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Abstract

In this thesis we expose a p-adic analogue of a classical result of Shimura on the

algebraicity of CM values of modular forms and certain of their nonholomorphic

derivatives. More specifically, we define an analogue of the Shimura-Maass differ-

ential operator for rigid analytic modular forms on the Cerednik-Drinfeld p-adic

upper half plane. This definition leads us to define the space of nearly rigid an-

alytic modular forms, which is a p-adic analogue of the space of complex valued

nearly holomorphic modular forms. Our main theorem is a statement about the

algebraicity of values of nearly rigid analytic modular forms at CM points in the

p-adic upper half plane.
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Abrégé

Nous démontrons un variante p-adique d’un résultat classique de Shimura sur

l’algébricité des valeurs des formes modulaires et de certaines de leurs dérives non-

holomorphes aux points CM. Plus précisément, nous définissons un analogue rigide

analytique de l’opérateur différentiel de Shimura-Maass pour les formes modu-

laires rigide analytiques sur le demi-plan p-adique de Cerednik-Drinfeld. Cette

définition nous conduit à définir l’espace des formes modulaires presque rigide an-

alytiques, qui correspond dans notre analogie à l’espace des formes modulaires

presque holomorphes. Notre résultat principal est un énoncé d’algébricité des

valeurs des formes modulaires presque rigide analytiques en des points CM dans

le demi-plan p-adique de Cerednik-Drinfeld.
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Chapter 1

Introduction

As every mathematician knows, the parallelism between algebraic

number theory and transcendental number theory exists only in their

appellations and not in their contents. Indeed, the aim of the latter

theory is to prove the transcendence of a given number, while algebraic

numbers are there from the beginning in the former. Therefore, if one

proves the algebraicity of an analytically defined number, it cannot be

viewed as a theorem of either theory. It belongs to a new area of inves-

tigation for which this lecture is intended and to which I can give no

good designation.

– Goro Shimura, [40]

This chapter discusses background material which inspired this thesis. We also

describe the main theorem of this work.

1.1 Values of modular forms at CM points

Let H denote the set of complex numbers with strictly positive imaginary part. Let

τ = x + iy denote the usual complex coordinate on H. Let k ≥ 0 be an inte-

ger. Recall that the group of matrices in GL2(R) of positive determinant, denoted

GL2(R)+, acts on H via fractional linear transformation, and hence on functions

f : H → C on the right via the weight k slash operator:

(f |kγ)(τ) = det(γ)k/2(cτ + d)−kf(γτ) for γ =

(
a b

c d

)
∈ GL2(R)+.

1



2 1.1. VALUES OF MODULAR FORMS AT CM POINTS

Here det(γ)k/2 indicates the positive branch of the square root. As is customary, for

any ring R and

γ =

(
a b

c d

)
∈ GL2(R),

we write j(γ, τ) = cτ + d. We will only be interested in groups Γ consisting of

matrices of determinant one. In this case the weight k slash operator is given by

the formula

(f |kγ)(τ) = j(γ, τ)−kf(γτ).

Recall that holomorphic modular forms are holomorphic functions on H which

are invariant under some arithmetic subgroup Γ ⊂ GL2(R) with respect to some

fixed integer weight k, and which satisfy a growth hypothesis at the cusps of Γ\H.

Denote the space of holomorphic modular forms of weight k for Γ by Mk(Γ). Put

M(Γ) =
⊕

k≥0Mk(Γ).

Definition 1.1.1. The weight k Shimura-Maass differential operator is

δk =
1

2πi

(
d

dτ
+

k

τ − τ

)
,

where the operator k/(τ − τ) above denotes multiplication: f(τ) 7→ kf(τ)/(τ − τ).

Set δ0
kf = f and for r ≥ 1 put:

δrk = δk+2(r−1) ◦ δk+2(r−2) ◦ · · · ◦ δk.

We refer to the δrk’s also as Shimura-Maass differential operators.

The operators δrk preserve modularity, in the sense that if a (real) differentiable

function f on H is invariant under the classical weight k slash operator, then δrkf

is weight (k + 2r) invariant. If f is moreover holomorphic, for instance if f is a

modular form, then the presence of the term kf(τ)/(τ − τ) in δkf prevents the

Shimura-Maass derivative from being holomorphic. It is thus natural to study the

smallest ring of functions which contains all analytic functions on H and which is

closed under the Shimura-Maass differential operators.

Definition 1.1.2. A function f : H → C is said to be nearly holomorphic if it is of

the form:

f(τ) =
r∑
i=0

fi(τ)

(τ − τ)i
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for holomorphic functions fi(τ) : H → C. A function f : H → C is said to be a

nearly holomorphic modular form of weight k for Γ if the following three conditions

are satisfied:

1. f is weight k invariant for Γ,

2. f is nearly holomorphic, and

3. f is slowly increasing, that is, there exist real constants A, B > 0 such that for

every γ ∈ SL2(Z), one has |(f |kγ)(x+ iy)| < A(1 + y−B) for y large enough;

the implied constant here depends on f , A, B and γ.

Remark 1.1.3. Nearly holomorphic modular forms have been extensively studied

by Shimura; for example, see his text [42]. They are closely related to quasi-
modular forms, which are holomorphic functions that are almost (in a precise sense

which we won’t define) invariant under the slash operators. A standard example

of a quasi-modular form is the Eisenstein series E2 of weight 2. Quasi-modular

forms were first given a formal definition by Kaneko and Zagier in [25]. For more

information on the relationship between nearly-holomorphic modular forms and

quasi-modular forms, consult chapters 5 and 6 of Zagier’s lectures in [5].

Let Q ⊂ C denote an algebraic closure of Q. Shimura proved the following

remarkable result concerning the values of Shimura-Maass derivatives of modular

forms at CM points:

Theorem 1.1.4 (Shimura). Let K ⊂ Q denote a quadratic imaginary extension of
Q. There exists ΩK ∈ C× such that for every τ ∈ K ∩ H, every congruence subgroup
Γ ⊂ SL2(Z), every k, r ≥ 0 and every f ∈Mk(Γ) with algebraic Fourier coefficients,

(δrkf)(τ)

Ωk+2r
K

∈ Q.

Before turning to the results proved in this thesis, we would like to provide

some further explanation concerning the arithmetic significance of Shimura’s re-

sult. For this, let K/Q denote a quadratic imaginary extension of discriminant dK .

Embed K into C and consider the series

A(k, r) =
∑
α∈OK
α 6=0

αr

αk+r
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for integers k and r. The series converges absolutely for k ≥ 3 and r ≥ 0. Note

that A(k, r) is related to the Hurwitz zeta function

ζK(n1, n2) =
∑
α∈OK
α 6=0

α−n1(α)−n2

by the formula A(k, r) = ζK(k + r,−r). We adopt the notation A(k, r) since we are

following Katz’s wonderful ICM paper [29].

Let Gk(τ) denote the non-normalized Eisenstein series for SL2(Z) of weight

k ≥ 4:

Gk(τ) =
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(m+ nτ)k
.

Note that Gk is not algebraic, but π−kGk has rational Fourier coefficients, and so is

in fact rational. Write OK = Z⊕Zω where we take ω ∈ H. Then a straightforward

computation allows one to prove the following:

Theorem 1.1.5. With notation as above, for all integers r ≥ 1 one has

(δrkGk)(ω) =
(k + r − 1)!

(ω − ω)r(k − 1)!
A(k, r).

Thus, if one combines this with Shimura’s result, one deduces the algebraicity

of the ratios
A(k, r)

πkΩk+2r
K

.

This was first proved by Damerell [10], and in fact, one can prove more: if one

writes

B(k, r) =
(−1)k(k + r − 1)!(2πi)r

2(ω − ω)rΩk+2r
K

· A(k, r),

then for any integer b ≥ 1, the values

bk(bk − 1)(
√
dK)rB(k, r)

are algebraic integers.

Katz studied the p-adic properties of these integers in [27] and later work. Let

E(C) = C/OK , and note that by the theory of complex multiplication, E(C) is the

set of complex points of an elliptic curve E defined over the ring OQ of algebraic
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integers, and which has everywhere good reduction there. In fact, one can choose

an invariant differential ω on E such that the reduction of ω modulo every prime

in OQ is a nonzero regular differential on the reduced curve. The period lattice
for (E,ω), that is, the collection of integrals of ω against the integral homology of

E(C), has the form ΩK · OK for a value ΩK ∈ C×. This period ΩK is well-defined

up to multiplication by a unit in OQ and is a valid choice for the period appearing

in Shimura’s algebraicity theorem 1.1.4 above.

Let K ′/K denote a finite extension such that (E,ω) is defined over K ′ and has

good reduction at all the primes ofK ′. Let p denote a prime ofK ′, letK ′p denote the

completion of K ′ at p, and let W denote the ring of integers in the completion of

the maximal unramified extension of K ′p. Let p denote the rational prime beneath

p.

Theorem 1.1.6 (Katz). If p splits in K, then there exists a unit c ∈ W× and, for all
rational integers b prime to p, a W -valued p-adic measure µ(c, b) on Zp × Zp, whose
moments are given by the formula∫

Zp×Zp
xk−3yrdµ(c, b) = 2ck+2r(bk − 1)B(k, r),

which is valid for integers k ≥ 3 and r ≥ 0.

Proof. See the Theorem on page 367 of [29].

Katz used this measure to construct a two-variable p-adic L-function attached to

K, and showed that it interpolates certain L-values of the Dedezind zeta function

of K/Q twisted by higher weight characters.

1.2 A rigid analytic analogue

The main theorem of this work is a rigid analytic analogue of Shimura’s Theorem

1.1.4. Let Hp = P1(Cp)− P1(Qp) denote the p-adic upper half plane; see Chapter

3 for more on the definition of Hp and for a brief summary of its properties. The

group GL2(Qp) acts on Hp by fractional linear transformations, and one has a

weight k slash operator defined on the space of functions Hp → Cp using the

same formula as in the previous section. Rigid analytic modular forms are rigid

analytic functions on Hp which are invariant under this action with respect to
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some arithmetic subgroup Γ ⊂ SL2(Qp); for more on this subject the reader can

consult Chapter 4. Let Sk(Γ) denote the collection of rigid analytic modular forms

for some arithmetic group Γ. Note that we use the letter S rather than M because

the groups Γ which we consider arise from definite quaternion algebras and they

contain no parabolic elements.

Let Q̂un
p ⊂ Cp denote the completion of the maximal unramified extension of Qp

inside Cp, and let Hp(Q̂un
p ) = P1(Q̂un

p ) − P1(Qp) denote the Q̂un
p -rational points of

Hp. Let τ 7→ τ denote the arithmetic Frobenius automorphism of Q̂un
p . LetO denote

the ring of rigid analytic functions on Hp. Then O injects into C(Hp(Q̂un
p ),Cp), the

space of continuous functions Hp(Q̂un
p ) → Cp. Note that the arithmetic group Γ

acts on C(Hp(Q̂un
p ),Cp) via the slash operator. In Section 4.3 we define the ring

Nk(Γ) of nearly rigid analytic modular forms to be the subring of C(Hp(Q̂un
p ),Cp)

consisting of all functions of the form

f(τ) =
r∑
i=0

fi(τ)

(τ − τ)i
,

where fi(τ) ∈ O for all i and such that f |kγ = f for all γ ∈ Γ. We show that

f ∈ Nk(Γ) determines the rigid analytic coefficients fi(τ) uniquely, and that the

formula

(δkf)(τ) =
df

dτ
(τ) +

kf(τ)

τ − τ
,

defines a differential operator

δk : Nk(Γ)→ Nk+2(Γ).

We define δrk by iterating δ’s as in the previous section.

For a certain class of arithmetic subgroups Γ ⊆ SL2(Qp) (see Section 2.1.4),

we use the Cerednik-Drinfeld theorem (see Section 3.7) to give a definition for

the algebraicity of a rigid analtyic modular form. We then show that if K/Q is

a quadratic imaginary extension for which there are CM-points for K inside Hp

(see Section 3.6), then there exists a period ΩK ∈ C×p such that the following

algebraicity property holds: for all f ∈ Sk(Γ) which are algebraic, for all CM-points

τ ∈ Hp by an order in K/Q, and for all integers r ≥ 0, one has

δrkf(τ)

Ωk+2r
K

∈ Q.
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This is the main result of this paper; for a precise statement, see Chapter 5.

In the final Chapter 6 we discuss several questions which evolved from this

work, as well as possible applications of our result. The appendix includes compu-

tations which illustrate our main theorem.



8 1.2. A RIGID ANALYTIC ANALOGUE



Chapter 2

Shimura curves

2.1 Quaternion algebras

Our exposition in this section is brief; for more details consult [18], [44] or the

book in preparation [45].

Let K be a field, and assume that it is of characteristic zero for simplicity.

Definition 2.1.1. A quaternion algebra over K is a central simple algebra B with

dimK B = 4.

In this work we are only concerned with the case when K is either Q or a local

field of characteristic zero. Let L/K be a field extension and let B/K be an algebra.

We write BL = B ⊗K L; note that B is a quaternion algebra if and only if BL is so.

In the special case that K = Q and L = Qp for some prime p, we will often write

Bp = B ⊗Q Qp.

Definition 2.1.2. Let A be a commutative integral domain with field of fractions

K. An A-order in a quaternion algebra B/K is a subring R of B which satisfies the

following two conditions: (1) R is finitely generated as an A-module, and (2) one

has KR = B. A maximal A-order is an A-order not contained in any other A-order.

Remark 2.1.3. We say that elements in B which are roots of a monic polynomial

over A are integral. If one assumes that A is noetherian in the definition above,

then for every A-order R ⊆ B, and for every x ∈ R, the subring A[x] ⊆ R is finitely

generated. Thus, x is a root of the characteristic polynomial of multiplication by x

on A[x], that is, x is integral. Note, though, that the sum or product of an arbitrary

9



10 2.1. QUATERNION ALGEBRAS

pair of integral elements of B need not be integral, unlike what happens in the

setting of commutative rings.

The following definition will be useful later, when we wish to give a criterion

for the existence of CM-points.

Definition 2.1.4. Let B/K be a quaternion algebra and let F/K be a field exten-

sion. Then F is said to split B if B ⊗K F ∼= M2(F ).

Proposition 2.1.5. A quadratic extension F/K splits a quaternion algebra B/K if
and only if F embeds into B as a K-algebra.

Proof. See Proposition 1.2.3 of [18].

We end this section on generalities by discussing the reduced norm and reduced

trace of a quaternion algebra. Recall that Hamilton viewed his quaternion algebra

as a 4-dimensional generalization of the complex numbers. There one can easily

define a conjugation z 7→ z by negating the “purely imaginary” part of a Hamilton

quaternion. Then one can define a norm and trace:

n(z) = zz, t(z) = z + z

for Hamilton quaternions. A similar fact is true for every quaternion algebra: that

is, every quaternion algebra possesses a canonical anti-involution which is linear

over K. If B/K is a quaternion algebra over a field K of characteristic 0, and

z 7→ z denotes the canonical anti-involution, then the reduced norm of B is defined

by n(z) = zz, and the reduced trace of B is defined by t(z) = z + z. Both n and t

have image in the center of B, and so we view them as maps to K. The reduced

norm is important for us becase a quaternion is invertible if and only if its reduced

norm is nonzero.

Example 2.1.6. In the case B = M2(K) then the canonical involution is defined

by (
a b

c d

)
7→

(
d −b
−c a

)
.

