CLASSIFICATION OF SOME THREE-DIMENSIONAL VERTEX OPERATOR
ALGEBRAS

CAMERON FRANC AND GEOFFREY MASON

ABSTRACT. We discuss the classification of strongly regular vertex operator algebras
(VOAs) with exactly three simple modules whose character vector satisfies a monic
modular linear differential equation with irreducible monodromy. Our Main Theorem
provides a classification of all such VOAs in the form of two infinite families of
affine VOAs, several other known examples, in addition to eleven possible exceptional
character vectors and associated data that we call the U-series. Only two VOAs are
known to realize any of the members of the U-series and we provide evidence that
there are no more. The idea in the proof of our Main Theorem is to exploit properties
of an algebraic family of vector-valued modular forms solving a family of modular
linear differential equations in terms of generalized hypergeometric series.
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1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREM

It is a natural problem to classify (2-dimensional) rational conformal field the-
ories, which we conflate with the classification of (chiral) rational vertex operator
algebras V' (VOAs). In order to do this one needs some invariants of V. They should
be computable and yet capable of reflecting enough of the structure of V' so that
they can distinguish between isomorphism classes of VOAs, or at least come close to
this ideal. In fact we work with strongly regular VOAs V [29]. Among other prop-
erties, these are simple VOAs of CFI-type which are also rational and Cs-cofinite. In
particular, they have only finitely many (isomorphism classes of) simple modules.

Before continuing, let us develop some notation. If V' has n simple modules
V= M,, My, ..., M,_, itis convenient to say that V is n-dimensional. The ¢-character

The first listed author was supported by an NSERC Discovery Grant.
The second listed author was supported by grant #427007 from the Simons Foundation.
1



2 CAMERON FRANC AND GEOFFREY MASON

of M, is defined in the usual way, namely
fi(r) = Trag, 4O/

Notation here is standard, and in particular V' has central charge ¢, 7 lies in the
complex upper half-plane #, and ¢ := ¢*™". The character vector of V is the n-vector

F(T) = (f07f17 .- '7fnfl)Ta

and we let ch,, denote the span of the f;(7). By Zhu’s Theorem [36]], chy is a right
I'-module, where I" := SLy(Z) and the action is induced by v : fi(7) — fi(y7) (v € ).

Another way to state these facts is in the language of vector-valued modular
forms (VVMFs): there is representation p : I' — GL, (C) such that

F(yr) = p(7)F(7),

which says that F'(7) is a VVMF of weight zero on I'. For a survey of VVMFs, including
their connections to Riemann-Hilbert type problems (which we consider below) but
not their applications to VOAs, we may refer the reader to [17].

A striking property of the character vector is its modularity [21], which may be
stated as follows: the kernel of p is a congruence subgroup of I'. This entails that each
g-character f;(7) is a modular function of weight zero on some congruence subgroup
of I". One might therefore think that the character vector could serve as a good
invariant for V' of the type we are seeking. In fact experience shows that there is a
more useful and more subtle invariant that we will explain here: it is a modular linear
differential equation (MLDE) cf. [17]. For the case at hand this may be taken to be a
linear differential equation of weight k with modular coefficients of the form

(1) (PoD"+ PD" '+ 4+ P,_1D+ P,)u=0.

Here, each P, € C[E,, Es] is a holomorphic modular form of weight & + 2¢ — 2n and
D is the modular derivative defined on modular forms of weight & by the formula
Dy = q% — %EQ. In this paper, since the character vector of a VOA is of weight zero,
we require the case where D = D, and so

Dn:DQn_QO"'ODQODO.

Then one knows that there is an MLDE of some weight k whose solution space is cb,.

The MLDE may be taken as the desired invariant of V. Not only does it
implicitly include ch,, as the space of solutions of (1)), but in addition it carries a
monodromy representation defined by analytic continuation of the solutions around
the singularities. Because of the special nature of the differential equation this
monodromy is essentially the representation p of I" acting on ch,,.

The idea of characterizing VOAs according to their associated MLDEs in this way
was first proposed by Mathur, Mukhi and Sen in [33]], where they considered the case
that V' is 2-dimensional and the MLDE has weight zero. This trend has recently been
taken up by mathematicians. The work of [33] was given a rigorous mathematical
treatment in [32]]. And in an interesting development, Tener and Grady developed
the case of certain 2-dimensional extremal VOAs [5]. Arike, Nagatomo, Kaneko and
Sakai wrote a very valuable paper [1]] in which they studied the MLDEs associated to
WZW models of dimension at most 20. In more specialized work Arike, Nagatomo and
Sakai gave a characterization of some low-dimensional Virasoro VOAs according to
their MLDEs [2]], and Mason, Nagatomo and Sakai characterized some 3-dimensional
VOAs of central charges 8 and 16 along similar lines [31].
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The purpose of the present paper is to prove the analog of the Mathur-Mukhi-
Sen Theorem [33], [32] in dimension 3. The extra dimension gives rise to a great
deal of additional complication and difficulties. Some of these were discussed in [30]
where our Main Theorem appeared as Problem 4. In particular, while it has long
been recognized that VOAs have a strong arithmetic vein, the current proof of Main
Theorem [1]includes an unprecedented amount of number theoretic complications.

We shall now state our main result precisely and outline its proof: we charac-
terize 3-dimensional strongly regular VOAs V whose associated MLDE has weight
0 so that it takes the form

(D? +aEyD + bEg)u =0, (a,b€ C).

An MLDE of weight zero such as this is said to be monic. Additionally, we assume
that the monodromy p is an irreducible representation of I'. With these conditions
and definitions we establish the following main result:

Theorem 1 (Three-dimensional Mathur-Mukhi-Sen). Let V' be a strongly regular VOA
with exactly three simple modules. Suppose that the q-characters of the simple V-modules
furnish a fundamental system of solutions for an MLDE of order 3 that is (i) monic, and
(ii) has irreducible monodromy. Then one of the following holds:

(a) V is isomorphic to one of the following:

Az, Aga,

By,

Dyy, (#0 (mod 4),
Ay,

Vir(cg’4), Vir(C277).
(b) V lies in the U-series (cf. Remark @)

Remark 2. The U-serieq]| refers to a series of eleven sets of datum that uniformly
describes the main features of several potentially new VOAs which satisfy the as-
sumptions of Theorem |1, We say that a VOA V lies in the U-series if the data as-

sociated with V' lies in this series. For example, the central charges lie in the range
27 29 45 47
—

=%5,%, -5, 5. Among the VOAs in the U-series are Gerald Hohn’s Baby Monster
VOA VB?O) [20], which is the even part of the Baby Monster super VOA V B, and the
affine algebra Es,. Indeed, members of the U-series are closely related to the types
of VOAs discussed in Hohn’s thesis [20]. It is surprising that VOAs in the U-series —
if they exist — appear to be closely related to the holomorphic VOAs of central charge

24 on the Schellekens list [34]. We consider VOAs in the U-series in greater detail in
Section [9]

Theorem [1is proved by exploiting the fact, proved in [[17], that a monic MLDE
of degree three can be solved in terms of generalized hypergeometric series. This
solution describes an algebraic family of modular forms that vary according to choices
of local exponents at the cusp for the MLDE. The important point for our analysis is
that this family of modular forms has Fourier coefficients that are rational functions
of the local exponents. Since our goal is to classify specializations of the family that
have Fourier coefficients that are nonnegative integers, we proceed as follows:

177 stands for unknown.
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(1) It is known that the monodromy representation is congruence, and in Section
we give a direct proof of this fact (cf. Theorem [7). Indeed, together with
the results of [18]], our results establish the unbounded denominator conjecture
for 3-dimensional irreducible representations of the modular group (whereas
[18] treated the case of imprimitive representations). The 2-dimensional case
was proved in [16]. The main result of Section 3| details the 3-dimensional
irreducible representations of I' and makes precise some computations from
[4].

