knr (cf. II, 13.3 Remark (a)).

Remark 5.10. In the article [Ca 2], they show how to use the theorem above to com-
pute the rigid analytic cohomology of the spaces Σn.

3.5.5.2 – We now explain how the theorem above is deduced from theorem (5.2).
One may suppose that Up is small enough. Writeing U0 = U0

P × Up, the moduli
problem MU0 defines over the Zp-scheme SU0 a “universal” abelian variety A. Thus
SU (which exists only in characteristic zero), seen as an SU0-scheme, classifies O∆-
linear isomorphisms ν between the pn-torsion Apn of the generic fiber A of A, and
O∆ ⊗ (Z/pnZ). The giving of an isomorphism is simply equivalent to the giving of a
point of exact order pn in Apn.

Using the notations and definitions of chapter II, § 13, we have, after the last asser-
tion of theorem (5.2), an isomorphism of formal O∆p-modules over ŜU0:

Â ∼= GL2(Qp)\[X × ZUp ],

and thus

Âpn
∼= GL2(Qp)\[Xn × ZUp ].

We thus obtain an isomorphism over SanU0
:

Âan
pn
∼= GL2(Qp)\[Xn × ZUp ].

Finally, one has:

SanU
∼= GL2(Qp)\[Σn × ZUp ].
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5.11. To conclude the commentary on theorem (5.2) we remark that the article [Ri
1] gives a canonical description for the collection of the components and the points
over Fp of the curve SU : one sees in particular that the irreducible components are
parameterized by the collection of O∆-abelian varieties of dimension 2 over Fp, with
an Up-level structure, and which do not satisfy the “special” condition.

6. Proof of the Cerednik-Drinfeld theorem.

6.1. We begin by fixing an abelian variety A0 over Fp, of dimension 2, with a “spe-
cial” action of the ring cO∆ (to see that A0 exists, one could take the abelian variety
associated to a point over Fp of SU ; or for an explicit construction, take the product of
two supersingular elliptic curves and define the action analogously to (4.3) to exhibit
a special formal O∆p-module). Write Φ for the associated formal group, which is a
special formal O∆p-module. We also choose an identification (cf. § 2): ∆ = End0

∆(A0)

(and therefore: ∆
∗
(Q) = ∆

∗
= Aut0

∆(A0)).
This induces an identification:

∆p = ∆⊗Qp = M2(Qp) = End0
∆p

(Φ)

(where: ∆
∗
(Qp) = ∆

∗
p = GL2(Qp) = Aut0

∆p
(Φ)).

We fix finally isomorphisms, for l 6= p:

ν0,l : Vl(A0)
∼→ Vl,

compatible (in the sense of the final remark of § 2) with the fixed isomorphism be-
tween ∆⊗Ap

f and (∆⊗Ap
f )
opp: this means that, via ν0,l, the action of ∆ = End0

∆(A0)
on Vl is given by the composition:

∆ ↪→ ∆l
∼= ∆opp

l → End∆l
(Vl)

[acting by multiplication on the right].

6.2. Algebrisation. 3.6.2.1 – Let S be a Zp-scheme such that the image of p is nilpo-
tent, and let X be a special formal O∆p-module on S.

Definition 6.3. An algebrisation of X is the giving of a pair (A, ε) consisting of an
abelian scheme A over S, with an action of O∆, and a O∆-equivariant isomorphism
ε : Â

∼→ X between X and the formal group associated to A. When A is moreover
equipped with a level structure U (or Up, which amounts to the same), one says it’s
an algebrisation with U -level structure.

3.6.2.2 – In particular, we write Al}U(Φ) for the collection of isomorphism classes
of algebrisations, with U -level structure, of Φ. It is fundamental for what follows to
determine this set: it is the collection of isomorphism classes of triples (A, ε, ν) where
A is an O∆-abelian variety over Fp, where ε is an equivariant isomorphism between
Â and Φ, and ν is an O∆-linear isomorphism class modulo Up:

ν :
∏
l 6=p

Tl(A)
∼→
∏
l 6=p

Wl.