In this case the reduced norm is the determinant, while the reduced trace is the

trace.
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Remark 2.1.7. Do not confuse the reduced trace and norm with the algebra trace

and norm of B/K. Recall that if B/K is an algebra, if z ∈ B and mz : B → B

denotes the K-linear map given by left multiplication by z, then one defines the

norm N(z) = detmz. If B/K is a quaternion algebra, then the algebra norm is

the square of the reduced norm, which explains the terminology. Similarly for the

reduced trace.

2.1.1 Quaternion algebras over local fields

Let K be a local field of characteristic zero. If K = C then since C is algebraically

closed, one can show that, up to isomorphism, M2(C) is the unique quaternion

algebra over C. Over K = R there are precisely two isomorphism classes of

quaternion algebras: the classes of M2(R) and of H, where the latter denotes

the so-called Hamilton quaternions.

Over K = Qp the situation is similar to the case K = R: besides M2(Qp) there

is a second isomorphism class of quaternion algebras overK, and this class consists

of division algebras. Such a division algebra can be described as follows: let Qq

denote the quadratic unramified extension of Qp. Let B = Qq ⊕ Qqπ and define

a multiplication on B by setting π2 = p and for x ∈ Qq, set πx = xπ, where the

overline denotes the nontrivial Galois automorphism in Gal(Qq/Qp). One can show

that the valuation of Qq extends to B by setting v(π) = 1/2. Then the valuation

ring of B is the unique maximal Zp-order of B. We summarize this below:

Proposition 2.1.8. Over Qp there exists a unique isomorphism class of division
quaternion algebras. Such an algebra contains a unique maximal Zp-order.

2.1.2 Quaternion algebras over the rationals

In this section Z ⊆ Q will denote a finitely generated subring. For example, we

could take Z = Z or Z = Z[1/p].

Definition 2.1.9. Let B/Q be a quaternion algebra and let p be a prime of Q

(p =∞ is allowed). ThenB is said to be unramified at p ifBp
∼= M2(Qp). Otherwise

B is said to be ramified at p. In the case p =∞ one also says that B is indefinite if

it is unramified at∞, and definite otherwise.

The discriminant ∆ = ∆(B) of B is defined to be the product of all the ramified

primes in B.
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Quaternion algebras over Q are determined up to isomorphism by their dis-

criminant:

Theorem 2.1.10. Every quaternion algebra over Q ramifies at an even number of
primes. If ∆ > 1 is a squarefree positive integer, then there exists a single isomorphism
class of quaternion algebras over Q of discriminant ∆, and all such algebras are
division algebras. If ∆ = 1 then M2(Q) is a representative for the unique class of
unramified quaternion algebras over Q.

Proof. See Theorem 3.1 of Chapter III in [44].

Over Q a quaternion algebra B contains many maximal orders. For example,

if B = M2(Q) then R = M2(Z) is a maximal Z-order. For any M ∈ GL2(Q), one

obtains another maximal Z-order M−1RM which need not be equal to R.

Definition 2.1.11. Let B/Q be a quaternion algebra. An Eichler Z-order in B is an

intersection of two maximal Z-orders. If R = R1 ∩ R2 is an Eichler Z-order with

the Ri’s two maximal Z-orders, then the level of R is defined to be the index of the

lattice R in R1.

Since R1 ∩ R2 = R2 ∩ R1, this definition of level does not appear to be well-

defined. We thus state the following lemma.

Lemma 2.1.12. Let B/Q be a quaternion algebra, let R1 and R2 be two maximal
Z-orders, and let R = R1 ∩R2. Then (R1 : R) = (R2 : R).

Proof. See Section 1 in Chapter III of [37].

Reconsider the example B = M2(Q). In this case all maximal Z-orders are

conjugate by elements of B× = GL2(Q): just choose a basis for a maximal order to

give a conjugating element which takes the order to M2(Z). This need not hold in

general for quaternion algebras over Q, but it does hold if the following condition

is satisfied:

Definition 2.1.13. A quaternion algebra B/Q is said to satisfy the Eichler condition
for Z if B is indefinite, or if there is a rational prime that splits B and which is

invertible in Z.

The following proposition explains the importance of this condition:
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Proposition 2.1.14. Let B/Q denote a quaternion algebra, let Z ⊆ Q denote a
finitely generated subring, and suppose that B satisfies the Eichler condition for Z.
Then there is a unique B×-conjugacy class of maximal Z-orders in B. Similarly, any
two Eichler Z-orders of the same level are conjugate.

Proof. See Corollaire 5.17 bis in Chapter III of [44]. Note that the result stated

there is for a quaternion algebra over a general number field K, and the number

h appearing there is the narrow class number of K. In the case K = Q, of course

h = 1 and so there is a unique conjugacy class of Eichler orders for any given level

in this case.

In applications we will be given a quaternion algebra B/Q split at a finite prime

p, and we will consider Z-orders in B for Z = Z[1/p]. Such pairs (B,Z) satisfy the

Eichler condition, and so in our applications there will always be a unique Eichler

Z-order of any given level, up to conjugacy.

Proposition 2.1.15 (Hasse-Brauer-Noether-Albert). Let B/Q denote a quaternion
algebra and let K/Q denote a quadratic extension. Then B contains an isomorphic
copy of K if and only if each prime which divides the discriminant of B is either inert
or ramified in K.

Proof. This theorem is proved in many places and in many different formulations.

The expository paper [38] of Shemanske gives a nice discussion of this theorem

and its reformulations. The statement above is equivalent with Theorem 2.4 in

Shemanske’s paper.

2.1.3 Adelizations

As in the previous section, let Z ⊆ Q denote a finitely generated subring. Let Q̂

denote the finite adele ring of Q. If we let Ẑ denote the profinite completion of

Z, then Q̂ ∼= Ẑ ⊗Z Q. Let B/Q be a quaternion algebra and let R be an Eichler

Z-order of level N in B. Put

R̂ = R⊗Z Ẑ, B̂ = B ⊗Q Q̂.

We refer to these as the adelisations of R and B.
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Proposition 2.1.16. The set of Eichler Z-orders of level N in B is in natural bijection
with the coset space B̂×/Q̂×R̂× via the map which sends a finite idele (bl) to the order

(bl)R̂(b−1
l ) ∩B.

Proof. See the global-adelic dictionary on page 87 of [44].

Corollary 2.1.17. The set of conjugacy classes of Eichler Z-orders of level N in B is
in natural bijection with the double coset space B×\B̂×/R̂×.

Below we will use a finite splitting prime of B to generate a discrete subgroup

of GL2(Qp). It will thus be useful, in particular for our discussion of CM-points on

the p-adic upper half plane, to note the following p-adic description of the set of

conjugacy classes of an Eichler order.

Theorem 2.1.18 (Strong approximation). Let p be a finite splitting prime for B. Let
R be an Eichler Z-order of level N in B. Then there is a natural bijection

R[1/p]×\B×p /R×p → B×\B̂×/R̂×

sending a class (R[1/p]×)bp(R
×
p ) to the class of the idele with all entries equal to 1,

save for in the pth spot where it equals bp.

Proof. See Théorème 4.3 of [44].

2.1.4 Congruence subgroups

Let p be a rational prime and N− a positive squarefree integer with an odd num-

ber of prime divisors which is coprime to p. Up to isomorphism there is a unique

quaternion algebra B/Q of discriminant N−; fix such an algebra B/Q. Note that

B is definite and unramified at p. Hence, it satisfies the Eichler Z[1/p]-order con-

dition.

Let R0 ⊆ B denote the maximal Z-order whose local component for each fi-

nite prime l which does not divide N− is simply M2(Zl). Let R = R0[1/p] be the

corresponding Z[1/p]-order, and note that we have not changed any of the local

components other than at p. If N+ is a positive integer coprime to pN−, then let

R(N+) ⊆ R denote the Z[1/p]-order whose local components equal those of R,
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save for at the places l dividing N+. At such places we impose the condition that

R(N+)l =

{(
a b

c d

)
∈M2(Zl)

∣∣∣∣∣ c ≡ 0 (mod lt)

}
,

where lt dividesN+ exactly. LetR(N+)1 denote the subgroup of elements inR(N+)

of reduced norm equal to 1.

Definition 2.1.19. LetB1 denote the elements of reduced norm 1 in the quaternion

algebra B. A subgroup Γ ⊆ B1 is said to be a congruence subgroup for B if it

contains a finite index subgroup of the form R(N+)1 for some N+ ≥ 1 coprime to

pN−.

Lemma 2.1.20. Let Γ and Γ′ be congruence subgroups for B. Then Γ ∩ Γ′ is also a
congruence subgroup. Similarly, if b ∈ B× then b−1Γb is a congruence subgroup.

Proof. In the first case, let Γ and Γ′ be congruence subgroups. Then if M+ and

N+ are integers coprime to pN− such that R(M+)1 ⊆ Γ and R(N+)1 ⊆ Γ′, and if

L+ = gcd(N+,M+), then R(L+)1 ⊆ Γ ∩ Γ′.

For the second part, note that b ∈ B× is a local unit at all but finitely many

primes. For such primes conjugating by b leaves R(N+)1 invariant. At the primes

where b is not a local unit one adopts an argument analogous to the case of mod-

ular curves and congruence subgroups of SL2(Z).

2.2 Shimura curves

2.2.1 Definition

Let p be a rational prime, let N− denote a squarefree positive integer which is

relatively prime to p and which has an odd number of prime factors, and let N+

denote an integer which is corpime to pN−. Let B denote a quaternion algebra

over Q of discriminant pN−. Since pN− has an even number of distinct prime

divisors, B is indefinite. This means that B∞ ∼= M2(R). Note also that since the

discriminant pN− of B is larger than 1, the algebra B is a division algebra over Q.

This is essentially the only role played by the prime p in this section – it ensures

that B is a division algebra. This prime will play a more important role later in our

discussion of the Cerednik-Drinfeld theorem.
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Let R denote a maximal Z-order in B and let R(N+) denote an Eichler Z-order

inR of level N+. Let ΓN+,pN− denote the group of units ofR(N+) of reduced norm

equal to 1. We fix an identification

ι : B∞
∼→M2(R),

and identify ΓN+,pN− as a subgroup of SL2(R). Let H denote the classical complex

upper half plane. Then ΓN+,pN− acts on H via fractional linear transformation.

Proposition 2.2.1. The group ΓN+,pN− acts discretely and with compact quotient on
H.

Proof. For the statement about the discreteness see Theorem 5.2.7 of [26]. For the

statement about the compact quotient see Section 5.4 of [26].

It follows, say via the theory developed in Chapter 1 of [41], from the above

proposition that the quotient ΓN+,pN−\H has a natural structure of a compact Rie-

mann surface. There thus exists a projective algebraic curve over XN+,pN− whose

complex analytification is isomorhic with ΓpN+,N−\H. In fact, Shimura showed

that XN+,pN− is defined over Q, and that it has an integral model which has good

reduction away from the primes dividing pN−N+.

2.2.2 Moduli interpretation

Let S be a Q-algebra and let A be an abelian scheme over S of relative dimension

2. Then A is said to have quaternionic multiplication by the maximal order R in B
if R acts on A; that is, there is a ring homomorphism

ι : R → EndS A.

A level N+-structure on (A, ι) is a subgroup scheme C of A which is locally isomor-

phic to the constant scheme Z/N+Z, and which is stable and locally cyclic for the

action of R(N+) defined via ι.

Theorem 2.2.2. The curve XN+,pN−/Q is the coarse moduli scheme for the following
moduli problem: to each Q-algebra S, the point set XN+,pN−(S) is in functorial bi-
jection with the set of triples (A, ι, C) where A is an abelian scheme over S of relative
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dimension 2, the map ι endows A with quaternionic multiplication by R, and C is a
subgroup scheme of A defining a level N+-structure.

For abelian surfaces with quaternionic multiplication, one has a notion of com-

plex multiplication analogous to the case of elliptic curves:

Definition 2.2.3. Let F/Q be a field extension. Let A/F denote an abelian surface

with quaternionic multiplication ι : R → EndF (A). Then EndR(A) is either isomor-

phic with Z or an order O in a quadratic imaginary field K/Q. In the latter case,

A is said to have complex multiplication by O, or simply is said to have CM by O.

Definition 2.2.4. Let F/Q denote a field extension. Let (A, ι, C) denote a point of

XN+,pN−(F ) such that (A, ι) has CM by an order O in a quadratic imaginary field.

Then (A, ι, C) is said to be a CM point of XN+,pN−.

Remark 2.2.5. Suppose A has quaternionic multiplication by R and complex mul-

tiplication by O ⊆ K, and let H denote the Hilbert class field of K. Then it can

be shown that AH ∼= E × E, where E/H is an elliptic curve with CM by O, and

AH = A× Spec(H).

2.2.3 The Jacquet-Langlands correspondence

Recall that ΓN+,pN−\H is a compact Riemann surface. For each integer k ≥ 0

we write Sk(ΓN+,pN−) for the space of modular forms of weight k for ΓN+,pN−.

Although the study of modular forms on groups arising from division quaternion

algebras over Q differs qualitatively from the classical theory of modular forms

on congruence subgroups of SL2(R), many similarities and connections persist.

Perhaps the most interesting connection is expressed by the Jacquet-Langlands

correspondence [24]. Before we can explain what this correspondence says in a

manner which adapted to our work, we must introduce a few concepts.

Write N = pN−N+ and let Sk(Γ0(N)) denote the space of cusp forms on the

congruence subgroup Γ0(N) of matrices in SL2(Z) which are upper triangular mod-

ulo N . Recall that for proper divisors d of N , there are natural inclusions and

degeneracy maps of Sk(Γ0(d)) into Sk(Γ0(N)). The image of all these maps spans

the space of oldforms for Γ0(N), and its orthogonal complement for the Petersson

inner product is the new subspace of Sk(Γ0(N)).
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Consider instead the inclusions and degeneracy maps for the proper divisors d

of pN− only. Then the span of the images of these maps is a subspace of the old

space which we call the pN−-old space. Its orthogonal complement with respect

to the Petersson inner product is called the pN−-new space, and we denote it

Sk(Γ0(N))pN
−-new.

Note that both Sk(Γ0(N)) and Sk(ΓpN+,N−) carry an action of the Hecke algebra

T defined via double coset operators. The new space constructed above is a Hecke

submodule. One has the following relationship between these Hecke modules:

Theorem 2.2.6 (Jacquet-Langlands). With notation as above, there is a Hecke-
equivariant isomorphism

Sk(Γ0(N))pN
−-new ∼= Sk(ΓN+,pN−).

Proof. Consult the original [24], or the final chapter of the more recent book [6].



Chapter 3

The p-adic upper half plane

In this chapter p denotes a fixed rational prime. Fix a p-adic completion Cp of an

algebraic closure of Qp. Let Kp denote the unique unramified quadratic extension

of Qp contained in Cp. We write x 7→ x for the nontrivial element of Gal(Kp/Qp),

in analogy with the complex setting.

In this section the phrase rigid analytic variety always refers to a rigid analytic

variety in the sense of Tate; see [2] or [16] for generalities on rigid analytic spaces,

or the notes [13] for a more focused discussion on the p-adic upper half plane. If X

is a rigid analytic variety then we write OX for its sheaf of rigid analytic functions.

3.1 Definition

Note that the classical upper half plane is one of the two connected components

of P1(C) − P1(R). This suggests the following definition of the p-adic upper half

plane as a set.