(2) Next in Section |5 we study the divisors of the first nontrivial Fourier coeffi-
cients of the character vector. The signs of the coefficients are constant on
the connected components of the complement of the divisors, so that we may
restrict our search to a reasonably small and manageable subset of all possible
parameters. This is explained in Theorem 24| and it is displayed graphically
in Figure [2] on page

(3) The remaining characters are tested for integrality in Section [} where we use
arithmetic properties of hypergeometric series discussed in [15]. The output
is one infinite family of possible character vectors, in addition to a finite list
of additional exceptional possibilities tabulated in Figures (3| and 4 on pages
and

(4) Next in Section [7| we apply further tests arising from the theory of VOAs,
namely symmetry of the S-matrix and the Verlinde formula [21], to whittle
the remaining examples down to the statement of our Main Theorem

(5) In Section [8) we complete the proof of Theorem [1| by discussing the infinite
family of possible character vectors, and we explain how they are in fact real-
ized by VOAs.

Finally, Section[9]discusses the U-series and suggests that nine of the eleven examples
may not in fact correspond to a VOA. In Subsection [I.1]we conclude this introduction
with some more detail on the VOAs that do intervene in Theorem

Acknowledgements. We are indebted to the following individuals for helpful
discussions, supplying references, and for answering our questions: Chongying Dong,
Gerald Hohn, Kiyokazu Nagatomo, and Ivan Penkov.

1.1. The known examples. There are many strongly regular vertex operator alge-
bras having only three simple modules. In this Subsection we discuss those that
intervene, directly or indirectly, in the calculations of the present paper. There is a
wealth of information about affine algebras and the MLDEs that are satisfied by the
characters of their simple modules in various papers due to Arike, Kaneko, Nagatomo
and Sakai. In particular we rely on [1] for a number of the assertions in the following
paragraphs.

There is a numerical criterion giving necessary and sufficient conditions that
the components of a vector-valued modular form constitute a fundamental system of
solutions for a monic MLDE [28]. Inasmuch as this criterion involves the modular
Wronskian (loc. cit.) it is called the nongero Wronskian condition in [1]. Be that as it
may, [1] proves that the affine algebras in Table |1|satisfy (i) the nonzero Wronskian
condition, and (ii) they have 3 simple modules. In this Table we list for convenience
the central charge ¢ and the conformal weights 5, h, of the nonvacuum simple mod-
ules for each of these affine algebra VOAs, as well as for two familiar Virasoro VOAs
in the discrete series. That the nonzero Wronskian condition is also satisfied by these
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VOA c hy, ho

Ao s |4

Ayq 4 §, %

By, £>2 2641 | 2641

Dy, £ >4, £ #0 (mod 4) £l
Vir(cy,7) —% —%, —%

Vir(es 4) L i1

TABLE 1. Some VOAs with three simple modules

Virasoro algebras is well-known, cf. [2]. The meaning of the notation should be
self-evident.

Our discussion so far has established that the simple modules of the VOAs in
Table [1| have ¢-characters that form a fundamental system of solutions for a monic
MLDE of order 3. Another example of such a VOA is Gerald Hohn’s Baby Monster
V B! [20]. The MLDE for this algebra is studied in [2].

Next we discuss the nature of the monodromy representation p of I' in these
cases. To begin with, it is an easy calculation (and a special case of a Theorem of
Tuba and Wenzl [35]) that a necessary condition for the irreducibility of p is that
the T-matrix p(7T') has distinct eigenvalues. In the cases at hand, these eigenvalues
are {e=2mic/2 2milhi—e/24) o2milha=c/24)1 " In the language of monodromy, this means
that no two of the local indices at oo can differ by an integer. These local indices are
{—35, M1 — 53, h2 — 57} Incidentally, this is also the required condition to guarantee
that the MLDE has a fundamental system of solutions expressible in terms of the
generalized hypergeometric function 3F, (cf. Subsection [2.3). In any case, we see
from Table |1| that if / = 0 (mod 4) in the case of D, that p(7") indeed has repeated
eigenvalues, so that the monodromy is not irreducible and the corresponding affine
algebras D, do not appear in the statement of our Main Theorem.

For the remaining cases in Table [1|the reader may notice that a number of them
have some h; equal to  or 3 while the other ; has denominator dividing 16. It is a
consequence of our later analysis and the results in [18] that in these cases p is an
imprimitive irreducible representation and further that it is a congruence representation
in the sense that ker p is a congruence subgroup of I'.

On the other hand, the cases A,; and Vir(cy7) involve a prime p = 5 or 7 in
the denominators of the conformal weights, and in these cases it will follow from
Section that p is an irreducible primitive congruence representation, and that the
monodromy group p(I') has a normal subgroup isomorphic to the simple group Ls(p)
(in marked contrast to the imprimitive case, where the monodromy group is solvable).

This completes our introductory discussion of the known examples.

2. BACKGROUND ON VOAS

2.1. The invariants ¢, ¢, /. In this Subsection we discuss the numerical invariants
¢, ¢ and ¢ associated with a strongly regular VOA V=(V Y, 1,w) that we will use
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in the following Sections. For additional background and discussion we refer the
reader to [29]. We note that one of our results, Theorem (3, is new and improves
upon an inequality of Dong and Mason [10]]. In this Subsection we do not make any
assumptions about the number of irreducible modules that V' may have, merely that
they are finite in number.

The invariant ¢, the central charge of V, is of course well-known and a standard
invariant that is part of the definition of V. We sometimes write ¢ = ¢y. Because V'
is strongly regular then it has only finitely many (isomorphism classes of) irreducible
modules, which we label as M, M, ..., M, _,. And because V' is necessarily simple
then one of the M; is isomorphic to V, and we will always choose notation so that
V' = M,. Each M, has a conformal weight h; defined to be the least nonvanishing
eigenvalue of the L(0)-operator. Thus M; has (conformal) grading M = &,>0M, 1.,
and the ¢-character of M; is defined by

2) qrehar M; i= Tryg, 7O/ = =2y " dim My g™

n>0
Throughout this paper we use the notation
m := dim V;.
In particular, and as part of the definition of a strongly regular VOA, we have

g-char V := Try ¢H(0)—¢/24 = 4=/ Z dimV,q¢" = q*C/M(l +mq+...)
n>0

We note that ¢ and each h; lies in Q, the field of rational numbers [8].
The effective central charge ¢ = ¢y is defined as

¢:=c— 24hmpin

where hy, is the least of the rational numbers h;. Note that hy = 0 by our convention,
in particular we always have ¢ < ¢, and of course ¢ € Q. The effective central charge
will play an important réle in our efforts to characterize certain VOAs. Its relevance
is partially explained by noticing that among the set of g-characters (2)), the least of
the leading ¢-powers is precisely ¢—?.

The invariant ¢ is defined to be the Lie rank of V;. It is well-known that the
homogeneous space V) of a strongly rational VOA carries the structure of a Lie algebra
with respect to the bracket [ab] := a(0)b. Indeed, V; is a reductive Lie algebra [10].
Then / is the dimension of a Cartan subalgebra of V;. The following equality involving
¢ and ¢ is known (loc. cit.)

¢>/¢ and ¢=0 onlyif V =C.

In particular, if V' # C then at least one of the ¢-characters has a pole at ¢ = 0.

In [[10] it was shown that the equalities ¢ = ¢ = ¢ characterize lattice VOAs
Vi (some positive-definite even lattice A), and the authors expected that the equality
¢ = ¢ should suffice to characterize this class of VOAs. Here, we shall prove this and
more.

Theorem 3. Suppose that V' is a strongly regular VOA satisfying ¢ < ¢ + 1. Then ¢ = ¢.
In particular, if ¢ = ¢ then V is isomorphic to a lattice theory V) for some even lattice A.