The usual yoga (see for example [Mi]) allows one to realize this collection as the
collection of isogeny classes of triples (A, ε, ν) where A is an abelian variety, with an
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action of ∆ by isogenies, where ε is an (equivariant) quasi-isogeny between Â and Φ,
and where finally ν is a class modulo Up of ∆-linear isomorphisms:

ν :
∏
l 6=p

Vl(A)
∼→
∏
l 6=p

Vl.

The projective limit Al}∞(Φ) of Al}U(Φ) is the collection of triples (A, ε, ν); this
description yields a left action of the group ∆

∗
(Af ) = ∆

∗
(Qp)×∆

∗
(Ap

f ) on Al}∞(Φ),
such that the first component ∆

∗
(Qp) acts by composition with ε, and the right term

∆
∗
(Ap

f ) acts by composition with ν. This action is transitive, as follows from the
uniqueness of the isogeny class of A (§ 2).

Using the identifications of (6.1), we consider the element of Al}∞(Φ) given by
triple:

A0, ε0 : Â0 = Φ,
∏

ν0,l.

One sees that the stabilizer of this element is the subgroup ∆
∗
(Qp) ⊆ ∆

∗
(Af ). This

follows from the commutativity of the diagrams below, where γ denotes an element
of ∆

∗
(Q) and γl its image in ∆

∗
(Ql):

A0

γ

��

Â0

γ̂
��

= // Φ

γp

��

Vl(A0)
∼
ν0,l

//

Vl(γ)

��

Vl

γl

��
A0 Â0

= // Φ Vl(A0)
∼
ν0,l

// Vl

3.6.3.4 – One obtains a bijection between Al}∞(Φ) and the homgeneous space
∆
∗
(Af )/∆

∗
(Q). This yields a bijection:

Al}U(Φ) ∼= Up\∆∗(Af )/∆
∗
(Q) = ZU .

6.4. The next step consists in defining a morphism Θ from the special fibre [Ω̂ ⊗̂ Ẑp

nr
⊗

Fp]× ZU = (Ω̂⊗ Fp)× ZU to SU ⊗ Fp.
3.6.3.1 – Let S be a scheme of characteristic p. IfA1 andA2 are two abelian schemes

over S, we call “p-quasi-isogeny” a quasi-isogeny g : A1 → A2 such that the product of
g be a large enough power of p is an isogeny of order equal to a power of p. Such a
quasi-isogeny induces, for all l 6= p, and isomorphism between Tl(A1) and Tl(A2).

We will use the following lemma:

Lemma 6.5. LetX1 andX2 be two special formalO∆p-modules over S, and f : X1 → X2

a quasi-isogeny. Let (A1, ε1) be an algebrisation of X1. Then there exists an algebrisation
(A2, ε2) of X2, and a p-quasi-isogeny h : A1 → A2, such that the following diagram
commutes:

Â1

ε1 //

ĥ
��

X1

f

��
Â2

ε2 // X2

The triple (A2, ε2, h) is uniquely determined, up to isomorphism, by this property. If
moreover A1 is given a U -level structure, then (via h) A2 is also so equipped.

We leave the reader to convince themself of this essentially obvious lemma: if for
example f is an isogeny, then one can take for A2 the quotient A1/ε

−1
1 (ker f).
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3.6.3.2 – Using the fundamental theorem of chapter II (§ 8.4), together with 6.2.3
above, one sees that giving a section of (Ω̂2 ⊗ Fp) × ZU over a connected scheme
S = SpecB of characteristic p yields:

a) a homomorphism ψ : Fp → B.
b) An isomorphism class of pairs (X, ρ) with:
* X a special formal O∆p-module over S;
* ρ : ψ∗Φ→ X a quasi-isogeny of height 0.
c) An algebrisation (A, ε, ν) of Φ with U -level structure.
From the above data, one applies the lemma above with X1 = ψ∗Φ, X2 = X, f = ρ,

A1 = ψ∗A, ε1 = ψ∗ε; one obtains also an algebrisation of X with U -level structure,
which is to say a point of SU(B). This defines a morphism of functors, which gives
the desired morphism of Fp-schemes:

Θ: (Ω̂⊗ Fp)× ZU → SU ⊗ Fp.