Definition 3.1.1. The p-adic upper half plane Hp is the set P1(Cp)−P1(Qp).

We write points of P1(Cp) in terms of homegeneous coordinates (xy)T . Let

GL2(Qp) act on P1(Cp) on the left by matrix multiplication.

If K is a complete field satisfying Qp ⊆ K ⊆ Cp then we set

Hp(K) = P1(K)−P1(Qp).

For such a field K we identify P1(K) with P(HomQp(Q
2
p, K)). The latter space can

be described as the set of K×-proportionality classes of nonzero Qp-linear maps

19
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of Q2
p into K. Points of P1(Qp) ⊆ P1(K) are precisely those (classes of) maps

with one-dimensional image. Thus Hp(K) may be identified with the set of Q×p -

proportionality classes of injective Qp-linear maps Q2
p → K. Explicitely, if (x : y)

represents a point of Hp(K), then the corresponding map φ : Q2
p → K is described

by φ(e1) = x and φ(e2) = y, where

e1 =

(
1

0

)
, and e2 =

(
0

1

)
.

The corresponding action of GL2(Qp) on classes of maps φ : Q2
p → Cp is given by

γ ·φ = φ ◦ γ−1, where γ−1 is regarded as a linear transformation on the space of Q2
p

of column vectors via matrix multiplication.

We would like to endowHp with the structure of a rigid analytic variety. To this

end, define subsets Xn ⊆ Hp for each integer n ≥ 0 as follows:

Xn =

{
z ∈ P1(Cp)

∣∣∣∣∣ vp(z − a) ≥ p−n for a = 0, . . . , pn+1 − 1 and

vp
(

1
z
− b
)
≥ p−n for b = 0, . . . , pn − 1

}
.

Each Xn is a connected affinoid subset of P1(Cp), that is, Xn is the complement of

a finite number of disjoint open disks centered on rational points of P1 with radii

in pQ. Moreover Xn ⊆ Xn+1 for all n and ∪nXn = Hp. It is not hard to show that

this realizes Hp as an admissible open subset of the rigid analytic variety P1:

Proposition 3.1.2. The covering {Xn} of Hp is an admissible covering of the open
subset Hp ⊆ P1(Cp). Thus, Hp has the structure of a rigid analytic variety.

Proof. See Proposition 1 of [35], where they offer three proofs of this result in the

more general case of the higher Drinfeld half spaces.

Recall the definition of a rigid analytic Stein space:

Definition 3.1.3. A rigid analytic variety X (over Cp) is said to be quasi-Stein if

there exists an admissible covering {Un} by affinoid subdomains with Un ⊆ Un+1

for all n and such that the image of the corresponding map OX(Un+1) → OX(Un)

is closed. A Stein space X is said to be Stein if there exists an admissible covering

{Un} of X by affinoid domains satisfying the following technical conditions: for

each Un = Sp(An), there exist topological generators f (n)
1 , . . . , f

(n)
rn of An over Cp,



3.1. DEFINITION 21

such that there exists an ∈ Cp with 0 < |an| < 1 such that

Un−1 =

{
u ∈ Un

∣∣∣∣∣
∣∣∣∣∣f (n)
i (u)

ai

∣∣∣∣∣ ≤ 1 for i = 1, . . . , rn

}
.

Remark 3.1.4. In [30] it is shown that every Stein space is quasi-Stein.

Stein spaces behave like affine spaces in many ways. For example, one has the

following important rigid analogue of Cartan’s theorems A and B:

Theorem 3.1.5 (Theorems A and B). Let (X, {Un}) be a quasi-Stein space and let F
be a coherent sheaf of OX-modules on X. Then:

1. the image of F(X) in F(Un) is closed for every n;

2. Theorem A: for each point x of X, the image of F(X) in the stalk Fx topologi-
cally generates the OX,x-module Fx;

3. Theorem B: H i(X,F) = 0 for all i > 0.

Proof. See Satz 2.4 in [30].

Proposition 3.1.6. The p-adic upper half plane is a Stein space.

Proof. See Proposition 4 of [35].

The CM points that figure in this thesis are points ofHp defined over Kp, where

Kp denotes the quadratic unramified extension of Qp in Cp. It will thus be worth-

while to have a simple algebraic description of the the Kp-valued points Hp(Kp).

Lemma 3.1.7. The map ψ 7→ fixed point of ψ yields an identification

Hp(Kp) ∼= HomAlgQp
(Kp,M2(Qp)).

Proof. If τ ∈ Hp(Kp) then Kp = Qp(τ) and we can write τ 2 = bτ + c for uniquely

determined b and c ∈ Qp, such that c 6= 0. Then the map

x+ yτ 7→ x

(
1 0

0 1

)
+ y

(
b c

1 0

)

defines a Qp-algebra map Kp → M2(Qp). Conversely, given such a map φ : Kp →
M2(Qp), there exist exactly two points τ, τ ∈ Hp(Kp) which are fixed by all element
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of φ(K×p ). Hence φ(K×P ) ⊂ GL2(Qp) acts on the tangent spaces at τ and τ by

differentiating the fractional linear transformation action on Hp. If we elect to

map φ to the choice of τ or τ such that the corresponding tangent action is via the

character z 7→ z/z, then this sets up a bijection between Hp(Kp) and the collection

of Qp-algebra maps Kp →M2(Qp).

3.2 Bruhat-Tits tree for GL2(Qp)

3.2.1 Definition

A lattice in Q2
p is a free Zp-submodule of rank 2. Two lattices are said to be ho-

mothetic if one is a Q×p -multiple of the other. Homothety is easily seen to be an

equivalence relation. The set of homothety classes of lattices in Q2
p is the vertex

set for the Bruhat-Tits tree T of GL2(Qp). Two vertices are joined by an edge

if and only if they can be represented by lattices Λ, Λ′ such that there are strict

containments

pΛ ⊂ Λ′ ⊂ Λ.

Proposition 3.2.1. The Bruhat-Tits tree T is in fact a connected infinite tree which
is regular of degree p+ 1.

Proof. Let Λ ⊆ Q2
p be a lattice, so that Λ ∼= Z2

p as Zp-modules. Thus

Λ/pΛ ∼= Z2
p/pZ

2
p
∼= (Z/pZ)2.

It follows that vertices adjacent to the homothety class of Λ in T correspond to

proper subgroups of (Z/pZ)2. There are p + 1 such subgroups, all of order p.

To deduce that T is regular of degree p + 1, it suffices now to argue that these

subgroups correspond to distinct homothety classes of lattices. In order to have

strict containments

pΛ ⊂ Λ1,Λ2 ⊂ Λ,

with Λ1 = αΛ2 for some α ∈ Q×p , it is necessary to have vp(α) = 0. But then

multiplication by α gives an automorphism of Λ2 and Λ1 = Λ2.

To see that T is connected, let v0 denote the vertex corresponding to Z2
p ⊆ Q2

p.

Each homothety class of lattices contains a unique representative Λ such that Λ ⊆
Z2
p but Λ 6⊆ pZ2

p. Since Zp is a PID, we may apply the elementary divisors theorem
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to obtain a basis e1, e2 for Z2
p such that ae1, be2 is a basis for Λ, and where a, b ∈ Zp

are such that b|a. We may replace a and b by powers of p, say a = pr, b = pt with

t ≤ r, since multiplication by p-adic units won’t change the ZP -bases. Since Λ is

not contained in pZ2
p, it follows that t = 0. Now consider the chain of submodules

Λ = prZpe1 ⊕ Zpe2 ⊂ pr−1Zpe1 ⊕ Zpe2 ⊂ · · · ⊂ pZpe1 ⊕ Zpe2 ⊂ Z2
p.

These correspond to the unique path without backtracking from Λ to v0 in T , so

that T is a connected tree.

The group GL2(Qp) acts on the set of lattices in Q2
p. The scalar matrices are

precisely those which act by homothety, and so since the scalars are in the center

of GL2(Qp), this action descends to an action of GL2(Qp) on the vertex set V (T ).

This action is given simply by matrix multiplication and is thus seen to preserve

the incidence relations pΛ ⊂ Λ′ ⊂ Λ. In this way one obtains an action of GL2(Qp)

on T . The action is transitive on V (T ), and the stabilizer of the vertex v0 corre-

sponding to the class of Z2
p is the product Q×p · GL2(Zp) in GL2(Qp). This gives an

identification

V (T ) ∼= GL2(Qp)/Q
×
p ·GL2(Zp).

3.2.2 The ends of T

Before connecting the Bruhat-Tits tree to the p-adic upper half plane via the re-

duction map, we will define the “ends” of T . This discussion will later aid us to

identify rigid analytic modular forms as simple combinatorial objects, called har-

monic cocycles, related to the Bruhat-Tits tree.

Definition 3.2.2. Let E(T ) denote the collection of all infinite non-backtracking

sequences of adjacent vertices of T

(v1, v2, . . .),

modulo the following equivalence relation: two sequences are identified if they

differ by a finite initial sequence. Then E is the collection of ends of the Bruhat-Tits

tree.

Note that GL2(Qp) acts on the ends (it acts on everything in sight). Each end
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can be represented by a sequence of lattices

Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ · · ·

such that Λn/Λn+1
∼= Z/pZ for all n. The elementary divisors theorem shows that

the intersection of such a sequence
⋂
n Λn is a Zp-submodule of Q2

p spanning a

Qp-line. In this way one obtains a natural map

N : E(T )→ P1(Qp).

If e = [v → u] is an oriented edge of T , then associate to it the subset

Ve = {ε ∈ E | ε = (v, u, · · · )}.

These sets generate a topology on E making it into a compact Hausdorff space. In

fact, one can prove the following without too much difficulty:

Proposition 3.2.3. The map N : E → P1(Qp) is a GL2(Qp)-equivariant homeomor-
phism.

Proof. See Lemma 12 of [13].

3.2.3 Geometric realization

Identify each edge of T with an interval [0, 1] endowed with the usual Archimedean

topology. Glue edges according to the incidence relations of T using the obvious

quotient topology and let TR denote the corresponding geometric realization of T .

If v and v′ are adjacent edges of T , we will often denote points of TR on the edge

joining v and v′ in the form u = (1 − t)v + tv′ for some 0 ≤ t ≤ 1. Let TQ denote

the subset of TR consisting of those points u = (1− t)v + tv′ with t ∈ Q ∩ [0, 1]. In

particular, TQ contains all of the vertices of TR.

The topological space TR is connected to R>0-homothety classes of norms on

Q2
p in the following way:

If Λ is lattice in Q2
p, then there exists a unique norm on Q2

p such that Λ is the

corresponding unit ball. If one chooses a basis (e1, e2) for Λ, then this norm can be

described explicitely:

|ae1 + be2|Λ = sup{|a| , |b|}.
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Note that |·|αΛ = |α| |·|λ for all α ∈ Q×p , so that homothetic lattices produce homo-

thetic norms.

Now suppose that Λ and Λ′ are lattices with pΛ ( Λ′ ( Λ. Choose a basis

(e1, e2) for Λ such that (e1, pe2) is a basis for Λ′. Let 0 < t < 1 represent a point of

the geometric realisation TR between the adjacent vertices corresponding to Λ and

Λ′. Then define a norm on Q2
p via the formula:

|ae1 + be2|Λ,Λ′,t = sup{|a| , pt |b|}.

In this way one obtains a bijection:

Proposition 3.2.4. The above definitions yield a bijection between the geometric real-
isation TR of the Bruhat-Tits tree for GL2(Qp) and the space of R>0-homothety classes
of norms on Q2

p.

Proof. We describe the inverse map. If |·| is a norm on Q2
p then for real α > 0, the

collection Λα = {x ∈ Q2
p | |x| ≤ α} is a lattice in Q2

p. One has Λα′ ⊂ Λα if α′ ≤ α

and Λp−1α = pΛα, thus [Λα] takes at most two values in V (T ) as α varies.

If [Λα] = v is constant, then |·| corresponds to v.

Otherwise [Λα] equals v or v′ for two adjacent vertices of T . After possibly

replacing |·| by a proportional norm, one has [Λα] = v for qt ≤ α < q and [Λα] = v′

for 1 ≤ α < qt, with 0 < t < 1. Then |·| corresponds with the point u = (1− t)v+ tv′

of the edge joining v and v′.

Remark 3.2.5. The topological structure on the space of norms on Q2
p dates back, at

least, to the paper [19] of Goldman and Iwahori. See their work for more details,

or see I.2 of [4].

There is an action of GL2(Qp) on TR which is compatible with the action on

T . If α = |·| is a norm on Q2
p and if γ ∈ GL2(Qp), then define γα by setting

γα(x) = α(γ−1x). For example, if v ∈ TR is the vertex corresponding to the lattice

Z2
p ⊆ Q2

p, so that the corresponding norm αv is the usual sup-norm

αv

(
x

y

)
= sup{|x| , |y|},
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and if γ ∈ GL2(Qp) is such that we may represent

γ−1 =

(
a b

c d

)
,

then

(γαv)

(
x

y

)
= sup{|ax+ by| , |cx+ dy|}

by the definition above. On the other hand, note that the vertex γv corresponds

with the homothety class of the lattice γZ2
p. A basis for this lattice is given by the

vectors
1

ad− bc

(
d

−c

)
and

1

ad− bc

(
−b
a

)
.

Since (
x

y

)
=

1

ad− bc

(
(ax+ by)

(
d

−c

)
+ (cx+ dy)

(
−b
a

))
,

it follows by definition of the norm αγv associated to γv that

αγv

(
x

y

)
=

1

|ad− bc|
sup{|ax+ by| , |cx+ dy|}.

Thus γαv and αγv are Q×p -multiples of one another, which shows that the two

actions are compatible. An identical computation shows the same for an arbitrary

vertex v ∈ T .

3.3 The reduction map

We now describe a continuous map

red: Hp → TR

which is a very useful combinatorial device for understanding the geometry of the

p-adic upper half plane.

Recall from Section 3.1 that points φ ∈ Hp can be regarded as injective Qp-

linear maps φ : Q2
p → Cp. Composing such a point φ with the p-adic norm on Cp
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yields a norm |·|φ on Q2
p. It was shown in Proposition 3.2.4 that homothety classes

of norms are in bijection with the points of TR. We thus define the reduction map
red: Hp → TR by

red(φ) = |·|φ .

Proposition 3.3.1. The reduction map is GL2(Qp)-equivariant, continuous when Hp

is endowed with its p-adic topology, and im(red) = TQ.

Proof. That the image of the reduction map is TQ follows from our chosen normal-

ization for the absolute value of Cp, so that
∣∣C×p ∣∣ = pQ. We omit the proof that

reduction is continuous and content ourselves instead with showing that reduction

is GL2(Qp)-equivariant.

Let α : Cp → R denote the absolute value. If φ ∈ Hp, then red(φ) = |·|φ = α ◦ φ.

Thus

red(γφ) = α ◦ (γφ) = α ◦ φ ◦ γ−1 = γ(α ◦ φ) = γ red(φ).

Although the definition of the reduction map given above is quite elegant, it

does not immediately help one to work with the rigid analytic topology on Hp. If

v ∈ TQ is a vertex, then red−1(v) is a connected affinoid subset of P1(Cp) defined

over Qp. For example, if we let v0 correspond to the lattice Z2
p ⊆ Q2

p, then

red−1(v0) = A0 = {z ∈ P1(Cp) | |z| ≤ 1, |z − a| = 1 for a = 0, . . . , p− 1}.