Proof. We shall do this by modifying the proof of Theorem 7 of [29]. Theorem 1 of
[29] says that V' contains a subVOA 7' C V' with the following properties:
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(a) T is aconformal subalgebra of V,i.e., V and T have the same Virasoro element,
and in particular ¢y = cr;

(b) T is a tensor product 7" = W ® C of a pair of subVOAs W isomorphic to a
lattice theory V), of rank ¢, and C isomorphic to a discrete series Virasoro VOA
Vir(cpq)-

Actually, in this set-up we have 0 < ¢, , < 1, so that C is in the unitary discrete series.
We have the following series of inequalities that proves what is needed:

cy < €y < O = Cvy CVir(ep,g) = CVACVir(ep,q) = CT = Cv-
Here, the first inequality was pointed out before; the second inequality holds because
T is a conformal subalgebra of V; the first equality holds because effective central
charge is multiplicative over tenor products; the second equality holds because cen-
tral charge and effective central charge coincide for both lattice theories and unitary

discrete series of Virasoro VOAs; and finally the third equality holds because central
charge is also multiplicative over tensor products. O

As a corollary of this proof, we have:

Corollary 4. Suppose 2c € Z. Then one of the following holds:

@c—(>1;
(b)é—(=fandc=c
(e=/l=c

Proof. If (a) is false then ¢ — /<1 and Theorem [3|tells us that ¢ = c. Moreover, as the
proof shows, V' contains a conformal subVOA isomorphic to Vi ® Vir(c,,) where A is
an even lattice of rank /. The Virasoro tensor factor lies in the unitary discrete series
because its central charge is less than 1. It follows that there is an integer z > 2 such
that

Because 2¢ € Z, this can only happen if z = 2 or 3. These two possibilities correspond
to (c) and (b) respectively. This completes the proof. O

2.2. The space ch,, of g-characters. We retain the notation of the previous Subsec-
tion and in particular V' denotes a strongly regular VOA. We let ch,, denote the space
of functions spanned by the g-characters of V. If we identify ¢ in the usual way as
an exponential ¢ := > with 7 in complex upper half-plane H, then Zhu proved [36]
that each g-char M; may be considered as a periodic function holomorphic in H with
the given ¢-expansion as its Fourier series. In this way ch,, may be viewed as a space
of holomorphic functions in . Zhu proved much more, namely that ch,, defines a
vector-valued modular form of weight 0 — see [[17, 18] for discussions of vector-valued
modular forms relevant to the classification problem at hand.

For the rest of this Subsection we assume that dim V' = 3 and that ch,, is the
solution space of a monic MLDE that has an irreducible monodromy representation
p: SLy(Z) — GL(chy,) cf. [17,[18]. In particular, the MLDE in question must look like

(3) (D3 + aEyDy +bEg)f =0, a,be Q.

Here E, and Ej are the usual holomorphic Eisenstein series of level one and weights
4 and 6 respectively. In [[17, 18] this MLDE arose as the differential equation satisfied
by forms of minimal weight for p. It is worth noting that the form of minimal weight
for a given representation (and choice of exponents for p(7)) is rarely 0, so that
the modular forms arising as character vectors of VOAs are almost never of minimal
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weight. Nevertheless, the computations of [17,18]] may be used to study the solutions
of equation (3]), and we discuss this next.

Because p is irreducible it is easy to see, and it is a special case of a result of
Tuba-Wenzl [35]], that the T-matrix p(7") has distinct eigenvalues. A general result [8]
says that p(7") has finite order (although in the present context this can be seen more
directly), and in any case there are distinct o, 71,72 € QN [0,1) and a basis of cb,,
such that if we assume that p is written with respect to this choice of basis then

e?ﬂir() 0 O
(4) pTy=1| 0 im0

O 0 6271'1'7‘2

Because ch, spans the solution space of the MLDE then it is easy to see
that the three eigenfunctions for p(7') may be taken to be the ¢-characters of three
irreducible V-modules, and that moreover we may take the first of these V'-modules
to be V = M,. Let M, M, be the other two irreducible V-modules. The character
vector of V' is thus the vector-valued modular form

fo(7)
F(r):= | fi(7)
fa(7)
where
fO(T) — TI'V qL(O)—c/24 _ q—c/24 + O(ql—c/24),
fz(T) — Tr]VIi qL(O)—c/24 — dim(Mi)hiqhi_C/%L + O(q1+h¢—c/24)7 i = 17 27
and furthermore
o = —ag (mod Z),

ri = hi—= (modZ), =12

T 24
There is an important identity that accrues from the special shape of the MLDE
([3B), namely:

Lemma 5. The following hold:

(@ ¢=8(hy + hy — %),
(b) det p(T) = —1.

Proof. (a) The indicial equation (at co) for is readily found to be
2 — 12?4+ (a+ L)z +b=0,

and in particular the corresponding indicial roots sum to ;. However these roots are
the leading exponents of ¢ for the functions f;(7) (=0, 1,2), namely —;, h; — 5; and
hy — 5. Part (a) of the Lemma follows immediately.

As for (b), using (a) we have det p(T) = e2mi(rotritr) = 2rilhitha—c/8) — 1 [

2.3. Things hypergeometric. It is fundamental for this paper that with a suitable
change of variables the MLDE becomes a generalized hypergeometric differential
equation that is solved by generalized hypergeometric functions ;F,. This circum-
stance is explained in [17, 18] where, in particular, motivation for using the level 1
hauptmodul K : H U{oc} — P!(C) defined by

B3 1728

K= = = 1728
B -E ol
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is provided. The well-known paper of Beukers and Heckman [4], which describes
the monodromy of all generalized hypergeometric differential equations of all orders,
may also be referenced here We shall only need the case of order 3. In terms of the
differential operator 0y := the MLDE () becomes (cf. [17], Example 15)

K e,
(9;5( 2K+1 91{ 1§g+11 [?KQK + -t K) F=o0.

Following [4]], Section 2, upon multiplying the previous differential operator by 1 — K

we obtain the following alternate formulations:

{0k + 51— )0k + B2 = 1)(0x + B3 — 1) — K(0k + a1)(0x + a2)(0x +a3)} f =0
for scalars «q, . .., (5 satisfying

a1+ ag +ag =1,
Q10 + Qi3 + Qg = g,
(5) oo = 0,
i+ P2+ pPs—3=—3
Bri=1)(La—1)+ (i —1)(Bs— 1)+ (B2 — 1)(Bs — 1) = & +a,
(Br = 1)(B2 = 1)(Bs —1) =b.
The local indices at the three singularities X' = 0, 1, oo are as follows
1—p1, 1 =0, 1—p53 atK =0,
(6) O[1:O,Oé2:%7013:§ at K = oo,
0,1, 3 at K = 1.

Inasmuch as K(co) = 0, K(e*™/?) = 0o and K(i) = 1, these sets of indices
correspond to the local monodromies p(7), p(R), p(S) respectively. For example, we
see that

det p(T') = —1, det p(R) = 1, det p(S) = —1.

The generalized hypergeometric function 3 F, is defined by

(al)n(a2)n(a3)n <
3 2((“,612,&3, 1, 272) +Z (bl)n(bQ)n TL!’

where (t), = t(t + 1)...(t + n — 1) is the rising factorial. Here, ay,as,as, by, by are
arbitrary scalars subject to the exclusion that by, by are not nonpositive integers. With
this convention, 3F, converges for |z| < 1, has singularities at = = 0,1, 00, and is
defined by analytic continuation elsewhere.

With the assumption that no two of the ; differ by an integer, a fundamental
system of solutions near K = 0 of our hypergeometric differential equation is given
as in equation (2.9) of [4] by

K'Y PuR(T+ o — B, 1 +as— B, 1 +ar — By 1+ Bo — Bi, 1+ Bz — Bi; K)
(7) K'Y PaBy(1+aq — Boy 1+ s — fBo, 1+ g — Boy 1+ 81 — Bo, 1 + B3 — Ba; K)
K'Y, (1 + o — Bs, 14+ az — B3, 1 +aq — Ba; 1+ By — B, 1+ By — B3; K)

In this way one obtains explicit and useful formulas for the character vector F(r)
of Subsection We shall exploit this hypergeometric formula, which describes a
family of vector-valued modular forms varying over a space of indices for the differ-
ential equation (3)), to classify possible character vectors of VOAs having 3 irreducible
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modules and irreducible monic monodromy. The key points are that the Fourier coef-
ficients of this family are rational functions in the local indices, and that the arithmetic
behaviour of these coefficients are very well-studied, cf. [13], [15].

Remark 6. The standard formulas in are normalized so that the lowest order terms
have coefficient equal to 1. As discussed in Subsection the character vector F(r)
of a VOA has a different normalization, where the lowest order coefficient of the ith
coordinate is dim(M/;),,. When i = 0, so that M, = V, this dimension is 1, which
agrees with (7). However, the other two coordinates of the character vector F'(7) are
not normalized in this way, and so below we shall need to include additional scalar
factors in the second and third coordinates of F'(7). In light of the symmetry of the
S-matrix arising from a VOA [21], it would be convenient to write down a basis of
solutions as in such that p(S) is symmetric. This would then yield an appropriate
normalization for applications to VOAs. A similar remark applies to »F; and VOAs
with two simple modules.