3.6.3.3 – We verify that Θ is invariant under the left action of the group GL2(Qp);
for this recall that, by (9.3) of chatper II, the action of an element g of this group on
the functor G is given by (write n = v(detg)):

g(ψ,X, ρ) = (ψ ◦ Fr−n, X, ρ ◦ ψ∗(g−1 Frobn)).

Also, the action on ZU as in (6.2.2) can also be described in terms of lemma (6.3.1):
the image (A1, ε1, ν1) = g(A, ε, ν) is characterised by the existence of a p-quasi-isogeny
hg : A→ A1 making the following diagram commute:

Â

ĥg
��

ε

∼
// Φ

g

��
Â1

ε1

∼
// Φ.

We write (A2, ε2) for the algebrisation of X associated to the point defined by
(ψ,X, ρ, A, ε, ν); one thus has a commutative diagram:

ψ∗Â
ψ∗ε

∼
//

ĥ
��

ψ∗Φ

ρ

��
Â2

ε2

∼
// X.

The point defined by:

(ψ1 = ψ ◦ Fr−n, X, ρ1 = ρ ◦ ψ∗(g−1 Frobn), A1, ε1, ν1)
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has image equal to the same algebrisation of X, which implies the commutativity of
the diagram:

ψ1∗Â1

ψ1∗ε1

∼
//

ψ∗ Frobn

��

ψ1∗Φ

ψ∗ Frobn

��
ψ∗Â1 ∼

ψ∗ε1 //

ψ∗ĥ
−1
g

��

ψ∗Φ

ψ∗g−1

��
ψ∗Â ∼

ψ∗ε //

ĥ
��

ψ∗Φ

ρ

��
Â2

ε2

∼
// X

Finally, one sees that Θ factors via morphism of Fp-schemes:

Θ: GL2(Qp)\[(Ω̂⊗ Fp)× ZU ]→ SU ⊗ Fp.

6.6. Showing that Θ is an isomorphism. 3.6.4.1 – The quotient above is none other
than the special fiber of the quotient that appears in the statement of the Cerednik-
Drinfeld theorem (recall that U is assumed small enough, and thus the group acts
freely); comments anologus to those in (5.3) thus apply here. It is convenient to
change scalars from Fp to Fp, and one sees easily that the scheme obtained from the
quotient above can be identified with the quotient:

GL′2(Qp)\(Ω̂Fp
× ZU),

where one writes GL′ for the subgroup of GL2(Qp) consisting of the elements g such
that v(det g) = 0. In terms of moduli, Ω̂Fp

represents the functor G which classifies
pairs (X, ρ), and GL′ operates by composition with ρ.

The morphism ΘFp
obtained from Θ by extension of scalars yields a morphism of

Fp-schemes:
Θ1 : Ω̂Fp

× ZU → SU ⊗ Fp.

This map associates to a point (X, ρ,A, ε, ν) defined over and Fp-algebra B the
algebrisation of X obtained by applying lemma (6.3.1) with X1 = ΦB, X2 = X,
f = ρ, A1 = AB and ε = εB.