We will refer to this as the standard affinoid. If v and v′ are adjacent edges of T
and x = (1− t)v′ + tv is a point on the edge joining them, then red−1(x) describes

a circle in P1(Cp) about some Qp-rational point of radius pt (and such circles are

empty if t 6∈ Q). More generally, if U ⊆ TR is an open subset, then red−1(U) is a

wide open subset of P1(Cp) (cf. Coleman [9]).

Definition 3.3.2. If v is a vertex of T , then let Av = red−1(v) denote the corre-

sponding connected affinoid of Hp which reduces to v. If e = [v → v′] is an edge of

T , then write We = red−1(e) for the inverse image of the copy of the open interval

(0, 1) in TR corresponding to e. Hence We is an open anulus connecting Av and

Av′. Let Ae = Av ∪We ∪ Av′ and note that Ae is a connected affinoid which is the

complement of 2p disjoint open disks in P1(Cp).
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The collection {Ae}e∈E(T ) is an admissible covering of Hp by connected affi-

noids. Moreover for edges e 6= e′ one has

Ae ∩ Ae′ =

{
Av if e and e′ share a vertex v,

∅ otherwise.

Example 3.3.3. Suppose p = 2. Then each affinoid Av looks like a disk with two

disks removed:

Note that the geometry of this picture is slightly misleading. For the standard affi-

noid corresponding to the lattice Z2
p, the disk is of radius 1 and the inner disks are

also of radius 1! Note though that the standard affinoid still has plenty of points,

so the “thickness” of the affinoid in the depiction above is not such a misrepresen-

tation.

Recall that the affinoids Ae associated to edges of the Bruhat-Tits tree are ob-

tained by gluing two affinoids as above along an annulus:
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Consider the lighter gray annulus joining the two affinoids in the picture above.

Points in the annulus which are also algebraic over Qp lie in ramified extensions

of Qp. Thus, the CM points of Hp which we consider below all happen to lie in

affinoids Av associated to vertices of the Bruhat-Tits tree, since they are defined

over the unramified quadratic extension of Qp within Cp.

3.4 Rigid analytic functions on Hp

The covering {Ae} of Hp by affinoids introduced above leads to a convenient de-

scription of the ring O = H0(Hp,OHp) of rigid analytic functions on Hp, particu-

larly if, like us, one is not so interested in the topological properties of the ring O.

We thus think of elements f ∈ O as families {fe}e∈E(T ) of rigid analytic functions

fe on Ae, such that if e and e′ share a vertex v of the Bruhat-Tits tree, then fe and

fe′ agree on the affinoid Av = Ae ∩ Ae′. If fe = 0 then also fe′ vanishes on Av, and

hence must be zero on the larger affinoid Ae′. Since T is connected, one can show

that then fe = 0 for all edges of T .

Recall the following well-known result:

Proposition 3.4.1. Let A ⊆ Cp denote a connected affinoid subset. Then the ring
of rigid analytic functions on A is the completion for the sup-norm of the subring of
the rational functions Cp(X) consisting of all those with poles contained in Cp − A.
Moreover, if we write

A = {z ∈ Cp | |z| ≤ r, |z − αi| ≥ si for i = 1, . . . , n},

where r = |x| and si = |yi| for some x and yi ∈ Cp, then every rigid analytic function
f on A admits a unique decomposition

f =
∑
j≥0

aj(z/x)j +
n∑
i=1

∑
j≥0

bi,j

(
yi

z − αi

)j
,

where the aj and bi,j are elements of Cp which tend to 0 as j grows.

Proof. See the first Proposition in II.1.2 of [17].

The next result will be useful for understanding meromorphic functions on Hp

(that is, quotients of analytic functions on Hp).
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Proposition 3.4.2. Let A ⊂ P1(Cp) denote a connected affinoid subset with∞ 6∈ A.
Let f ∈ OA denote a rigid analytic function on A. Then f has finitely many zeros
c1, . . . , cs ∈ A. Each zero has a multiplicity mi ∈ Z≥0 and f admits a decomposition

f(z) =

(
s∏
i=1

(z − ci)mi
)
u(z)

with u(z) a unit in OA. If u ∈ OA then the following are equivalent:

1. u is a unit;

2. u has no zeros on A;

3. inf{|u(z)| | z ∈ A} > 0.

Proof. See Theorem 2.2.9 of [16].

The p-adic upper half plane is a direct limit of connected affinoids. Hence O is

a projective limit of integral domains, and is thus itself an integral domain.

Definition 3.4.3. The function field of Hp, denoted K, is the fraction field of A.

Proposition 3.4.2 shows that an analytic function has a finite number of zeros

on a connected affinoid. Thus, an analytic function f ∈ O vanishes at a discrete

subset of Hp. It follows that elements of K can be regarded as functions on Hp at

all points save possibly for a discrete subset which depends on the particular mero-

morphic function under consideration and its representation as a ratio of analytic

functions.

In complex analysis, analytic functions are determined by their values on any

set with an accumulation point. One can regard the following result as an ana-

logue of this fact. It will be crucial when we wish to interpret nearly rigid analytic

modular forms as functions.

Proposition 3.4.4. Let F ⊆ Cp denote the completion of the maximal unramified
extension of Qp inside Cp. Then there is a natural inclusion

O ↪→ C(Hp(F ),Cp),

where C(Hp(F ),Cp) denotes the set of continuous Cp-valued functions on Hp(F ) =

F −Qp.
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Proof. For n ≥ 0 let Hn denote the affinoid subdomain of Hp which corresponds

under reduction to the subtree of the Bruhat-Tits tree consisting of all edges of

distance at most n from the privileged vertex. Let On denote the ring of rigid

analytic functions on Hn. Then one can show, since the residue field of F is al-

gebraically closed, that the Tate norm of On, induced from some surjective map

Cp〈T1, . . . , Tr〉 → On, agrees with the sup-norm computed over F -rational points

of Hn (in particular, the sup-norm is well-defined for elements of An; this is not

automatic as F is not locally compact). There is thus an isometric inclusion

On ↪→ C0(Hn(F ),Cp)

for all n, where the left side is endowed with the Tate norm and the right side de-

notes the space of bounded and continuous functions from Hn(F ) to Cp, endowed

with the sup-norm. One obtains the inclusion O ↪→ C(Hp(F ),Cp) by passing to

the projective limit.

Remark 3.4.5. Despite the fact that the restriction of f ∈ O to an affinoid sub-

domain of Hp defines a bounded function, f itself need not be bounded on the

entire p-adic upper half plane. A bounded function on the p-adic upper half plane

must be constant, just as in complex analysis. This will be crucial later, for the

modular forms that we are interested in below tend to have poles at all points of

P1(Qp), and the corresponding residues allow one to describe modular forms in a

convenient and explicit fashion.

3.5 Quotients of Hp

Let Γ ⊆ SL2(Qp) denote a subgroup. Then Γ acts on Hp by fractional linear trans-

formation and we may consider the quotient topological space Γ\Hp. Assume that

Γ is discrete inside SL2(Qp) for the natural p-adic topology of SL2(Qp) which is in-

duced by the inclusion SL2(Qp) ⊂ GL2(Qp). Then in this case the quotient map

Hp → Γ\Hp is a covering map at all but finitely many points. These so-called

elliptic points correspond to points in Hp with nontrivial stabilisers in Γ.

Assume furthermore that Γ is cocompact, that is, that Γ\Hp is compact for the

quotient topology. In this case, the quotient Γ\Hp carries a natural structure of

rigid analytic variety which is inherited from the p-adic upper half plane. Moreover,
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a rigid analytic version of Serre’s GAGA principle can be used to show that Γ\Hp

is the rigid analytification of an algebraic curve X defined over Qp; see the book

[17] for more details.

There is a sense in which this result has a converse, but in order to state it

one must understand the nature of the special fiber of the formal model of Γ\Hp

(for details on the connection between rigid and formal geometry, consult [3]). It

can be shown that this special fiber consists of a finite number of copies of the the

projective line over Fp which intersect at ordinary double points. This means that

locally at the point of intersection, the special fiber looks like Spec(Fp[X, Y ]/(XY )).

Such a configuration of projective lines can be described as the dual of the quotient

Γ\T of the Bruhat-Tits tree, which is a finite connected multigraph. This suggests

the following definition:

Definition 3.5.1. A curve X over Qp is said to be admissible if it has a model over

Zp whose special fiber consists of a collection of projective lines which intersect at

ordinary double points.

With this definition in place, we can state the following converse to the result

above:

Theorem 3.5.2 (Mumford). If X is an admissible curve over Qp, then there exists a
discrete subgroup Γ ⊆ SL2(Qp) such that the rigid analytification ofXCp is isomorphic
to Γ\Hp.

For details about this result one can consult Mumford’s original paper [31], or

the book [17].

We next specialize the generalities above to the subgroups of SL2(Qp) that ap-

pear in our work. Complex Shimura curves constructed from definite quaternion

algebras, as in [33], are made up of genus zero curves, and so are more easily un-

derstood than their indefinite counterparts. However, definite quaternion algebras

can be used to construct interesting p-adic rigid analytic curves at finite unramified

places p. Thus, the general philosophy is that interesting Shimura curves can be

constructed from quaternion algebras B over Q by considering an unramified place

of B, be it infinite or finite. It is precisely the case of a definite quaternion algebra

and a finite unramified prime which appears in our work.

Let N− be an integer which is a product of an odd number of distinct primes,

and let p be a prime which is coprime to N−. Let N+ be a positive integer which is
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relatively prime to pN−. Let B denote a quaternion algebra over Q of discriminant

exactly N−; since N− has an odd number of disctinct prime factors, B is ramified
at infinity, or definite. Fix a maximal Z-order R0 ⊆ B and an Eichler Z-order

R0(N+) ⊆ R0 of level N+. Let R = R0[1/p] and R(N+) = R0(N+)[1/p] denote the

corresponding Z[1/p]-orders. Note that B satisfies the Eichler condition 2.1.13 for

Z[1/p]-orders, and so up to conjugation by B×, R is the unique maximal Z[1/p]-

order in B, and similarly for the Eichler order R(N+) of level N+. Since B is

unramified at p, we may and do fix an isomorphism

ι : Bp = B ⊗Q Qp
∼→M2(Qp)

such that ι(R0 ⊗Z Zp) = GL2(Zp). Let R(N+)1 denote the collection of elements

in R(N+) of reduced norm equal to one, and set Γ
(p)

N+,N− = ι(R(N+)[1/p]1). Note

that Γ = Γ
(p)

N+,N− is only determined up to conjugation by B×p . Then one has the

following:

Proposition 3.5.3. The group Γ
(p)

N+,N− ⊆ SL2(Qp) is a discrete and cocompact sub-
group.

3.6 CM points

In this section, as always in this thesis, B/Q denotes a definite quaternion algebra

of discriminant N−, and p denotes a prime which splits B.

Before discussing CM points in Hp for B, we turn to the case of CM points in

the complex upper half plane. Let K/Q denote a quadratic imaginary extension

which is embedded inside C. In the introduction we referred to points in H∩K
as CM points. We would like to make an analogous definition for the p-adic upper

half plane, but of course it won’t be quite as simple as in the complex case. The

identity

H ∼= HomAlgR
(C,M2(R))

is what suggests the way forward.

How can we interpretH∩K using the description Hom(C,M2(R)) forH? Note

that if K → M2(Q) is an embedding of Q-algebras, then since K/Q is quadratic
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imaginary, we obtain an embedding of R-algebras:

C ∼= K ⊗Q R→M2(Q)⊗Q R ∼= M2(R).

The identification on the left uses the fact that we have already embedded K inside

C. The rightmost identification is canonical. In this way one can identify H∩K
with HomAlgQ

(K,M2(Q)). It is this set which can be adapted to our setting.

Let Kp/Qp denote the quadratic unramified extension of Qp within Cp. This

will play the role of C in our analogy. Above we needed to use an identification

K ⊗Q R ∼= C. Thus, in our case we’d like an identity

K ⊗Q Qp
∼= Kp.

One can make such an identification precisely when p is inert in K.

Remark 3.6.1. If p is ramified in K then of course K ⊗Q Qp is a ramified extension

of Qp, but there is no canonical quadratic ramified extension of Qp. One might

consider questions analogous to those treated in this thesis for ramified CM points

simply by working with whichever ramified quadratic extension occurs, but the

analogy with C is slightly less enticing in this case. If p splits in K then K⊗QQp
∼=

Q2
p is not a field. Embeddings K → B where p splits correspond to points in

P1(Qp), and thus don’t define points of Hp. In this case one can define certain

interesting “geodesic cycles” on Γ\Hp which are infinite paths through the Bruhat-

Tits tree which join the two pixed points in P1(Qp).

In the setting of this thesis we have replaced M2(Q) by a definite quaternion

algebra B/Q which is split at p via a map

ι : B ⊗Q Qp
∼→M2(Qp).

This splitting plays the role of the canonical identification M2(Q) ⊗Q R ∼= M2(R)

above. Similarly, we make the following definition.

Definition 3.6.2. Let K/Q denote a quadratic imaginary extension. Then the set

of CM points in Hp for K is denoted

CM(K) = HomAlgQ
(K,B).
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When p is inert in K and φ ∈ CM(K), then using ι one obtains

Kp
∼= K ⊗Q Qp

φ⊗1→ B ⊗Q Qp
ι→M2(Qp),

and Lemma 3.1.7 shows that this defines a point of

Hp(Kp) ∼= HomAlgQp
(Kp,M2(Qp)).

We summarize and supplement these observations slightly in the following:

Lemma 3.6.3. Let K/Q denote a quadratic imaginary field in which p is inert, and
let ι denote a splitting of B at p. Then, up to the choice of ι, there is a canonical
identification of CM(K) with a subset of Hp(Kp). Moreover, CM(K) is nonempty if
and only if all the primes dividing N− are inert or ramified in K. In particular, if the
discriminant of K is relatively prime to N−, then CM(K) is nonempty if and only if
all the primes dividing N− are inert in K.

Proof. This is a summary of the observations above, save for the remarks about

CM(K) being nonempty. These follow from Proposition 2.1.15.

3.7 The Cerednik-Drinfeld theorem

Let B be a definite quaternion algebra over Q as in the preceding section 3.1. Let

B denote a quaternion algebra over Q of discriminant pN−; this means that B is

ramified precisely at the finite primes of ramification for B, as well as p, and is

unramified at infinity. The algebra B is uniquely determined up to isomorphism

by these ramification conditions. We say that the algebra B is obtained from B
by interchanging invariants at p and ∞. Fix a maximal order R ⊆ B, let N+ be a

positive integer which is relatively prime to pN−, and let R(N+) ⊆ R denote an

Eichler order of level N+, which is unique up to conjugation since B is indefinite,

and thus satisfies the Eichler condition.

Let XN+,pN−/Q denote the Shimura curve corresponding to R(N+). It is the

coarse solution to the moduli problem defined by the functor FQ which associates

to every scheme S over Q the collection of S-isomorphism classes of triples (A, i, C)

where:

1. A is an abelian scheme over S of relative dimension 2;
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2. ι : R → EndS(A) is an inclusion which defines an action of R on A;

3. C is a subgroup scheme of A which is locally isomorphic to Z/N+Z, and

which is stable and locally cyclic for the action of R(N+). Such a subgroup

is called an N+-level structure.