3. CLASSIFICATION OF THE MONODROMY

The purpose of this Section is to enumerate the possible monodromies p of the
MLDE attached to ch,, (cf. Subsection [2.2). Essentially, this amounts to cataloguing
certain equivalence classes of 3-dimensional irreducible representations of SLi(Z).
We shall do this, and in particular we will calculate the possible sets of exponents r;
of the T-matrix (4). These rational numbers (and in particular their denominators)
will play an important role in the arithmetic analysis in later Sections.

In [4] Beukers and Heckman described the monodromy of all hypergeometric
functions ,, F,,_1, so in principle they already solved the problem that concerns us in
this Section because, as we have explained, our MLDE is hypergeometric. However
there are several reasons why we prefer to develop our results ab initio. Firstly, the
results of Beukers and Heckman are couched indirectly in terms of what they refer to
as scalar shifts, making their general answer that applies to all ranks too imprecise for
our specific purpose. Secondly, they work with representations of the free group of
rank 2 whereas our monodromy groups factor through the modular group SLy(Z). So
the question of the modularity of p does not arise in [4]. Finally, we anticipate that
the details of our explicit enumeration will be useful in further work involving MLDEs
of order 3.

Some of the main arithmetic results are summarized in the following:

Theorem 7. Let V' be a strongly regular VOA V and suppose that the third order MLDE
associated with ch,, is monic with irreducible monodromy representation p. Then p
is a congruence representation, and one of the following holds:

(1) pis imprimitive and both h, and h, are rational with denominators dividing 16.
Moreover, either
(a) one of hy or hy lies in 37 or
(b) the denominators of hy and hy are equal to each other
(2) p is primitive and the denominators of hy and hs are both equal to each other
and to one of 5 or 7.

We describe how to classify the representations of Theorem [7, and give more
detailed information about them, in the following sections.
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3.1. Some generalities. We begin with some general facts about I' and the repre-
sentation p that we shall need.

Let I' := SLy(Z) and let U be the left C[I'|-module furnished by the represen-
tation p of I" associated to our MLDE (3).In effect, U = cb,,, though this particular
realization of U will be unhelpful in this Subsection. We use the following notation
for elements in I':

() () ()

Lemma 8. The following hold:

(@) If y € " then det p(y) = £1.
(b) p(S?%) =1L

Proof. Because p is irreducible then p(R) has the 3 cube roots of unity as eigenvalues,
and in particular det p(R) = 1. However I' = (R, T), and we have seen in Lemma
part (b) that det p(T) = —1. Now part (a) of the present Lemma follows.

To prove part (b) assume that it is false. Then p(S?) = —I, and it follows
from (a) that there is a subgroup G < T of index 2 such that I' = G x (S?). But
this is impossible, because G must contain the congruence subgroup I'(2), whereas
S? € T'(2). This completes the proof of the Lemma. O

Part (b) informs us that p is an even representation, i.e., it factors through the
quotient PSLy(Z) := I'/(+1). Furthermore, we have

Corollary 9. The subgroup of p(I") that acts on U with determinant 1 has index 2.

Proof. This follows from Lemmas [8|(a) and [5|(b). O

The next result is well-known. We give a proof for completeness.

Lemma 10. The following hold:

(a) Suppose that N < T and that T'/N = Ly(p) (p = 5 or 7). Then N = T'(p)(S5?).
(b) Ag = Ls(9) is not a quotient of I'.

Proof. The proofs of each of these assertions are essentially the same. We deal with
(a) and skip the proof of (b). We may, and shall, calculate in the group I'/{+1}.

Part (a) is essentially explained by the automorphism group PGLy(p) of Lo(p),
which has order 336 if p = 7 and order 120 if p = 5.

Count ordered pairs of elements of orders 2 and 3 that generate the abstract
group Ls(p): if this set is denoted by X, we claim that X is a PGLy(p)-torsor, i.e.,
PGL2(p) acts transitively (by conjugation) on X and |X| = |[PGLy(p)|. The action is
evident, so it suffices to check the cardinality of X.

For example, in Ly(7): the total number of pairs of elements of order 2 and 3
respectively equal 21 - 56, whereas the number of Ss3-pairs is 6 - 28, the number of
Ay-pairs is 2 - 7- 24, and the number of S;-pairs is 2 - 7 - 24. Therefore we find that the
number of Ly(7)-pairs is 21 - 56 — 12(14 + 28 + 28) = 336.

This proves the claim for p = 7, and that for p = 5 is even easier: there are 300
pairs altogether. Of these, 6 - 10 generate S; and 3 - 5 - 8 generate A4. This leaves
300 — 60 — 120 = 120, as claimed.
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Finally, let v : T'/{#1} — Lo(p) be reduction mod p, and let ¢ : T'/{£-1} — Lo(p)
be any surjection.

L/{£l} . Ly(p

)
\ ja
Ly (p)

Because X is a PGLy(p)-torsor, there is a € PGLy(p) that makes the diagram com-
mute. Therefore, ¢ = aov has kernel I'(p)(S?)/(S5?). This completes the proof of part
(a) of the Lemma. 0

3.2. The imprimitive case. Suppose that N < T' is a normal subgroup. Suppose
further that the restriction U|y of U to N is not irreducible. Then there is a direct sum
decomposition into 1-dimensional N-submodules

U|N§U0@U1@UQ

and there are just two possibilities for the Wedderburn structure, namely

(i) (One Wedderburn component) the U, are pairwise isomorphic as N-modules;

(ii) (Three Wedderburn components) the U, are pairwise nonisomorphic as N-
modules, and they are transitively permuted among themselves by the action
of T.

Care is warranted because the U; may not be the three T-eigenspaces. If case (ii)
pertains, the representation p is called imprimitive. Otherwise, it is primitive.

Lemma 11. Suppose that N has one Wedderburn component. Then p(N) C Z(p(T"))
and p(N) is isomorphic to a subgroup of Z/6Z.

Proof. By hypothesis, each element v € N is such that p(v) acts on each U; as mul-
tiplication by the same scalar. In other words, p(~) is a scalar matrix. As such it lies
in the center Z(p(I")). This proves the first assertion of the Lemma. Suppose that A
is the eigenvalue for such a p(7). Then we must have \® = 1 by Corollary [9} and the
second assertion of the Lemma follows. O

We now assume that p is imprimitive, and choose a maximal element K in the
poset of normal subgroups K; < I' with the property that U], is not irreducible. Let
the Wedderburn decomposition be

U‘K:WO@W1®W2.

Note that elements of K are represented by diagonal matrices, whence p(K) is abelian.

By assumption, I" permutes the subspaces W, among themselves and acts tran-
sitively on this set. The kernel of this action is a normal subgroup leaving each W;
invariant, and by the maximality of K, it is none other than K itself. Hence I'/K is
isomorphic to one of Z/3Z or S, being a transitive subgroup of S; in its action on 3
letters.

It follows from the previous paragraph that one of the powers 7 (s = 1, 2, 3) lies
in K. It is well-known (e.g., [24]) that the normal closure of 7% in I" is the principal
congruence subgroup I'(s). Hence I'(s) C K. Now note that because K # I' then
s # 1.

Next we show that the assumption I'/K = Z/3Z leads to a contradiction, so
assume it is true. Then K is the unique normal subgroup of index 3, and as such
it has just three classes of subgroups of order 4 which generate K. It follows that
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K/K'(S8%) = (Z/2Z)*. But p(K) is abelian, hence p(K) = (Z/27)*, K = I'(3)(S?),
and I'/K = A,. But then p(T') has order 3, contradicting Lemma [5|(b).

This reduces us to the Case when I'/K = S3;. Suppose also that s = 3. Then
R and T jointly generate a subgroup of index 2 in I', a contradiction because they
are generators of I'. It follows that s = 2. In this case we must have K = I'(2)
because T'/T'(2) = S;. Now I'(2)/(S?) is a free group of rank 2. Therefore because
p(K) is abelian it is a homocyclic quotient of Z? (remember that p(S?) = I). Now
because p(T') has distinct eigenvalues, then it cannot have order 2. Therefore p(7?)
is a nonidentity torsion element of p(K). This implies that p(K) = (Z/tZ)? for some
integer ¢, and in particular p(T") is finite (of order 6t2).