3.6.4.2 – We next show that ΘFp
induces a bijection between the collection of Fp-

points of the two schemes.
Injectivity: Suppose that two Fp-points (X, ρ,A, ε, ν) and (X ′, ρ′, A′, ε′, ν ′) have the

same image A2 (a special form O∆-abelian variety over Fp, with a level structure)
under Θ1. Then, since A2 is both an algebrisation of X and X ′, one sees that X is
naturally identified with X ′. One sees also that ρ and ρ′ differ by composition by an
element g ∈ GL′2(Qp): we may thus suppose ρ = ρ′. One notes finally that (A, ε, ν)
[resp. (A′, ε′, ν ′)] is the algebrisation of Φ obtained by application of lemma (6.3.1)
to the algebrisation A2 of X and ρ−1 [resp. the algebrisation A2 of X ′ and ρ′−1].

The two points are thus indeed equivalent under the action of GL′2(Qp).
Surjectivity: Given A2, write X for its formal completion. Since every special for-

mal O∆p-module of height 4 over Fp is isogeneous (chapter II, § 5), there exists a
quasi-isogeny ρ : Φ → X. We may suppose, by composing with an appropriate endo-
morphism of Φ, that ρ is of height 0.
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Apply lemma (6.3.1) to the algebrisation A2 of X and ρ−1 to obtain an algebrisation
(A, ε, ν) of Φ with level structure: it is clear that A2 is the image of (X, ρ,A, ε, ν) by
Θ1.

3.6.4.3 – We now prove that Θ1 is etale: let B be an Fp-alegebra, and B′ → B a
thickening of B, with a kernel of square zero; let x = (X, ρ,A, ε, ν) be a point with
values in B of Ω̂Fp

× ZU , and y = A2 its image under Θ1. Deforming x to a B′-point
x′ is the same as deforming the special formal O∆p-module X: in fact, the quasi-
isogeny ρ has a unique deformation (cf. [Zi 3] 5.31 for example), and the scheme
ZU is constant. One sees that Θ1 givs a bijection between the deformations x′ of x
and the deformations y′ of y: the inverse map associates to a deformation of A2 the
deformation of the corresponding formal group Â2

∼= X.
Therefore, ΘFp

is etale; since it is also bijective on Fp-points, it is an isomorphism.
Thus Θ is an isomorphism.

6.7. One thus obtains an isomorphism as predicted by theorem (5.2), but so far only
between the special fibres; note that, by construction, it lifts to the formalO∆p-modules
naturally obtained from these two fibres. It is clear and formal to verify that this
isomorphism is compatible with the projective system obtained by varying Up, and
that these two projective systems are ∆∗(Ap

f )-equivariantly isomorphic.
The possiblity to extend Θ by an isomorphism between the two formal schemes

follows from the theorem of Serre and Tate.
Let B be a Zp-algebra where p is nilpotent, and B0 = B/pB. Giving a B0-point

x0 of the scheme GL2(Qp)\[(Ω̂ ⊗̂ Ẑp

nr
) × ZU ] endows (by inverse image) B0 with a

special formal O∆p-module X0. One sees that deforming the point x0 to B is the same
as deforming X0: the question is in fact local, and so we are reduced to solving the
problem for the functor G, which is trivial.

Finally, the giving of aB-point of the quotient scheme above is the same as giving its
restriction x0 to B0, plus a deformation X of X0 over B. Moreover it is clear that the
giving of a B-point y of ŜU is the same as giving its restriction y0 and a deformation A
of A0 (the special abelian O∆-scheme over B0 defined by y0). As x0 and y0 correspond
to one another under the isomorphism Θ, X0 is identified with the completion Â0.
The theorem of Serre and Tate ([Me], [Dr 2]) implies that the deformations of A0

correspond bijectively with those of Â0, and therefore withX: this defines in a natural
way an ismorphism between the formal scheme GL2(Qp)\[(Ω̂ ⊗̂ Ẑp

nr
) × ZU ] and SU ,

which extends Θ, and which possesses all of the desired properties.
This concludes the proof of the Cerednik-Drinfeld theorem.

Remark 6.8. Consult the original paper of Boutot-Carayol for references.

Translated by CAMERON FRANC