Cerednik and Drinfeld proved the following remarkable rigid analytic uniformi-

sation result for the Shimura curves XN+,pN−:

Theorem 3.7.1 (Cerednik-Drinfeld). If Kp/Qp denotes the quadratic unramified
extension of Qp, then there exists a rigid analytic Kp-isomorphism:

Up :
(
XN+,pN− ×Spec(Q) Spec(Kp)

)rig ∼−→ Hp /Γ
(p)

N+,N− ,

where XN+,pN− is the Shimura curve defined above, the group Γ
(p)

N+,N− is defined as
in Proposition 3.5.3, and the superscript rig denotes rigid analytification of the base-
changed curve.

This result was first proved by Cerednik in [8]. Drinfeld then gave a more

conceptual proof [14] by giving a moduli interpretation for the space Γ
(p)

N+,N−\Hp.

Note that this result is different from Mumford’s result 3.5.2, in that it gives a pre-
cise uniformisation of the particular Shimura curve XN+,pN− in terms of an arith-

metically defined quotient of the p-adic upper half plane.

The following theorem describes the moduli interpretation for the CM-points of

a Z[1/p]-order O in a quadratic imaginary field K/Q:

Theorem 3.7.2. Let τ ∈ CM(O) with K = Frac(O). Then under the Cerednik-
Drinfeld uniformisation, τ corresponds with an abelian scheme A over Kp which is
isomorphic to a product A ∼= E ×E where E is a supersingular elliptic curve over Kp

with complex multiplication by O ∩ OK , where OK denotes the maximal Z-order of
K.

Proof. See [1].
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Rigid analytic modular forms

In this chapter we fix a prime p and let Hp denote the p-adic upper half plane as

in Chapter 3. Similarly, let T denote the Bruhat-Tits tree for GL2(Qp) as in Section

3.2. Let Γ = Γ
(p)

N+,N− be as defined in 3.5.3.

4.1 Definition

Let O denote the ring of rigid analytic functions on Hp. Define a right action of

GL2(Qp) on O in the following way: for each even integer k ≥ 2, put:

(f |kγ)(z) =
det γk/2

(az + b)k
f

(
az + b

cz + d

)
, γ =

(
a b

c d

)
∈ GL2(Qp).

We letO(k) denote the space of functionsO endowed with the right weight k action

of GL2(Qp).

Definition 4.1.1. The space of rigid analytic modular forms for Γ of weight k is the

space of Γ-invariant functions in O(k). We denote this space Sk(Γ).

Let Ω = H0(Ω1
Hp) denote the O-module of global sections of the sheaf of rigid

analytic one-forms on Hp.

Proposition 4.1.2. Let k ≥ 2 be an even integer. The map O(k)→ Ω⊗k/2 defined by
mapping f 7→ f(dz)k/2 is a GL2(Qp)-equivariant isomorphism. Thus,

Sk(Γ) ∼= (Ω⊗k/2)Γ.

37
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This will be useful later when we wish to formulate an algebraicity condition

for a rigid analytic modular form analogous to the algebraicity of the Fourier coef-

ficients of a classical modular form.

4.2 Harmonic cocycles

The material in this section will only be used in our discussion of computations

which the author performed while preparing this thesis. Anybody uninterested

in such computations, which are contained in the appendix, may safely skip this

section.

Let T denote the Bruhat-Tits tree for GL2(Qp), as defined in Section 3.2.

Definition 4.2.1. LetM be a Cp-module with a left action of GL2(Qp). Then anM -

valued harmonic cocycle on T is a map c : E(T )→ M which satisfies the following

properties:

1. if e ∈ E(T ) is an oriented edge with opposite edge e′, then c(e′) = −c(e);

2. if v ∈ V (T ) is a vertex and e0, . . . , ep are the p edges which leave from v, one

has c(e0) + · · ·+ c(ep) = 0.

Let Ch(M) denote the collection of all M -valued harmonic cocycles.

The space Ch(M) inherits the structure of a Cp-module equipped with a right
action of GL2(Qp):

(c · γ)(e) = γ−1 · c(γe).

An apt choice for M allows us to realize the space of rigid analytic modular forms

of weight k as the corresponding Γ-invariant harmonic cocycles. We introduce this

representation now.

Fix an even integer k ≥ 2 and put n = k − 2.

Definition 4.2.2. Let Pn ⊂ Cp[u, v] denote the subspace of homogeneous polyno-

mials in two variables of degree n. Let GL2(Qp) act on Pn on the right via the

formula

(p · γ)(u, v) = p(au+ bv, cu+ dv)

for p(u, v) ∈ Pn and γ =

(
a b

c d

)
∈ GL2(Qp). Let Vn be the Cp-linear dual

endowed with the dual left action of GL2(Qp). Write Ch(k) = Ch(Vn).
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We would like to prove that Sk(Γ) ∼= Ch(k)Γ. In [34], Schneider uses p-adic

residues of a rigid analytic 1-form on Hp to define a map

Ik : Sk(Γ)→ Ch(k)Γ.

In [43], Teitelbaum defines the inverse map. We recall these constructions now.

If f ∈ Sk(Γ) and f(z)dz is the corresponding holomorphic differential on Hp

(which is not Γ-invariant if f is nonzero), then for each oriented edge e ∈ E(T )

we define

cf (e) =
n∑
i=0

Rese(z
if(z)dz)

(
k − 2

i

)
δi,

where δi ∈ Vn is dual to uivn−i in Pn. Here Rese denotes the annular residue

of zif(z)dz along the oriented anulus We associated to the oriented edge e. In

short, one developes zif(z) into a Laurent series on We in terms of an appropriate

parameter w, and then defines the residue to be the coefficients of the w−1 term.

For details consult 2.3 of [16].

Conversely, suppose that c ∈ Ch(k)Γ is a Γ-invariant harmonic cocycle. Then

we can use c to define a p-adic measure on P1(Qp) in the following way: if e ∈
E(T ) is an oriented edge, then let Ue ⊆ P1(Qp) denote the compact open subset

consisting of all ends of Hp which pass through e. The map e 7→ Ue describes a

bijection between the compact open balls of P1(Qp) and the oriented edges of the

Bruhat-Tits tree. Define a measure µc on P1(Qp) by putting µc(Ue) = c(e). For the

definition of a boundary measure, and indeed, for more on the construction about

to be described, consult section 2 of [43].

Let An denote the space of Cp-valued functions on P1(Qp) which are locally

analytic except possibly for a pole at∞ of order at most n. Then by approximating

functions f ∈ An locally by polynomials of degree ≤ n, one can integrate such

functions against the measure µc. For a precise statement see Proposition 9 of

[43].

Thus, for all z ∈ Hp, one can define a function

fc(z) =

∫
P1(Qp)

1

(z − t)
dµc(t),

since 1/(z− t) is continuous and in fact locally analytic on P1(Qp). The assignment
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c 7→ fc yields a map

Pk : Ch(k)Γ → Sk(Γ).

Theorem 4.2.3. The maps Ik and Pk are mutually inverse, so that

Sk(Γ) ∼= Ch(k)Γ.

Proof. See Corollary 11 of [43].

This result is very useful, as the space Ch(k)Γ is readily computable. Each

cocycle c ∈ Ch(k)Γ is determined by the finitely many values c(e) where e runs

over a set of representatives for the quotient Γ\T of the Bruhat-Tits tree. The

author and Marc Masdeu have implemented a package in Sage which computes

quotients Γ\T and the corresponding spaces of modular forms Ch(k)Γ. This work

will be published in a forthcoming paper. Once one has the space of harmonic

cocycles at hand, then one can use the work of Greenberg [20], [21] and Darmon-

Pollack [12] to efficiently compute p-adic integrals. In the appendix to this thesis

we describe how we used these ideas to evaluate rigid analytic modular forms at

CM points.

4.3 Nearly rigid analytic modular forms

Let K/Qp be an extension of Qp contained inside Cp. We write O for the ring of

rigid analytic functions on Hp. Let F/Qp denote the completion of the maximal

unramified extension of Qp inside Cp, and let σ : F → F denote the Frobenius

automorphism. Thus σ is a pro-generator for Gal(F/Qp) and satisfies σ(z) ≡ zp

(mod p) for all z ∈ F . We will always write σ(z) = z below, save for in the

statement of the following crucial lemma:

Lemma 4.3.1. The restriction of Frobenius to the unramified points of the p-adic
upper half plane, σ : Hp(F )→ Hp(F ), does not agree with any meromorphic function
f on Hp on the domain of definition of f within Hp(F ).

Proof. If f is a meromorphic function on Hp, then it defines a meromorphic func-

tion on the standard affinoid

A = {z ∈ Cp | |z| ≤ 1, |z − a| ≥ 1 for a = 0, . . . , p− 1}.
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Since this is a connected affinoid, Proposition 3.4.2 shows that f admits a decom-

position f(z) = r(z)u(z) where r(z) ∈ Cp(z) is a rational function and where u(z)

is a unit in OA, the ring of rigid analytic functions on A. It thus suffices to prove

the following: for every nonzero polynomial q(z) ∈ Cp[z], the product q(z)z does

not agree with any analytic function f ∈ OA on A(F ) = A ∩ F .

We prove this by induction on the degree of q(z). The case deg q = 0 follows by

taking an expression for f as in Proposition 3.4.1, and by using the fact that z 7→ z

is Qp-linear. So suppose that deg q = N > 1 and that we have f ∈ OA such that

q(z)z = f(z) for all z ∈ A(F ). (4.1)

Then note that this implies that for all α ∈ Q×p ,

αq(αz)z = f(αz). (4.2)

Hence, if we multiply 4.1 by αN+1 and subtract 4.2, we obtain

(αN+1q(z)− αq(αz))z = αN+1f(z)− f(αz)

for all z ∈ A(F ). Since the polynomial on the left has degree strictly smaller than

N , by induction it must vanish. So we deduce

αNq(z) = q(αz) and αN+1f(z) = f(αz)

for all α ∈ Q×p and all z ∈ A(F ). Since q is a polynomial and f is an analytic

function on Hp, it follows that q(z) = azN and f(z) = bzN for some scalars a,

b ∈ Cp (see Lemma 4.3.4 below, for example). But then our assumption becomes

azNz = bzN+1

for all z ∈ A(F ). Hence we must have a = b = 0, contradicting q(z) 6= 0.

Remark 4.3.2. We regard the Frobenius of Hp(F ) as an analogue of complex con-

jugation. Note that on all the unramified points, this analogy is not perfect: for

example, there is an amibguity as to whether one works with arithmetic or geomet-

ric Frobenius. This ambiguity disappears when one restricts to the points HP (Kp),

where Kp/Qp denotes the quadratic unramified extension in Qp. Here Frobenius
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has order two and is canonical, just like complex conjugation is the unique non-

identity element of Gal(C/R).

The previous result is analogous to the fact that complex conjugation is not

holomorphic.

Note that the function z− z is invertible on Hp(F ), and so 1/(z− z) is a contin-

uous function on Hp(F ). We may thus define a map

O[X]→ C(Hp(F ),Cp),

where C(Hp(F ),Cp) denotes the ring of continuous functions from Hp(F ) to Cp,

by sending X to 1/(z − z). The field F has enough points to distinguish elements

in the image of this map:

Proposition 4.3.3. The assignment X 7→ 1/(z−z) yields an injective ring homomor-
phism:

O[X] ↪→ C(Hp(F ),Cp).

Proof. Suppose that
N∑
i=0

fi(z)

(z − z)i
= 0

for some rigid analytic functions fi ∈ O and all z ∈ Hp(F ). This is equivalent with

0 =
N∑
i=0

fi(z)(z − z)N−i

=
N∑
i=0

N−i∑
j=0

(
N − i
j

)
fi(z)zN−i−jzj

=
N∑
j=0

(
N−j∑
i=0

(
N − i
j

)
fi(z)zN−i−j

)
zj.

Note that if we put gj(z) =
∑N−j

i=0

(
N−i
j

)
fi(z)zN−i−j then gj is rigid analytic, and

gj = 0 for j = 0, . . . , N if and only if fi = 0 for i = 0, . . . , N . Thus, it suffices to

prove the following claim: if
∑N

i=0 fi(z)zi = 0 for some fi ∈ O and all z ∈ Hp(F )

then fi = 0 for all i.

We proceed by induction on N , and prove in fact the stronger statement that

there is no relation
∑
fi(z)zi = 0 for meromorphic functions fi on Hp.
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Suppose we have such a relation for N ≥ 1. Cancel the factor of fN , so that we

have

zN + gN−1(z)zN−1 + · · ·+ g0(z) = 0

for meromorphic functions gi = fi/fN on Hp and all z ∈ Hp(F ) at which the

meromorphic functions are defined. We will show that the gi must vanish. The

case N = 0 is clear and N = 1 follows from Lemma 4.3.1.

Suppose that N ≥ 2 and note that since z 7→ z is Qp-linear, the previous dis-

played formula also implies

aNzN +
N−1∑
i=0

gi(az)aizi = 0

for all a ∈ Q×p and all z ∈ Hp(F ) at which the meromorphic functions gi(az) are

defined. It follows that

N−1∑
i=0

(aigi(az)− aNgi(z))zi = 0

for all z ∈ Hp(F ) at which the meromorphic coefficients above are defined. By

induction we conclude that gi(az) = aN−igi(z) for all a ∈ Q×p . We deduce, by

Lemma 4.3.4 below, that gi(z) = biz
N−i for some bi ∈ Cp. Thus, we have

zN + bN−1zz
N−1 + · · ·+ b0z

N = 0

for all z ∈ Hp(F ). If all the bi are zero, then this is a contradiction. Otherwise, if

necessary, we may rescale this equation so that the bi have absolute value ≤ 1 with

at least one |bi| = 1. Then if we apply the above to z ∈ Hp(F ) with |z| ≤ 1 and

reduce mod p, we obtain a nontrivial identity

bNz
pN + bN−1z

pN−(p−1) + b
pN−2(p−1)
N−2 + · · ·+ b0z

N ≡ 0 (mod p)

for all |z| ≤ 1, where the first bN arises due to rescaling. Since the residue field

of F is an algebraic closure of Fp, it follows that all of the bi must vanish mod

p, contradicting that we normalized them so that at least one was a p-unit. This

contradiction concludes the proof.

Lemma 4.3.4. Let f be a meromorphic function on Hp. If f(az) = akf(z) for some
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integer k ≥ 0 and all a ∈ Q×p , then f(z) = bzk for some b ∈ Cp.

Proof. By differentiating the equality f(az) = akf(z) repeatedly, one reduces to

the case k = 0. Thus suppose f(az) = f(z) for all a ∈ Q×p . Since the poles of a

meromorphic function on Hp are discrete, this equality implies that f must in fact

be analytic. Consider its expansion on the standard affinoid

A = {z ∈ Cp | |z| ≤ 1, |z − x| ≥ 1 for x = 0, . . . , p− 1}.

On A the function f may be expressed uniquely as

f(z) =
∑
n≥0

anz
n +

p−1∑
x=0

∑
n≥1

bn(x)

(z − x)n

for elements an and bn(x) in Cp which tend to 0 as n grows. Let α ∈ Zp and note

that since f(z/(1 + pα)) = f(z) by hypothesis, we deduce that

f(z) =
∑
n≥0

an
(1 + pα)n

zn +

p−1∑
x=0

∑
n≥1

bn(x)(1 + pα)n

(z − x− pαx)n

=
∑
n≥0

an
(1 + pα)n

zn +

p−1∑
x=0

∑
n≥1

bn(x)(1 + pα)n

(z − x)n(1− pαx/(z − x))n

=
∑
n≥0

an
(1 + pα)n

zn +

p−1∑
x=0

∑
n≥1

∑
m≥0

(
m+ n− 1

m

)
bn(x)(1 + pα)n

(pαx)m

(z − x)n+m

=
∑
n≥0

an
(1 + pα)n

zn+

p−1∑
x=0

∑
n≥1

(
n−1∑
m≥0

(
n− 1

m

)
bn−m(x)(1 + pα)n−m(pαx)m

)
1

(z − x)n
.