At this point we have maneuvered ourselves into a position where we can apply
the results of [18]] concerning finite-image, imprimitive, irreducible representations
of T'/(S?). Indeed, setting H = I'y(2), p is an induced representation p = Ind}; y for
some linear character

x :To(2) = C*.

of finite order. In the notation of [18], there is a positive integer n and a primitive n
root of unity \ such that

xX(U) = A, x(V) =1, X(5%) =1,

where the images of U := (}9) and V := (Z}{) generate the abelianization of
H/(S5?%). In [18] x takes the value e = +1 on V, however the condition det p(T) = —1
demands that e = 1. Furthermore, the irreducibility of p implies that n # 1 or 3.

Proposition 12. The following hold:

(a) p is a congruence representation, i.e., kerp is a congruence subgroup, and all
elements in ch,, are modular functions of weight 0 and level 2n;
(b) n|24andn # 1,3.

Proof. By construction, ch, is spanned by functions having ¢-expansions with integral
Fourier coefficients. Now the Proposition is essentially a restatement of Theorem 21 of
(18]

The only assertion not explicitly stated in [18] is the statement that the level
is 2n. This amounts to showing that p(7") has order 2n, and this is follows from a
knowledge of the eigenvalues of p(7"), which are as follows ([[18]], Proposition 2):

(8) {\,+£0} where o%= X\
O

From Proposition [12|together with (8]), there is an even divisor n of 24 and an in-
teger k coprime to n such that the eigenvalues of p(T') are {?7ik/n e=2mik/2n 2mi(n=k)/2n}
The three exponents occurring here are equal (mod Z), and in some order, to the ex-
ponents {rq, 71,72} occurring in (4). These in turn are equal (mod Z), and in the
same order, to {—57, hi—357, ha—57 }-

It follows that {hy, ho} is congruent (mod Z) to one of {—3k n=8k} f3k 1} op

3’;%, %}. Because n is an even divisor of 24, all of the rational numbers involved
here have denominators equal to 2, 4, 8 or 16 and in fact we obtain the following

more precise result:

Proposition 13. One of the following holds:
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(a) One of hy or hy is an element of% + Z, and the other has denominator equal to
4,8 or 16;
(b) The denominators of hy and hy are equal, and both are equal to 4,8 or 16.

Furthermore, we always have 2c € Z, and in particular the conclusions of Corollary [4]
apply.

Proof The assertion regarding the central charge ¢ follows from (a) and (b) together
with Lemma [5(a). The Lemma follows. O

3.3. The primitive case. The purpose of this Section is to establish results that par-
allel those of Subsection [3.2|but now in the case that p is primitive. This means that if
N QT then either U|y is irreducible, or else N is a central subgroup of order dividing
6 (cf. Lemma . We assume that this holds throughout this Subsection.

In the imprimitive case we were able to rely on the results of [18] to restrict the
possibilities for p to a manageable list. For the case that now presents itself, we will
prove

Proposition 14. Suppose that p is primitive. Then
p(I') = Lyo(p) x Z/rZ, (p=>5o0rT, r=2or6).
In all cases p is a congruence representation of level pr.

Proof. Let Z := Z(p(I')) and note that Z is cyclic of order dividing 6. This holds
because U], is necessarily reducible. In particular p(I") # Z, so we may choose a
minimal nontrivial normal subgroup M /Z < p(I')/Z.

Case 1: M is solvable. We will show that this Case cannot occur. Otherwise,
M/)Z = (Z/(Z) for some prime ¢ and integer d. Now U, is irreducible, and this
forces ¢ = 3, moreover the Sylow 3-subgroup of M, call it P, satisfies P<Ip(I"). Indeed,
d = 2 and P is an extra-special group P = 372, Because P acts irreducibly on U its
centralizer consists of scalar matrices which therefore lie in Z. As a result, it follows
that p(I")/Z is isomorphic to a subgroup of the group of automorphisms of P that acts
trivially on Z(P). This latter group is Z/3Z?* x SL,(3). Because p(I") has a subgroup of
index 2 (Corollary[9) the only possibilities are that p(I")/PZ is isomorphic to subgroup
of Z/12Z, where we use the fact that the abelianization of I is cyclic to eliminate some
possibilities. Indeed, this abelianization is Z/12Z, generated by the image of 7', and
furthermore T°T” = S?I". It follows that in fact p(T")/PZ is isomorphic to subgroup
of Z/6Z. But in all such cases, M = PZ is not a minimal normal subgroup. This
completes the proof in Case 1.

Case 2: M is nonsolvable. Here, the only quasisimple groups with a 3-dimensional
faithful projective representation are Ly(5), L2(7), 3.L2(9), and the latter group is ex-
cluded thanks to Lemma (b). We deduce that M = Ly(p) x Z with p = 5 or 7.
Furthermore Aut(Ls(p)) = PGLy(p) does not have a 3-dimensional faithful represen-
tation, so I' = M. Let Z = Z/rZ with r | 6. Because p(I") has a subgroup of index 2,
then 2 | r, so that r = 2 or 6.

Finally, use Lemma [10|(a) and the fact that I'(5?) is a congruence subgroup of
level 6 to see that ker p is also a congruence subgroup, of level pr. This completes the
proof of the Proposition. O

With this result in hand we turn to a description of the possible sets of eigen-
values for p(T'). Because T generates the abelianization of I" and the level of kerp is
pr, there is a generator z of Z = Z/rZ and an element x € Ly(p) of order p such that
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p(T) = xz. Noting that Ly(p) has a pair of conjugate irreducible representations of
dimension 3, it follows that p falls into one of just 12 equivalence classes and similarly
there 12 possible sets of eigenvalues for p(7'). Thus if p = 5 then the eigenvalues for
p(T) are of the form {u, u), p\} where X and p are primitive 5% and r™ roots of unity,
respectively. Similarly, if p = 7 the eigenvalues for p(T') are of the form {u\, u\?, uA\*}
where )\ and p are primitive 7" and ™ roots of unity, respectively. Hence the possible
exponents (mod Z) are as follows:

(p.7)=(5,2)- {3, 36+ 15} {3+ 16 10}

(p,7)=(5,6)- {5, 55, 231 {5 500 301 {3 350 50 - {
9) (P, 7)=(7,2) {3 i 11> 1o o 12

(p,T’):(7,6). {}lg’ig’ié} {13725’412 42’42’42} {42’42’42

Finally we summarize these computations in the following:

7 3
1350 50}

@Im

Proposition 15. If p is a primitive representation then one of the following holds:

(1) If p = 5, then the pairs of rational numbers {hi, ho} (mod Z) take all possible
values {%, ¢} with 1<u<v<4.
(2) Otherwise p = 7 and the pairs of rational numbers {hy,hs} (mod Z) takes each

of the 6 values {1,2},{3,2},{2,2},{2,5},{2,2},{2, &} exactly 3 times, and the
other 9 values are omitted.

Remark 16. In what follows, the critical points to observe in Propositions [13] and
are that the denominators of h; and h, are divisors of 16 in the imprimitive cases, and
they are divisors of 5 or 7 in the primitive cases.

4. THE ELLIPTIC SURFACE

Thanks to the results in Sections [2| and (3, we are now prepared to tackle the
arithmetic classification of possible character vectors F'(7) for strongly regular VOAs
V' with 3-simple modules and irreducible monic monodromy. It will then remain to
analyze which of the possible character vectors are in fact realized by a VOA.

The next step in our classification specializes equation to yield the following
formula for the character vector F(7): we have F(7) = (fo, f1, f2)T where

2e42y+3 2x+2y+3 2r+2y+1  2x+42y— 1 1728
Jo=Jj 3F2<_ 6 ’y 6 ) 6 =T, =Y )

Zy—dz—3 dz—2y+3 4z—2y+5 4dz—2y+7. 1728
fl Alj 6 3F ( 6 ) 6 ) 6 ;T + 1 =Y — |,

2x—4y—3 4 2
y—2x+3 4dy—2x+5 4dy— 21+7 1728
f2 AQ] 6 3F2< 6 3 6 ) ay+1y_$T )

and ¢ = 8(33 + y) + 12, hl =z+1, hg =y -+ 1, Al = dim(Ml)hl, AQ = dim(MQ)hQ.

While Section |3 showed that we need only consider certain rational values of
z and y whose denominators divide 16, 5 or 7, it is useful to observe that F'(7) is in
fact an algebraic family of vector-valued modular forms varying with the parameters
x and y, and the Fourier coefficients of this family are rational functions in = and y. If
F(7) corresponds to a VOA, then the coefficients must in fact be nonnegative integers.
Since A; and A, are unknown positive integers, in this Section we focus on f;. More
precisely, if we write fy(q) = ¢~/?*(1 +mq + O(¢?)) as in Section [2}, we find that m, =
and y satisfy an algebraic equation that defines an elliptic surface:

(10) 0={A(z+y)+6)((4x+y)+2)4(z+y) —2) — 62zy) + mzxy.
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As a fibration over the m-line, a Theorem of Siegel tells us that all of the good fibers
of this surface have finitely many rational solutions subject to our restrictions on the
monodromy (Section [3). It does not appear to be easy to classify all of the relevant
rational solutions directly, and so ultimately our analysis will rely on properties of
this elliptic surface, in addition to properties of vector-valued modular forms and
generalized hypergeometric series. Nevertheless, we shall describe some facts on the
geometry and arithmetic of this surface that were crucial in our initial studies on this
classification problem, but which will otherwise not be used in the sequel.

Begin by homogenizing equation (10): we are interested in the curve E/C(m)
defined by F'(z,y, z) = 0 where

F(z,y,z) = 4z +y)+62)((4(xr + y) +22)(4(z + y) — 22) — 62zy) + mayz.
Notice that £ meets the line at infinity defined by z = 0 in three distinct points:
P=(1:-1:0), P=(15+v/-31:16:0), Py=(15—+-31:16:0).

Taking P, := oo for the identity of the group, the inversion for the group law on F
is given by swapping x and y. At the level of VOAs this corresponds to interchanging
the nontrivial modules A, and M, for V. The group law of itself has a more

complicated expression in terms of m that we will not write down explicitly.
Consider the change of coordinates:

—24(65m2 — 24552m — 353648) —6912m(m — 248)(m — 496) 248
U:V:W)=(z:y:2) —24(65m2 — 24552m — 353648) 6912m(m — 248)(m — 496) 248
—3(m?3 — 732m?2 + 97712m — 4243776) 0 372 —m

This change of coordinates turns equation (10)) into the Weierstrass form H (U, V, W) =
0 where

H(U,V,W) = =V2W + U? — 27(m> — 844m? + 210992m + 1049536 (m + 124)UW*>
+ 54(m® — 1080m° + 353904m™ — 78209280m> + 16393117440m? + 465661052928m + 1484665229312)W3.

The discriminant of this elliptic curve over C(m) is

123 8464
A = 2% .38 (m + 4)m*(m — 248)*(m — 496)* (m2 + < m + T)

and the j-invariant is

B (m + 124)%(m® — 844m? + 210992m + 1049536)?
2153 m2(m — 248)2(m — 496)2(m + 4) (m? + L + 861

J

Setting y = 0 in equation ([10)) yields three rational points

Q1=(1/2:0:1),
Q= (—1/2:0:1),
Qs =(-3/2:0:1),

such that Q; + Q2 + Q3 = oo. Although we do not require this, we will show that
these points typically have infinite order in the fibers F,, of E/C(m):

Theorem 17. The points ()1, Q> and Q3 are all of infinite order in E,,(Q) for all rational
values of m different from —32, —4, 0, %8, 248 and 496.
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Proof. A direct computation, in Weierstrass coordinates say, shows that

B Ay(m) : Ci(m) :
120, = ((m+ 32)’m?By(m) ~ (m + 32)*m*Dy(m) 1> |
B Az(m) : Ca(m) :
12@2 = ((m+ 4)2m282(m) : (m +4)3m3D2(m) . 1) )
- As(m) _ C3(m) .
12Q5 = <(m _ 6_§8>2m233(m) : (m — %)3m3D3(m) : 1) )

Here A;, B;, C; and D; are polynomials with rational coefficients and no rational
roots. Therefore, as long as m # —32, —4, 6—28, all of 12Q), 12Q); and 123 define
points different from the identity. A similar computation with p(); where p = 5 and
7 shows that the points p(); are not the identity for the same set of rational values
of m. By Mazur’s theorem on the torsion subgroups of rational elliptic curves, if m is
rational and 5Q), 7Q); and 12(); are not the the identity, then @, is of infinite order.

Similarly for (); and Q3. This proves the theorem. OJ

Remark 18. When m = —32, the points (), and @3 are of infinite order in F,,(Q),
while @, defines a torsion point of order 3 that generates the rational torsion in
E,,(Q). When m = %, the points (); and ()3 are of infinite order and (), defines a
torsion point of order 3 that generates the rational torsion in £,,(Q). In both cases
the rank of £,,(Q) is 1. Note that the curves E,, for these two values of m have
distinct j-invariants, so they are not isomorphic. The other values of m in Theorem
correspond to degenerate fibers.

Remark 19. Theorem[17|shows that the rational fibers F,, typically have Mordell-Weil
rank at least 2. This might sound surprising, as the average Mordell-Weil rank of a
rational ellitpic curve is expected to be 1. But in fact, families such as with large
rank are not so uncommon - see for example [14] for an interesting discussion of
such matters.

We began our study of directly via the fibration over C(m). It turns out
that fibering over y is more useful for classifying the VOAs under discussion here:
indeed, all but finitely many of the infinite number of VOAs identified in Theorem
correspond to y = —1/2. Nevertheless, we shall record here a result that allows the
effective enumeration of solutions (m, z,y) to for fixed rational m and rational
x and y with bounded denominator that was crucial in our initial studies of equation
(10).

The idea is to first study the rational points of the quotient surface obtained
by modding out by the inverse for the elliptic curve group law. Since inversion
is given by swapping x and y in Equation (10), we are interested in the rational
solutions to the equation

0 = 4(2u + 3)(8u* — 2 — 31v) + mv.

Solving for x and y via z + y = u and xy = v yields solutions of (10) defined over
a quadratic extension of QQ. It will be convenient to work with the corresponding
projectivized equation

(11) 0 = 4(2u + 3w)(8u* — 2w* — 3lvw) + mvw?.

Equation (11I) defines a one-parameter family of singular cubic curves that,
generically, are connected (and there are a finite number of fibers equal to a conic
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times a line). The rational points in the smooth locus of a connected rational singular
cubic can be parameterized by linear projection from a rational singularity. The point
P =(0:1:0) is a rational singular point of every fiber, and this is the point that we
will project from. The general line meeting P is given by the equation

au + bw = 0.

First suppose that b = 0. This means we wish to describe the solutions to with
u = 0. These are the point P, along with the points

24
L 1
(O m — 372 )
with m # 372.

Henceforth we may assume that b and u are nonzero. After reparameterizing
our line, we may assume w = au. Substituting this into equation and using u # 0
yields
a(—ma + 372a + 248)v = —8(a — 2)(a + 2)(3a + 2)u.

If a = 0 then this equation forces u = 0, and we have already classified such points.
We are thus now free to assume a # 0. If —ma + 372a + 248 = 0 then we must have
a = 2,—2or a = —2/3. This implies that away from the fibers for m = 0, 248 and 496,
we may assume —ma + 372a + 248 # 0. Therefore, away from these values of m we
can solve for v above to obtain the family of points

8(2u—1)(2u+1)(2u +3) )
(“' (372 —m + 2480) )

Notice that if we set u = 0 we recover the preceding family of points.

It remains to consider whether the fibers have other rational singularities besides
P (as those points can’t be accessed via projection), and to consider the fibers above
m = 0,248 and 496.

First we treat the singularities. The v-partial derivative of yields

w(—wm + 248u + 372w) = 0.