By the uniqueness of the expansion of f on A we deduce that an = an/(1+pα)n for

all n and α ∈ Zp. Choosing α such that 1 + pα is not an nth root of unity implies

an = 0 for all n ≥ 1. Similarly, one deduces that for each x and n,

bn(x) =
n−1∑
m≥0

(
n− 1

m

)
bn−m(x)(1 + pα)n−m(pαx)m.

One argues by induction on n that bn(x) = 0 for all n ≥ 1 and all x = 0, . . . , p − 1.
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Thus, f must be constant on A, and hence constant onHp by analytic continuation.

Proposition 4.3.3 suggests the following definition.

Definition 4.3.5. The image of the map O[X] → C(Hp(F ),Cp) defined by X 7→
1/(z − z) is denoted N and called the ring of nearly rigid analytic functions on

Hp(F ).

We will write elements in N as polynomial expressions

f(z) =
∑
i

fi(z)

(z − z)i

with the fi rigid analytic functions on Hp. Note that by what we just proved, if

we view f(z) as a continuous function on Hp(F ), then the coefficients fi(z) are

uniquely determined by f(z).

Definition 4.3.6. Define the differential operator d/dz on N by setting, for f(z) ∈
O and j ≥ 0:

d

dz

(
f(z)

(z − z)j

)
=

jf(z)

(z − z)j+1
,

and extending linearly. Then Maass’s lowering operator is the operator defined by

ε = (z − z)2 d

dz
.

Similarly, for each integer k ≥ 0 define the Shimura-Maass differential operator of

weight k, denoted δk, on N by setting

δk

(
f(z)

(z − z)j

)
=

f ′(z)

(z − z)j
+

(k − j)f(z)

(z − z)j+1

and extending linearly.

The weight k slash operation of GL2(Qp) on rigid analytic functions extends to

N in a natural way.

Definition 4.3.7. Let Γ ⊆ GL2(Qp) denote a discrete and cocompact subgroup. For

each integer k ≥ 0, we let Nk(Γ) ⊆ N denote the set of nearly analytic functions

which are invariant under the weight k action of Γ on N . We call Nk(Γ) the space
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of nearly rigid analytic modular forms of weight k for Γ. Note that Sk(Γ) ⊆ Nk(Γ),

so that every rigid analytic modular form is also nearly rigid analytic.

For each integer r ≥ 0 let N r ⊆ N denote the subspace consisting of forms

f(z) =
r∑
j=0

fj(z)

(z − z)j
.

Set N r
k (Γ) = Nk(Γ) ∩N r.

The following lemma is proved via a straightforward but tedious computation:

Lemma 4.3.8. Let f ∈ N and let γ ∈ GL2(Qp). Then

δk(f |kγ) = (δkf)|k+2γ,

ε(f |kγ) = ε(f)|k−2γ.

Let Γ ⊆ GL2(Qp) denote a discrete and cocompact subgroup. The previous

lemma shows that δk maps Nk(Γ) to Nk+2(Γ), while ε maps Nk+2(Γ) to Nk(Γ).

Just as Sk(Γ) ∩ Sk′(Γ) = {0} if k 6= k′, the same is true for Nk(Γ). Let N (Γ) =⊕
k≥0Nk(Γ). Then δ =

⊕
k≥0 δk and ε define graded derivations of N (Γ), of weight

2 and −2, respectively. The filtrations N •k (Γ) of Nk(Γ) induce an increasing filtra-

tion of N : we write N r =
⊕

k≥0N r
k (Γ). Then δ maps N r to N r+1.

Our next lemma follows immediately from the definition of ε:

Lemma 4.3.9. If f(z) =
∑r

j=0 fj(z)(z − z)−j ∈ N then εrf = (r!)fr.

Proposition 4.3.10. Let Γ ⊆ GL2(Qp) be a discrete and cocompact subgroup. Let f ∈
Nk(Γ) and write f(z) =

∑r
j=0 fj(z)(z − z)−j. Then fr(z) ∈ Sk−2r(Γ). In particular,

N2r(Γ) = N r
2r(Γ).

Proof. The previous two lemmas show that for all γ ∈ Γ,

fr|k−2rγ =
1

r!
εr(f |kγ) =

1

r!
εr(f) = fr.

Thus fr ∈ Sk−2r(Γ), and this space is trivial if k − 2r < 0. Repeatedly applying this

observation to elements in N2r(Γ) proves the last part of the proposition.

One can use the above observations to prove the following:
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Theorem 4.3.11. Let Γ ⊆ GL2(Qp) denote a discrete and cocompact subgroup. Let
k ≥ 2 and r ≥ 0 be integers. Then there is an isomorphism of Cp-vector spaces

r⊕
j=0

Sk+2r−2j(Γ)
∼−→ N r

k+2r(Γ)

which maps (hj) 7→
∑r

j=0 δ
j
k+2r−2jhj. In particular, for k = 2r and r ≥ 1, one has

Nk(Γ) ∼=
r⊕
j=0

Sk−2j(Γ)

as vector spaces over Cp.

Proof. The proof of Theorem 1 in §10.1 of [23] carries over from the complex

case treated there to our rigid analytic setting. The argument uses that if f =∑r
j=0 fj(z)(z − z)−j ∈ N r

k+2r(Γ), then fr ∈ Sk(Γ), and one considers the expression

δrkfr ∈ N r
k+2r(Γ). If we write hr = (k!/(k + r)!)fr, then Proposition (4.3.3) shows

that hr is uniquely determined by f , and a routine but messy computation shows

that f − δrkhr ∈ N r−1
k+2r(Γ). One continues inductively.
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Chapter 5

Proof of main theorem

5.1 Notation and statement of theorem

Let p, N−, N+ and B be as defined in 3.1, and let Γ = Γ
(p)

N+,N− ⊆ SL2(Qp) be as

defined in 3.5.3. Let Kp denote the quadratic unramified extension of Qp. Write

X = XN+,pN−, which is a Shimura curve defined over Q, and let

XKp = X ×Spec(Q) Spec(Kp)

denote the base change. Let

Up : Xrig
Kp

∼−→ Γ\Hp,

denote the Cerednik-Drinfeld uniformisation as in 3.7.1. Recall that rigid analytic

modular forms for Γ of even weight k correspond via pullback under UP to global

sections of (Ω1
Kp

)⊗k/2, where Ω1
Kp

denotes the sheaf of regular differentials on the

curve XKp.

Definition 5.1.1. Let k be an even integer. We say that a rigid analytic modular

form for Γ is algebraic if it corresponds to a global section of (Ω1
Kp

)⊗k/2, via the map

f(τ) 7→ f(τ)(dτ)k/2, which is defined over Q ∩Kp. We write Sk(Γ
(p)

N+,N− ,Q) for the

space of algebraic rigid analytic modular forms.

Remark 5.1.2. Note that this definition differs from the case of complex modu-

lar curves, where one identifies Sk(Γ0(N),Q) and Ω1(X0(N)/Q)k/2, in that there

one maps f(τ) 7→ f(τ)(2πidτ)k/2. Thus, in our formulation, any sort of analogue

49
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for the factor of 2πi in the definition of the complex Shimura-Maass operator is

incorporated here into the condition of algebraicity formualted above.

Suppose instead that Γ ⊆ SL2(Qp) is a congruence subgroup. Then if we take

Γ
(p)

N+,N− ⊆ Γ for some N+, we have that Sk(Γ) ⊆ Sk(Γ
(p)

N+,N−). Define

Sk(Γ,Q) = Sk(Γ) ∩ Sk(Γ(p)

N+,N− ,Q).

Lemma 5.1.3. The space Sk(Γ,Q) is well-defined independently of N+. That is, if M
and M ′ are two positive integers coprime to pN− such that Γ contains both Γ

(p)

M,N−

and Γ
(p)

M ′,N−, then

Sk(Γ) ∩ Sk(Γ(p)

M,N− ,Q) = Sk(Γ) ∩ Sk(Γ(p)

M ′,N− ,Q).

Definition 5.1.4. Let Γ be a congruence subgroup for B. Then a modular form

f ∈ Sk(Γ) is said to be algebraic if it lies in Sk(Γ,Q).

If Γ and Γ′ are two congruence subgroups for B, then so is Γ ∩ Γ′. The spaces

Sk(Γ) as Γ varies thus define a filtered injective system and it makes sense to write

Sk =
⋃

Γ⊆SL2(Qp)

Sk(Γ),

where the union is taken over all congruence subgroups Γ. Define Sk(Q) similarly.

Let S =
⊕

k Sk and S(Q) =
⊕

k Sk(Q). Let Ak(Q) denote the kth graded piece of

Frac(S(Q)), where the degree of a quotient f/g is defined in the obvious way as

deg(f)− deg(g). Note that Sk(Q) ⊆ Ak(Q).

The main theorem of our thesis is the following analogue of Main Theorem 1

in [39]:

Theorem 5.1.5. Let f ∈ Sk(Q) and g ∈ Sk+2r(Q). Let K/Q denote a quadratic
imaginary extension. Assume that all the primes dividing pN− are inert in K, so
that there are CM-points in Hp for K. Let τ ∈ CM(K) denote a CM-point such that
g(τ) 6= 0. Then

δrk(f)(τ)

g(τ)
∈ Q.
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5.2 Proof of Theorem 5.1.5

We begin with some lemmas.

Lemma 5.2.1. For all k ≥ 0, A2k(Q) 6= {0}. If f ∈ A2k(Q) and α ∈ B×, then
f |2kα ∈ A2k(Q).

Proof. For the first claim, use Cerednik-Drinfeld and the analogous statement for

meromorphic modular forms on the corresponding Shimura curve (or alternatively,

use Riemann-Roch).

For the second claim, note that if f ∈ A2k(Q) is modular for some congruence

subgroup Γ, then f |2kα is modular for Γ′ = α−1Γα. This conjugate is another

congruence subgroup, and thus f |2kα ∈ S2k(Γ
′). Next note that since α ∈ B×, the

map

Γ\Hp → Γ′\Hp

given by τ 7→ α−1 · τ , corresponds via Cerednik-Drinfeld, to a map of Shimura

curves is defined over Q. It thus preserves algebraic modular forms and so f |2kα ∈
S2k(Γ

′,Q) ⊆ A2k(Q).

Lemma 5.2.2. With τ as in the statement of Theorem 5.1.5, for each k ∈ Z>0 there
exists

α =

(
a b

c d

)
∈ B1 ⊂ SL2(Qp)

such that α · τ = τ and (cτ + d)2k 6= 1. (Recall that B1 denotes the elements in B of
reduced norm equal to 1).

Proof. The proof is analogous to the proof of (1.12) in Shimura’s paper [39]. Note

that the proof of this claim is found on page 496 of Shimura’s paper, in the para-

graph containing lined formula (1.17).

We turn now to the proof of Theorem 5.1.5. We will prove the following slightly

stronger result:

for all f ∈ Ak(Q) and g ∈ Ak+2r(Q) such that g(τ) 6= 0, we have

(δrkf)(τ)/g(τ) ∈ Q.

Since Sk(Q) is contained in Ak(Q) for all k, this clearly implies Theorem 5.1.5.
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Our proof proceeds by induction on r ≥ 0. In the case r = 0, the quotient f/g

defines an element of the function field ofXKp which is defined over Q: that is, f/g

agrees with an element of the function field of the Shimura curve XQ. In Theorem

5.3 of [1] it is proved that τ ∈ Hp ∩K corresponds to a CM-point for K on X/Q. It

thus follows from the classical theory developed by Shimura that f(τ)/g(τ) ∈ Q.

This proves the case r = 0.

Now suppose r ≥ 1. Following Shimura, we may assume f(τ) 6= 0. To see this,

note that the set {
γ · τ ∈ Hp | γ ∈ B× ⊂ GL2(Qp)

}
is dense inHp for the p-adic topology. Thus, since if f = 0 there is nothing to show,

we may find β ∈ B× with f(β · τ) 6= 0. If f(τ) = 0 then we can instead consider

f ′ = f+f |kβ, which is modular of weight k for the congruence subgroup Γ∩β−1Γβ

by the second claim of Lemma 5.2.1. Since f = f ′− f |kβ, and neither of the forms

on the right vanish at τ , it indeed suffices to treat the case where f(τ) 6= 0.

Take

α =

(
a b

c d

)
∈ B1

such that α · τ = τ and α 6= ±1. Set h = (f |kα)/f , so that h ∈ A0(Q). Since α fixes

τ we see that h(τ) = λ−k where λ = cτ + d. Suppose r = 1. Apply δk to f |kα = fh,

so that the Leibniz rule, combined with the identity δk(f |kα) = (δkf)|k+2α, yields

(δkf)|k+2α = (δkf)h+ f(δ0h). (5.1)

Evaluate this identity at τ to obtain

(δkf)(τ)(λ−2 − 1)λ−k = f(τ)(δ0h)(τ). (5.2)

Note that since h transforms as of weight 0, we have f · δ0(h) ∈ Ak+2(Q). Hence

g−1fδ0(h) ∈ A0(Q) and so
f(τ)(δ0h)(τ)

g(τ)
∈ Q

by the previous case. Thus, from this and from equation 5.2 one deduces that

δk(f)(τ)/g(τ) ∈ Q.

For general r ≥ 2, use Lemma 5.2.2 to obtain α fixing τ and such that (cτ +
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d)2r 6= 1. Apply δrk to fh, where h is defined as above, to obtain

δrk(fh) =
r∑
i=0

(
r

i

)
(δikf)(δr−i0 h).

Since fh = f |kα and δrk(f |kα) = (δrkf)|k+2rα we have

δrk(f)|k+2rα =
r∑
i=0

(
r

i

)
(δikf)(δr−i0 h). (5.3)

As above, evaluate this at τ and use α · τ = τ to deduce

δrk(f)(τ)(λ−2r − 1)λ−k =
r∑
i=1

(
r

i

)
(δikf)(τ)(δr−i0 h)(τ) (5.4)

Now here is the final trick: for each i in the range 0 ≤ i ≤ r, as above choose

gi ∈ S2i(Q) such that gi(τ) 6= 0. Then we have

(g−1δrkf)(τ)(λ−2r − 1)λ−k =
r∑
i=1

(
r

i

)
(gig

−1δr−ik f)(τ)(g−1
i δi0h)(τ). (5.5)

For the terms i > 0, if we apply our inductive hypothesis to δr−ik f/(gg−1
i ), then

we deduce that (gig
−1δr−ik (f))(τ) ∈ Q. Since h is of weight 0, its derivative δ0h is

meromorphic of weight 2, and thus

δi0(h) = δi−1
2 (δ0h).

Hence our inductive hypothesis also implies (g−1
i δi0h)(τ) ∈ Q for i = 1, . . . , r. Thus,

by equation 5.5, we deduce that (δrkf)(τ)/g(τ) ∈ Q as claimed. This concludes the

proof of Theorem 5.1.5.