Thus, singular solutions in a fiber of (1I]) must satisfy either w = 0 or u =
When w = 0 we find, by consideration of the v-partial, that the only p0551b1e add1-
tional rational singularity is (1 : 32 : 0). The u-partial does not vanish at this point,
and hence this is not in fact a singularity of the fibers. The other case is when w # 0

and
m — 372

Substituting this into yields m = 0,248 or 496. When m = 0 we obtain the
unique additional singularity (—3/2: 16/31 : 1), when m = 248 we obtain the unique
additional singularity (—1/2 : —8/31 : 1), and when m = 496 we obtain the unique
additional singularity (1/2 : 16/31 : 1). These are all the missing singularities, and all
the missing points on the fibers corresponding to m = 0,248 and 496. Thus, we have
described all rational solutions to (11]). We have nearly proven the following:

—372

Proposition 20. Suppose that (m, x,y) is a rational solution to (10). Then if u =z +y
and v = zy, the rational point (u, v, m) is equal to

8(2u —1)(2u+1)(2u + 3)
(“’ (372 — m + 248u) ’m)
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and u # 532

Proof. We have seen that the only other possible rational solutions (m,z,y) corre-
spond to (u, v, m) equal to one of the singular points (—3/2,16/31,0), (—1/2, —8/31, 248)
or (1/2,16/31,496). But none of these correspond to rational values of x and y. [

Theorem 21. Let N > 0 be an integer and let m be a rational number. Then the
number of solutions a,,(N) to equation (10) with rational x, y of denominator dividing
N satisfies

16 |m — 372
am(N) < 2 + N max (%,614@3) .

Proof. Let (m,z,y) be a rational solution to equation (10), and let (u,v,m) be the
corresponding solution to with u = z + y, v = xy. Then (u,v, m) is equal to one
of the points in Proposition Since the polynomial 7% — uT + v has rational roots
by hypothesis, it follows that the discriminant

. 32(2u—1)(2u+1)(2u + 3)
a (372 — m + 248u)

uw—4dv=u

must be a rational square. In particular,

N 32 (1= @) (L +5,)

T3l 1+ )

As |u| grows, the right hand side converges to 32/31, so that in fact, there are only
finitely many solutions in each fiber. We knew this already by a result of Siegel, but
we can now use the parameterization to obtain precise bounds.

First assume that (372 — m)/248u| < 1/A for some big constant A that we’ll
specify later. Then for A > 31 we find

31(A+ 1) 1 3
ST S _ el
b>—5x 2 (1 4u2) (H 2u>’

and this will produce contradictions for large |u|. Choose numbers ey, e; € (0, 1) with
e1 + eo = 1. We will find explicit bounds on u that ensure

(1—(2u)™?) > (31(A+1)/324)*,
(1+3/(2u)) > (31(A+1)/32A4)*.
The first bound is equivalent with

- <%> > G

FITANEEET RN,
2 32A

The second bound is equivalent with

- (31(A+ 1))"’2 .3

324 2

which is equivalent with
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This is always true if « > 0 by choice of A and e,, since the left side is positive, so that
the second bound will hold whenever

Juf > g <1 - <%>62)1

Thus, if |u| is bigger than the max of these, we have a contradiction. Therefore, we
must have

Alm —372| 1 3A+ 1)\ 3 3L(A+1)\2\
< il e B B IO (Sl Sl O el Sl A ,
’“‘—max< 248 ’2(1 ( 324 PG 324

Now to optimize parameters. First off, our choice of A must ensure that 1 >
31&3;1), and we’d like it to be as small as possible. A natural choice is A = 32, but any
A satisfying 31 < A < 32 would work. To be definite take A = 32, so that

ul<m Alm =372 1 ¢  (1023\" 23 | (1023)\7 !
Ul = max 31 9 1024 ) 1024

Next we’d like to optimize the choice of e; and e, so that this maximum is minimized.
Computations show that the minimum of the last two values above is achieved for ¢,
somewhere between 1/5000 and 1/10000. For example, using e; = 1/5000 we obtain

4|m — 372
lu| < max (% 1537) .

We are only interested in the values of u of the form u = i/N in this range, and

there are at most 2N max (W

at most two rational solutions (m, z,y) and (y, x, m) to equation (10). This concludes
the proof. O

, 1537) + 1 of these. For each such choice, we have

Remark 22. In the proof above, many values of u correspond to points for which the

discriminant
ot 32(2u — 1)(2u + 1)(2u + 3) >0
(372 — m + 248t) =
is not a rational square. In such cases the corresponding pair of points (m, z,y) and
(y,x,m) satisfying equation have = and y values contained in a real quadratic
extension of Q. Thus, it seems possible that the linear bound on a,,(/N) above could

be improved by making stronger use of the discriminant condition.

Remark 23. For fixed values of m, the preceding proof yields an explicit and effi-
cient algorithm for enumerating all rational solutions to equation satisfying the
divisibility conditions of Theorem [21] The steps are as follows:

(1) Fix a rational value of m.
(2) List the finite number of values u = i/N satisfying the inequality

4|m — 372
|u| < max <%, 1537> :
(3) For each value of u from the previous step, test whether the discriminant
_32(2u — 1)(2u +1)(2u + 3)
(372 — m + 248u)

D(u,m) = u?

is a rational square.
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(4) If D(u,m) is a rational square, then set z = (u++/D)/2 and y = (u — v/D) /2.
This contributes solutions (m, z,y) and (m,y,z) to equation (note that
it’s possible to have = = y).

We have run this algorithm for m = 0 through m = 20,000, and one finds that it is
most common to have a,,(16) = 8 and a,,(5) = a,,(7) = 0 in that range. Note that
a,,(16) > 8 for all m due to the existence of the points +@);, =2, Q3 on the elliptic
curve over C(m) defined by (10), as well as the points +@Q, where

m m 1
Q4:Q1—Q2=<—1—6—1:—1—6—§:1>.

Notice that the existence of this family of points shows that the bound on |u| used in
the proof of Theorem [21]is essentially optimal, since this family of points corresponds
1

-1, 3
tou = gm 5

In general, for each m Equation has many rational solutions that do not
correspond to VOAs. To aid us in eliminating many of these solutions we shall next
analyze all three coordinates of the corresponding (in general hypothetical) charac-
ters corresponding to a solution of Equation (10).

5. POSITIVITY RESTRICTIONS

Let (m, z,y) denote a solution to Equation that corresponds to a VOA as in
Theorem (1, and let F'(7) be the corresponding character vector. In this Section we
exploit the fact that the Fourier coefficients of F'(7) must be nonnegative. Since these
coefficients are reducible rational functions, we can gain some traction by studying
their divisors, as the sign of the coefficient is constant in the connected components
of the complement of the divisor.

Theorem 24. If |x + 1| > 5/2 or |y + 1| > 5/2, then exactly one of the following holds:

D) |z—yl <1
2) —2<y<0;
3) —2<z<0.

Proof. Begin by writing

f . e oy 14+mgq+0(q?)
(%) = diog (9 i o) (12700 )
2

1+F2q+0(q?)

Equation (10) gives an explicit formula for m in terms of = and y. From the expres-
sions for f; and f; in terms of generalized hypergeometric series, one finds similarly
that

4(2y — 4z — 3)(2* — 2y + 8y + 3z + 14y + 8)

Filwy) = (x+2)(y—2—1)

and Fy(z,y) = Fi(y, z). Observe that the divisors of F} dissect the plane into a finite
number of regions, and the sign of F7 is constant in each region. Figure [1|shows the
divisors of each of m, F, and F5.
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(C) F»

FIGURE 1. The divisors of m, F; and F5.

Figure [2| plots all three divisors. Outside of the boxed region enclosed by the
dashed lines, the only regions where m, F; and F; are simultaneously positive are
the shaded regions in Figure |2, and these regions correspond to the statement of the
Theorem. O

Remark 25. Since hy = z + 1 and hy = y + 1, the following condition holds for a
strongly regular VOA with 3 simple modules and irreducible monic monodromy: if
|h1| > 5/2 or |hy| > 5/2, then one of the following holds:

(1) |hy — he| <1,

(2) || <1lor

(3) |ho| < 1.
This is a relatively simple consequence of the fact that the Fourier coefficients of
F(7) are rational functions of h, and h,. It does not appear to be straightforward to
establish this fact using the theory of VOAs alone.