5.3 Restatement of Theorem 5.1.5

The main theorem 5.1.5 can be rephrased as follows:

Theorem 5.3.1. Let k ≥ 0 be an even integer and let f ∈ Sk(Q). Let K/Q denote a
quadratic imaginary extension. Assume that all the primes dividing pN− are inert in
K, so that there are CM-points in Hp for K. Then there exists a constant ΩK ∈ C×p
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depending only on K/Q such that if τ ∈ CM(K) denotes a CM-point, then

δrk(f)(τ)

Ωk+2r
k

∈ Q

for all r ≥ 0.

To obtain Theorem 5.3.1 from Theorem 5.1.5, let g ∈ A2(Q) be nonzero; such

a form exists by Lemma 5.2.1. As in the proof of 5.3.1, if g(τ) = 0 then we may

consider instead g′ = g + g|2β ∈ A0(Q) for some β ∈ B× such that g′(τ) 6= 0. We

may thus assume g(τ) 6= 0. Set ΩK = g(τ). Then Theorem 5.3.1 says exactly that

δrk(f)(τ)/Ωk+2r
K ∈ Q for all f ∈ Sk(Q).

It remains to show that the same period ΩK accounts for the transcendental

part of the CM-values of nearly rigid analytic modular forms at CM-points for K

different from the one τ ∈ CM(K) used to define ΩK . If τ ′ is another CM-point for

K, then we can find α ∈ B× such that α · τ = τ ′. Set h = f |kα, which is another

element of Sk(Q). Note that

(δrkh)(τ) = ((δrkf)|k+2rα)(τ) = j(α, τ)k+2r(δrkf)(τ ′),

and hence
(δrkh)(τ)

Ωk+2r
K

∈ Q ⇐⇒ (δrkf)(τ ′)

Ωk+2r
K

∈ Q.

Since the left side holds by the previous paragraph, we deduce that ΩK is a suitable

period for all CM-points for K.
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Future directions

6.1 Geometric proof

6.1.1 Katz’s interpretation of Shimura’s result

In this section we give a geometric definition of the complex Shimura-Maass dif-

ferential operator δk. Let Γ = SL2(Z) and consider the space H×C. Both Γ and Z2

act on H×C, on the left and right, respectively:(
a b

c d

)
· (τ, z) =

(
aτ + b

cτ + d
, (cτ + d)−1z

)
,

(τ, z) · (m,n) = (τ, z +mτ + n).

Let π : H×C → H be the projection, and note that π is Γ-equivariant. It is also

Z2-equivariant when H is endowed with the trivial action of Z2. If we write E =

Γ\(H×C)/Z2, then π induces a surjective map:

E
π

��
Y (1)

where Y (1) denotes the open modular curve. We call E the universal elliptic curve
over Y (1), despite the fact that it is not exactly a universal solution to a moduli

problem.

Write ω = π∗(Ω
1
E/Y (1)) and put ωk = Symk(ω) for each k ≥ 1. Let f(τ) be a
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holomorphic modular form of weight k for Γ. The modularity of f implies that

f(τ)(2πidz)k is a Γ-invariant global section of ωk. It turns out that the map f 7→
f(τ)(2πidz)k gives an inclusion of complex vector spaces:

Sk(Γ)→ H0(Y (1), ωk).

The universal elliptic curve E is a complex analytic curve over Y (1), which is

in fact algebraic over Q, and we will be interested in the Hodge filtration for this

curve:

0→ ω → H1
dR(E/Y (1))→ (R1π∗)(OE)→ 0.

Here H1
dR(E/Y (1)) denotes the relative de Rham cohomology for E/Y (1). It is a

locally free OY (1)-module of rank 2 on Y (1):

Lemma 6.1.1. The differentials 2πidz and 2πidz define a basis forH1
dR(E/Y (1))τ for

each τ ∈ H.

Proof. We represent points of Y (1) by lifts τ ∈ H. For such τ let Eτ = C/(Z + Zτ).

The stalk of H1
dR(E/Y (1)) at τ ∈ H is isomorphic with H1

dR(Eτ ). It will thus suffice

to show that the stalks of 2πidz and 2πidz make up a C-basis of H1
dR(Eτ ) for each

τ ∈ H. Recall that Poincare duality:

H1
dR(Eτ )×H1(Eτ )→ C,

which maps:

(ω, γ) 7→
∫
γ

ω

is a perfect pairing. This shows that each de Rham cohomology class is determined

by its periods over γ1, γ2, where these are generators for H1(Eτ ) ' Z2. Take γ1 to

be the image of the line from 0 to 1 in C under the projection C → Eτ . Similarly

let γ2 be the image of the line from 0 to τ . It then follows that:∫
γ1

2πidz = 2πi

∫ 1

0

dz = 2πi and
∫
γ2

2πidz = 2πi

∫ τ

0

dz = 2πiτ.

Similarly:∫
γ1

2πidz = 2πi

∫ 1

0

dz = 2πi and
∫
γ2

2πidz = 2πi

∫ τ

0

dz = 2πiτ .
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Since τ ∈ H, the period vectors (2πi, 2πiτ) and (2πi, 2πiτ) are linearly indepen-

dent over C. It follows that the classes of 2πidz and 2πidz make up a C-basis for

H1
dR(Eτ ).

Note that this result is just “Hodge theory for E(C)”; see Chapter 1 of [7].

We may thus define a complex splitting of the Hodge filtration:

s : H1
dR(E/Y (1))→ ω

which is described locally on sections as:

f(τ)dz + g(τ)dz 7→ f(τ)dz.

This splitting, along with some geometric machinery, can be used to define the

Shimura-Maass differential operator.

In our first step towards such a definition, we use the fact that a class in

H1
dR(Eτ ) is determined by its periods to give an ad-hoc definition of the Gauss-

Manin connection. Consider a de Rham cohomology class η ∈ H1
dR(E/Y (1)) over

some open subset U ⊂ Y (1). For each τ ∈ U let ητ denote the stalk of η at τ , so

that ητ ∈ H1
dR(Eτ ). Then with notation as in the proof of the previous lemma, we

consider the period maps:

pi(τ) =

∫
γi

ητ ,

for i = 1, 2. One can show that these are smooth functions on U . There is thus a de

Rham cohomology class ∇τ (η) ∈ H1
dR(E/Y (1)) defined over U , such that the stalk

of ∇τ (η) at τ ∈ U is the differential with periods given by the vector:(
d

dτ
p1(τ),

d

dτ
p2(τ)

)
.

The Gauss-Manin connection is a sheaf map:

∇ : H1
dR(E/Y (1))→ H1

dR(E/Y (1))⊗ Ω1
Y (1)

described on sections by the formula:

∇(η) = ∇τ (η)⊗ dτ.
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We saw above that 2πidz corresponds to the period vector (2πi, 2πiτ) and 2πidz

corresponds to (2πi, 2πiτ). Note that these are indeed smooth functions of τ on

H. It follows that ∇τ (2πidz) corresponds to the period vector (d/dτ)(2πi, 2πiτ) =

(0, 2πi). We have:

(0, 2πi) = 2πi(τ − τ)−1 ((1, τ)− (1, τ)) ,

so that:

∇τ (2πidz) =
2πidz − 2πidz

τ − τ
.

Similarly, ∇τ (2πidz) is the cohomology class corresponding to the period vector

(d/dτ)(2πi, 2πiτ) = (0, 0), so that ∇τ (2πidz) = 0.

Next we recall the analytic definition of the Serre-Poincare pairing:

〈, 〉 : H1
dR(E/Y (1))×H1

dR(E/Y (1))→ C∞Y (1),

where C∞Y (1) denotes the sheaf of smooth functions on Y (1). If η, η′ are sections

of H1
dR(E/Y (1)) on U , then for each τ ∈ U , the stalk of 〈η, η′〉 is defined by the

formula:

〈η, η′〉τ =
1

2πi

∫
Eτ

η ∧ η′.

In this formula we take representatives for η and η′ and restrict them to the fibre

π−1(τ) ' Eτ . This is well-defined, and gives a smooth function on U . The Serre-

Poincare pairing is perfect, alternating and bilinear. We will use it to define the

Kodaira-Spencer map:

κ : ω2 → Ω1
Y (1)

which is described on sections as:

κ(η ⊗ η′) = 〈∇τ (η), η′〉dτ.

We admit the following theorem without proof:

Theorem 6.1.2. The Kodaira-Spencer map is well-defined. In our particular situa-
tion, i.e. with respect to the relative curve E/Y (1), it is an isomorphism.

Proof. The Kodaira-Spencer map is discussed in many texts on complex algebraic

geometry; for example, consult [46].
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The result of the following computation will be required below:

κ((2πidz)2) = 〈∇τ (2πidz), 2πidz〉dτ

= (2πi)2

〈
dz − dz
τ − τ

, dz

〉
dτ

= (2πi)2 〈dz, dz〉
τ − τ

dτ since 〈, 〉 is alternating,

= (2πi)

(∫
Eτ

dz ∧ dz
)

dτ

τ − τ
.

Now note that dz ∧ dz = −2idx ∧ dy, so that:∫
Eτ

dz ∧ dz = −2iArea(Eτ ) = −(τ − τ).

We thus have κ((2πidz)2) = −2πidτ and hence κ−1(dτ) = −(2πi)−1(2πidz)2. We

point out that if the reader accepts that κ is well-defined, then this computation

verifies that κ is an isomorphism.

All of the ingredients are now in place to define:

δk : Mk(Γ)→Mk+2(Γ).

Given a holomorphic modular form f(τ) of weight k for Γ, consider f(τ)(2πidz)k

as a differential in ωk. The differentials in ωk inject via the Hodge filtration into

Symk (H1
dR(E/H)). We can thus apply the Gauss-Manin connection to obtain:

∇(f(τ)(2πidz)k) = d(f(τ))(2πidz)k + f(τ)∇((2πidz)k)

= f ′(τ)(2πidz)kdτ + kf(τ)(2πidz)k−1∇(2πidz)

= f ′(τ)(2πidz)kdτ + 2πikf(τ)(2πidz)k−1

(
dz − dz
τ − τ

)
dτ

= f ′(τ)(2πidz)kdτ +
kf(τ)(2πidz)kdτ

τ − τ
− kf(τ)(2πidz)k−1(2πidz)dτ

τ − τ
.

This lives in Symk (H1
dR(E/H))⊗ Ω1

H. Apply the splitting s of the Hodge filtration,

which takes dz to zero, to this expression and obtain:

(s ◦ ∇)(f(τ)(2πidz)k) = f ′(τ)(2πidz)kdτ +
kf(τ)(2πidz)kdτ

τ − τ
.



60 6.1. GEOMETRIC PROOF

Now apply κ−1 to obtain:

−1

2πi

(
df

dτ
(τ) +

kf(τ)

τ − τ

)
(2πidz)k+2.

The coefficient in front of (2πidz)k+2 above is (the negative of) δk(f) as defined

previously. It is modular of weight k for Γ since global sections of ωk+2 are invariant
under the action of Γ when regarded as functions on H.

6.1.2 Katz’s two-variable p-adic L-function

The following appears as the first paragraph in V.V. Sokurov’s MathSciNet review

of Katz’s paper [27]:

Recently a group of mathematicians (Kubota, Leopoldt, Serre, Manin,

Mazur, Swinnerton-Dyer, Katz and many others) have discovered a new

land of mathematics a little way off a beaten path put to rights by A.

Weil [47]. The paper under review may be of great help to those who

wish to visit that new land.

In this quotation, Sokurov refers to the theory of p-adic L-functions, and the con-

comitant phenomenon of p-adic interpolation. In [27], Katz constructs a two-

variable p-adic L-function for a quadratic imaginary extension K/Q in which p

splits. Later, in [28], Katz extended this contstruction to CM fields K/F with F an

arbitrary totally real field, but with a restriction on the CM type of K, which agrees

with p being split in K when F = Q. In this more general case, Katz interpolates

certain values of Hilbert modular Eisenstein series (it is worth remarking here that

Shimura’s paper [39] also discusses the algebraicity properties of Hilbert modular

forms).

On page 205 of [28], Katz remarks the following:

In an earlier paper [27], we treated the case of a quadratic imaginary

extension of Q. In that case, the abelian varieties involved are simply

elliptic curves, and we were able to prove the theorems by dipping into

the wealth of classical material available for elliptic curves ... We were

for a long time blinded by these riches to the simple cohomological

mechanism which in some sense underlies them.
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The last sentence above refers to the following technique pioneered in [28] (we

confine ourselves to the case F = Q for simplicity): Katz uses the geometric in-

terpretation of the Shimura-Maass operator discussed in the previous subsection,

which involved a choice of splitting of Hodge filtration of the relative cohomology

of a universal elliptic curve, as well as a p-differential operator, Serre’s θ-operator,

whose geometric definition uses the unit-root splitting of the Hodge filtration.

When one looks at the corresponding fibers of the cohomology over a CM curve,

these two splittings must induce the natural splitting of the fiber (which is simply

the first algebraic de Rham cohomology of the CM elliptic curve under considera-

tion), into its eigenspaces for the CM action on the cohomology of the fiber. Since

the CM action is defined over Q, Katz is able to deduce the algebraicity result of

Shimura. Then, since all three of his splittings of the cohomology agree, he is also

able to deduce p-adic properties of values of modular forms at the CM point by

considering the unit-root splitting.

One might ask if there is a similar geometric description of the results contained

in this thesis. It could help to ellucidate the results above, and perhaps also help

to solve the open problems discussed in the sections which follow. We discuss how

such a rigid analtyic analogue might be formulated in the following subsection.

6.1.3 A rigid analogue

We would like a geometric description of the space of rigid analytic modular forms.

Let Pn denote the n-th symmetric power of the standard right representation for

GL2(Qp). We work with the following concrete model for Pn: let Pn denote the

Qp-vector space of homogeneous polynomials of degree n in the variables u and v.

This space has a right action of GL2(Qp): if p(u, v) ∈ Pn and

γ =

(
a b

c d

)
∈ GL2(Qp)

then (P · γ)(u, v) = P (au+ bv, cu+ dv).

Write O = OHp for the sheaf of rigid analytic functions on the p-adic upper half

plane. Write O(n) for the rigid analytic sheaf O endowed with the right weight n

action of GL2(Qp) defined via the same formula as above. Let Pn = O(n) ⊗Qp Pn

denote the coherent sheaf ofOX-modules onHp endowed with the diagonal action
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of GL2(Qp). This sheaf comes equipped with a natural integrable connection via

the differential d : OX → Ω1
X . We denote this connection by ∇. Note that Pn =

SymmnP1.

Finally we must introduce a subsheaf of Vn corresponding to modular forms of

weight k. Recall that in Chapter 1 this sheaf was the canonical sheaf on a modular

curve. If one attempts to proceed similarly using the Cerdnik-Drinfeld theorem,

then one will obtain a coherente sheaf on X that is too large. This is because in

this case, the canonical sheaf arises from a universal surface over a curve, and so

it does not give rise to a line bundle on X, but rather a sheaf which is locally free

of rank 2. In any case, it is not hard to define the correct line bundle on X whose

global sections recover Sk(Γ).

Let ω denote the subsheaf of V1 defined by the condition that the pull-back of its

sections to Hp are of the form f(z)(u− zv), where f(z) is a rigid analytic function

on the corresponding admissible subset.

Lemma 6.1.3. The sheaf ω is locally free of rank 1 and degree g − 1, where g is the
genus of X. Moreover ω2 ∼= Ω1

X/Qp
and H0(X,ωk) = Sk(Γ).

The short exact sequence

0→ ω → V1 → ω−1 → 0

yields a descending filtration on Vn with FiliVn = 0 for i > n and FiliVn = Vn for

i ≤ 0, and such that FiliVn/Fili+1Vn ∼= ω2i−n for 0 ≤ i ≤ n. In particular we have

FilnVn = ωn. It is hoped that by using this aparatus, and some kind of non-rigid

analytic splitting of the filtration on the sheaves cVn, one might be able to give a

more conceptual definition for our Shimura-Maass operator. This might lead to

a better understanding of the topics discussed in the following sections. It might

also allow one to imitate a Katz style construction of an l-adic L-function for some

prime l 6= p, by interpolating p-adically defined CM values of a rigid modular form

and its Shimura-Maass derivatives.

6.2 Algebraicity of rigid analytic modular forms

Definition 5.1.1 gives a condition for a modular form f to be algebraic. We de-

scribed how one can associate a measure µf on P1(Qp) to a modular form in Sec-
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tion 4.2. If the values of this measure are taken to be analogues for the Fourier

expansion of a classical modular form, then one might guess that the space of mea-

sures µf whose values are all defined over Q is an important Q-subspace of Sk(Γ).

Numerical computations strongly suggest that this space does not coincide with the

space of algebraic rigid analytic modular forms defined via the Cerednik-Drinfeld

isomorphism. Thus, it seems that the most naive substitute for the q-expansion

principle, expressed in terms of the boundary measure associated to a rigid ana-

lytic modular form, fails to hold. This prompts the following question:

Question 6.2.1. Can one formulate a natural condition on the values of a boundary
measure µf associated to a rigid analytic modular form f , for some quaternionic
group defined as in Section 2.1.4, which characterizes the algebraicity condition of
Definition 5.1.1?

We can make this question more precise: for simplicity restrict to weight 2.

Suppose that f ∈ S2(Γ) is an eigenform for the Hecke algebra. Then since the

Cerednik-Drinfeld isomorphism is Hecke-equivariant, some multiple of the pull-

back of f(z)dz under Cerednik-Drinfeld will be defined over Q. Suppose that the

Cp-valued measure µf associated to f takes integer values. Then by the previ-

ous remark, some multiple αfµf corresponds to an algebraic modular form, where

αf ∈ C×p . One can ask: what is the Cerednik-Drinfeld period αf associated to f?

Numerical computations suggest that the period αf honestly depends on the

eigenform f ∈ S2(Γ). For example, if one computes values f(τ)/g(τ) where f

and g ∈ S2(Γ) are distinct eigenforms, and τ ∈ Hp is a CM-point, then by our

main thereom this value should be algebraic once f and g are normalized to be

algebraic. In the Appendix we describe computations of this sort evaluated to

high p-adic precision. LLL-lattice reduction techniques fail to recognize the values

f(τ)/g(τ) as algebraic numbers. This suggests that the relevant periods αf and αg
which rescale f and g to be algebraic forms are not equal, for otherwise they would

cancel one another in the computation of the ratio.

One might hope that a well-known p-adic invariant attached to f describes the

Cerednik-Drinfeld period. We have tested the L-invariant attached to f , as well as

the value of E2 at the semistable elliptic curve associated to f via Cerednik-Drinfeld

and Jacquet-Langlands. Neither of these appear to be equal to the mysterious

Cerednik-Drinfeld period.
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6.3 A rigid analytic Chowla-Selberg formula

Let l be an odd prime number and let K = Q(
√
−l). Let h denote the class number

of K and let ε denote the quadratic character

ε(c) =

(
−l
c

)
.

Let τ1, . . . , τh ∈ H denote distinct SL2(Z)-representatives for the CM-points asso-

ciated to the maximal order OK of K. Let ∆ denote Ramanujan’s discriminant

function, which is a cusp form of weight 12 for SL2(Z) defined over Q:

∆(q) = q
∏
q≥1

(1− qn)24.

Then Chowla and Selberg proved the following remarkable result:

Theorem 6.3.1 (Chowla-Selberg). With notation as above, and with

Γ(s) =

∫ ∞
0

ts−1e−tdt,

one has:
h∏
i=1

|∆(τi)| Im(τi)
6 =

(
1

2π
√
l

)6h ∏
0<c<l

Γ
(c
l

)6ε(c)

.

Proof. See [36].

If one combines this result with Shimura’s Theorem 1.1.4, one deduces an ex-

plicit formula for a possible choice of the CM-period ΩK:

Corollary 6.3.2. The statement of Shimura’s theorem holds with the particular choice
of CM-period:

ΩK =

(
1

2π

)1/2
( ∏

0<c<l

Γ
(c
l

)ε(c)/2h)
.

Proof. Take a (12h)th root of the Chowla-Selberg formula, and note that one may

ignore the terms Im(τi) and
√
l since they are algebraic.

Remark 6.3.3. The formula above is a little ambiguous because we have not de-

scribed how to take the roots which appear within it. However, any choice of roots
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is admissible, as ΩK is only well-defined up to multiplication by nonzero algebraic

numbers.

It would be interesting to find a similar formula for the rigid analytic Chowla-

Selberg period of Theorem 5.3.1. In [22], Gross proves the Chowla-Selberg for-

mula using tools from algebraic geometry. More precisely, he considers the moduli

space Y of abelian varieties of dimension n which are equipped with a fixed po-

larization and complex multiplication by a fixed quadratic imaginary field K =

Q(
√
−d). Gross considers the nth relative de Rham cohomology Hn

dR(A/Y ) of the

universal abelian surface A/Y , and proves that it has a nonvanishing global sec-

tion ω which is horizontal for the Gauss-Manin connection and which satisfies the

following: along a certain abelian variety corresponding to a factor of the Jacobian

of the Fermat curve xd + yd = 1, one can explicitely compute the specialization

of ω in terms of Γ-values and a power of 2πi. Along a fiber corresponding to a

product of CM-elliptic curves E, Gross relates the specialization of ω to the peri-

ods of the canonical differential of E, as well as a power of 2πi. Since the section

ω is horizontal for Gauss-Manin, its periods must be constant, and one thereby

deduces a relation between the periods of E and a product of Γ-values as in the

Chowla-Selberg period (up to an algebraic factor).

The author hopes that a geometric interpretation of this thesis, as discussed in

Section 6.1, might be combined with ideas of Gross [22] and Ogus [32] to yield

a description of the Chowla-Selberg period of Theorem 5.3.1. The author has not

been able to test any conjectures, as we are stymied by the problem of computing

an algebraic rigid analytic modular form, as discussed in Section 6.2.
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Appendix A: Computations

A.1 Method of computation

The author and Marc Masdeu have implemented methods for computing with rigid

analytic modular forms of arbitrary weight arising from rational quaternion alge-

bras in Sage. We briefly explain how these algorithms work; for more details con-

sult the forthcoming paper [15]. Note also that the particular example discussed

below appears in Chapter 6 of [11], although Shimura-Maass derivatives are not

computed there.

Let B/Q be a definite quaternion algebra which is unramified at a finite prime

p, and suppose that Γ ⊆ B× is a congruence subgroup. We will regard Γ as a

cocompact subgroup in GL2(Qp) via a splitting ι : Bp
∼= GL2(Qp) of B at p. The ex-

plicit descriptions of forms and CM-points in what follows are all expressed relative

to this fixed splitting ι.

Recall that the edges of the Bruhat-Tits tree T for GL2(Qp) correspond one-

to-one with the compact open balls of P1(Qp); the ball corresponding to an edge

consists all the ends which pass through the oriented edge. Given a form f on Γ,

we store the moments ∫
a+pnZp

(x− a)kdµf (x)

for a collection of balls a + pnZp which correspond to a “fundamental domain”

for Γ\T . Locally analytic functions can then be integrated by taking linear com-

binations of these moments; for details see [12]. In particular, values of f can be

computed from Teitelbaum’s Poisson-Kernel:

f(τ) =

∫
P1(Qp)

dµf (x)

(x− τ)
.

67
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Note that we store these moments as p-adic number expressed relative to some

finite precision, and that we only store the first k-moments. If one knows the

moments to least k (p-adic) digits, then this equates to knowledge of f(τ) up to

approximately k digits of p-adic accuracy. Note that the moments can be precom-

puted once and for all, and then many locally analytic functions can be integrated

against the corresponding measure dµf .

Note that, if f is of weight k, then formally differentiating under the integral

sign actually gives a valid formula for the value of the Shimura-Maass derivative.

Hence,
df

dτ
(τ) =

∫
P1(Qp)

dµf (x)

(x− τ)2
,

and so

δkf(τ) =

∫
P1(Qp)

dµf (x)

(x− τ)2
+

k

τ − τ

∫
P1(Qp)

dµf (x)

(x− τ)

for all τ ∈ Cp lying in an unramified extension of Qp. Similarly for the iterated

Shimura-Maass derivatives.

A.2 Example

The rational Hamilton quaternions are the definite quaternion algebra B/Q such

that the generators i, j and k satisfy

i2 = j2 = k2 = −1.

The algebra B has discriminant 2, and so is split at all odd primes. We will consider

the case p = 7 below.

We will work with the maximal Z-order R0 ⊆ B which is generated over Z by

the elements 1, i, j and

ω =
1 + i+ j + k

2
.

Alternatively R0 can be described as

R0 =

{
a+ bi+ cj + dk

∣∣∣∣∣ a, b, c, d ∈ Z or a, b, c, d ∈ 1

2
+ Z

}
.

Let K7 = Q7[g]/(g2 + 6g+ 3) denote an explicit model for the quadratic unram-



A.2. EXAMPLE 69

ified extension of Q7. We chose this particular model since it is the one used by

Sage in our computation. We represent elements in K7 as series
∑

i≥0(aig + bi)7
i

for ai and bi integers in the interval [0, 6].

Let ρ = limn 27n denote the Teichmuller lift of 2 in Q7, which is an explicit cube

root of unity. Define a splitting ι : B7 →M2(Q7) by mapping:

ι(i) =

(
0 1

−1 0

)
, ι(j) =

(
ρ ρ+ 1

ρ+ 1 −ρ

)
, ι(k) =

(
ρ+ 1 −ρ
−ρ −ρ− 1

)
.

Note that ι identifies R0 ⊗Z Z7 with M2(Z7).

Let R = R0[1/7], let R1 denote the set of elements of R of reduced norm equal

to 1, and let Γ = ι(R1). Then one can check that Γ\T , where T is the Bruhat-

Tits tree for GL2(Q7), consists of two vertices joined by two edges. The space

S2(Γ) of weight 2 rigid analytic modular forms for Γ is 1-dimensional. A cocycle cf
corresponding to a nonzero form f ∈ S2(Γ) is given by the function taking value 1

on one of the edges of Γ\T , and −1 on the other edge. This is an eigenform, and a

multiple of it is necessarily algebraic in the sense of Definition 5.1.1. The eigenline

spanned by this form corresponds, via Jacquet-Langlands and Cerednik-Drinfeld,

with the line spanned by the unique normalized cusp form of weight 2 on Γ0(14).

Suppose that K/Q is a quadratic imaginary extension of class number ≥ 2 such

that both 2 and 7 are inert in K. Then K embeds into B and there are CM-points

for K; in fact, due to our assumption on the class number, there are at least two

Γ-equivalence classes of CM-points. Let τ1 and τ2 denote representatives in Hp

for two such distinct classes. We do not know if the form f we have selected is

algebraic, but some multiple of it must be algebraic. Thus, the Main Theorem

5.1.5 implies that if f(τ2) 6= 0 then the value

f(τ1)

f(τ2)

is algebraic, regardless of our scaling of f within its eigenline. Both the Chowla-

Selberg and Cerednik-Drinfeld periods cancel in this ratio. The same is true for the

Shimura-Maass derivatives.

If K = Q(
√
−51) then both 2 and 7 are inert in K and the class number of K/Q
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is 2. Consider the two quaternions

q1 =
1− i+ j − 7k

2
, q2 =

1− i− j − 7k

2

in R0. These both have reduced trace equal to 1 and reduced norm equal to 13.

Since OK is generated over Z by 1 and

τ =
1 +
√
−51

2
,

which has reduced trace equal to 1 and reduced norm equal to 13, we obtain two

embeddings K ↪→ B by mapping τ to q1 and q2, respectively. Embedding these

quaternions into M2(Q7) via ι and finding the fixed points of the corresponding

matrix acting on Hp produces the following two CM-points as elements of Kp,

which are not equivalent under Γ:

τ1 = (6g + 1) + (4g)7 + (6g + 6)72 + (4)73 + (g + 4)74 + (4)75 + (6g + 2)76 + · · ·

and

τ2 = (2g)+(5g+1)7+(4g+2)72 +(3g+6)73 +(6g+3)74 +(6g+4)75 +(g+1)76 + · · · .

We computed these values to over 100 digits of 7-adic accuracy. Then, using the

overconvergent methods of Greenberg [20], we computed the moments of the

measure µf associated to f . Then we used the ideas of Darmon-Pollack [12] to

compute the value

f(τ1)

f(τ2)
= (4g+2)+(4g+5)7+(4g+2)72+(5g+1)73+(5g+4)74+(2)75+(g+1)76+· · ·

to 100 digits, using the moments of µf . We found that this value agrees with a root

of the polynomial

p(X) = X4 −X3 +
113

36
X2 − 1

2
X +

169

81

to 100 digits of accuracy. An analogous computation also allowed us to compute

the corresponding values of the first two Shimura-Maass derivatives of f . We found

the following values:
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r Minimal polynomial of (δr2f)(τ1)/(δr2f)(τ2)

0 X4 −X3 + 113
36
X2 − 1

2
X + 169

81

1 X4 − 95
18
X3 + 5627

432
X2 − 37465

2916
X + 28561

6561

2 X4 + 83
12
X3 + 633593

46656
X2 − 29401

8748
X + 4826809

531441

Since we only performed the computation with 100 digits of accuracy, we were not

able to recognize the ratio of the third derivatives or higher as algebraic numbers.

Notice that the polynomials above are all irreducible quartics over Q. This is

due to the fact that N+ = 1 in our example, so that we were working with the

norm 1 elements in a maximal Z[1/p]-order of B. Moreover the embeddings of

K → B corresponding to our CM points were defined via optimal embeddings of

the ring of integers of K into the corresponding maximal order of B. Hence, by

the theory of complex multiplication, the values computed above are defined over

the Hilbert class field H of K = Q(
√
−51), which is obtained by adjoining

√
−3 to

K. Indeed, the values computed above do lie H. Since H is a degree 4 extension

of Q, this explains why the degrees of the polynomials above are 4. Note also that

we chose K to have class number 2 so that there would be two inequivalent CM

points. If we worked with K of class number 1 and optimal embeddings of its ring

of integers, then in computing the ratios above we would have only been picking

up an automorphy factor. Our computation with class number ≥ 2 is thus more

interesting.

We finish by remarking that it would be interesting to study how the height of

the value
(δrkf)(τ)

Ωk+2r
K

∈ Q

grows as r increases. This would be interesting from both theoretical and com-

putational vantage points. For example, if one is interested in recognizing such

p-adic values as algebraic numbers in a completely algorithmic fashion, then one

requires a priori estimates on the height of the value. In this way one knows before

beginning the computation of the lined quanitity above how many p-adic digits of

precision are necessary to recognize the output as an algebraic number.
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