The region bounded by the dashed lines in Figure [2| contains a finite number of
points (z,y) where z and y are rational numbers satisfying the restrictions of Section
It is thus a simple matter to enumerate them. Therefore, by symmetry we may now
focus our attention on the shaded regions in Figure [2] on page [23| below the diagonal
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s 0 5
FIGURE 2. Regions corresponding to VOAs.

x = y. The shaded regions contain a finite number of horizontal and diagonal slices of
the elliptic surface defined by Equation of relevance to our classification. These
slices turn out to be singular cubic curves whose rational points are parameterized
and studied in Section [6] below. In the next section we exploit this geometry and the
hypergeometric nature of F' to find all values of x and y where f; has positive integer
coefficients, and where f; and f, have positive coefficients.

Remark 26. Due to the unknown scalars A; = dim(Mj),,; for j = 1,2, we cannot yet
make use of the fact that f; and f, have integer coefficients.

6. THE REMAINING FIBERS

6.1. The horizontal fibers. In this Section we regard Equation (10) as a fibration
over y. In order to homogenize the equation, let m be of degree 1 and let y be of
degree 0. Then the homogenized version of Equation (10) is

(12) 0= (4(x+yz)+62)((4(x + yz) + 22)(4(x + yz) — 2z) — 62xyz) + mayz

and there is a (unique) singular point (m : x : z) = (1 : 0 : 0) at infinity in every
fiber. Therefore, the smooth locus of each fiber can be rationally parameterized by
projection from (1:0: 0).

Before proceeding to this we shall classify all additional singular points in the
affine patches with 2 # 0, as such points cannot be obtained by projection from
(1:0:0). First off, the vanishing of the m-partial of Equation (12]) implies that either
x = 0 or z = 0 at a singularity. The vanishing of the partials at points with x = 0
corresponds to the polynomial equations

0 = z(56y*z — my + 180yz + 162),
0=(2y —1)(2y + 1)(2y + 3)2*.
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It follows that if y # +1/2 and —3/2, then the only singular point in the fiber is the
point (1 : 0 : 0) at infinity. Thus, the entire fiber of Equation can be described by
projection from infinity, as long as y # +1/2 and —3/2. In the exceptional fibers we
find the following additional singular points, corresponding to a conic intersecting a
line in two points:

y=1/2: (240:0:1),
y=-—1/2: (120:0:1),
y=—3/2: (256/3:0:1).

Note that y = 1/2 is outside of the shaded region, so there are in fact only two
exceptional fibers that we must consider.

Thus, we now suppose that —2 < y < 0 with y # —1/2,—3/2, and we will treat
these two exceptional fibers separately afterward. In order to rule out the existence
of a VOA corresponding to all but (an explicitly computable) finite number of such
solutions to Equation (10]), we will use the fact that the character of the hypothetical
VOA

22+2y+3 20 +2y+3 20+4+2y+1 20+2y-—1 1728
fo=7""7 3F2(— 6 y 6 y 6 ;_Iu_y;_.)

J
must have nonnegative integers as coefficients.

Let A, denote the kth coefficient of the underlying hypergeometric series (with-
out the j-factors taken into account) defining f,. If we can show that some hyperge-
ometric coefficient A, has a prime divisor in its denominator that does not divide the
denominators of x/6 and y/6, then it will also appear in the denominator of the kth
coefficient of f,. Notice that since we are only interested in solutions (z,y) to Equa-
tion with denominators equal to 5, 7 or a divisor of 16, by Section 3}, this means
that only primes p < 96 could possibly divide some denominator of a coefficient Ay
but not divide any denominators in f,. Thus, below we restrict to primes p > 96 and
consider only the coefficients Ay, rather than the more complicated coefficients of f;.

Recall from [15] Theorem 3.4 that if ¢,(x, y) denotes the number of p-adic car-
ries required to compute the p-adic addition = + y, and if v, denotes the p-adic valua-
tion normalized so that v,(p) = 1, then

(13) v (Ap) =¢, (—3(z +y) = 3.k) + & (=3 +v) = §.k) + o (—3(z +y) — §. k)
—cp(—x —1,k) —cp(—y — 1, k).

The key point here is that if there exists a prime p > 96 such that the zeroth p-adic
digit of —y — 1 is largest among the 5 arguments above, say —y — 1 = y, (mod p),
then in (13), ¢,(—y — 1,p — yo) > 1, while each other term ¢,(*, p — yo) will be zero.
Therefore, for such primes we have v,(A4,_,,) < —1 and hence f, is not integral.
The arithmetic difficulty that arises in our argument for the exceptional cases when
y = —1/2,—-3/2 is that —y — 1 has zeroth p-adic digit asymptotic to p/2 for all odd
primes. Hence we shall treat those cases separately.

Suppose first that the denominators of = and y are both equal to 5. We shall
give all the details in this case and omit the details for the cases of the other possible
denominators, as the arguments are identical save for adjusted constants. The ex-
ceptions are the fibers y = —1/2 and y = —3/2, which we shall also treat in detail.
Note that since we are interested in irreducible monodromy representations, we may



CLASSIFICATION OF SOME THREE-DIMENSIONAL VERTEX OPERATOR ALGEBRAS 25

assume that 5z and 5y are both integral and relatively prime to 5, and also 5z # 5y
(mod 5). The key result in this case is the following:

Proposition 27. Let (m,x,y) be a solution to equation (10) with |y + 1| < 1, such that
5z and by are integers coprime to 5, and such that 5x # 5y (mod 5). Then if x > 18188,
the series fy does not have integral Fourier coefficients.

Proof. There is a unique nonzero congruence class py (mod 30) such that for all primes
p = po (mod 30) big enough (e.g. p > 96 suffices), the zeroth p-adic digit of —y — 1
is of the form % where 4p + A = 0 (mod 5), and the zeroth p-adic digit of —1/3
is (p — 1)/3 (this second condition just forces py = 1 (mod 3)). Note that A depends
on y, but there are finitely many choices for y, so it’s bounded absolutely. For exam-
ple, the following table lists the zeroth p-adic digits of some relevant quantities when

y=—1/5:

y:—% p=1|p=7|p=11|p=13 |p=17|p=19|p=23|p=29
_y 3| 13p—43 | 19p—43 | 23p—43 | p—43 | 29p—43 | 7p—43 | 11p—43 | 17p—43
372 30 30 30 30 30 30 30 30
_y 7| 3p-33 | 9p—33 | 3p—33 | 21p—33 | 9p—33 | 27p—33 | 21p—33 | 27p—33
376 30 30 30 30 30 30 30 30
_y 5| 23p—23 | 29p—23 | 13p—23 | 11p—23 | 19p—23 | 17p—23 | p—23 7p—23
36 30 30 30 30 30 30 30 30
Cy— 1| 24| 12224 | 2p-24 | 18p=24 | 12p-24 | Gp=24 | 18p=24 | 6p—24

30 30 30 30 30 30 30 30
_1 p—1 p—1 2p-1 p-l 2p—1 p=1 2p—1 2p—1
3 3 3 3 3 3 3 3 3

A similar table exists for each choice of y, and the important feature is that there is
always a unique column where —y — 1 has zeroth digit asymptotic to 4p/5, and —1/3
has zeroth p-adic digit (p — 1)/3. When y = —1/5 this is the column p = 1 (mod 30),
but in general it is some class mod 30 such that p = 1 (mod 3).

So far we have ignored the occurences of z in the formula for v,(Ay). We
incorporate this information next. Taking account of x has the effect of shifting the
digits in first three rows of the table above by a uniform amount (the zeroth p-adic
digit of —x/3) modulo p. The key is to find primes p such that this shift does not make
one of the entries in the first three rows larger than the zeroth p-adic digit of —y — 1.
Therefore, given z, it will suffice to prove that there exists a prime p = py (mod 30)
satisfying p > 96 and

(p—1)z p

(where [a], denotes the least nonnegative residue of an integer « mod p). This is due
to the fact that [(p — 1)x/3], is the zeroth p-adic digit of —x/3, which is the amount
that we are shifting p-adic digits by.

Observe that if we write z = /5 then

{mip—2 p=1 (mod 30), p> 2,

(p— D % p—5 p=T (mod30),p>m7;fm,

{ 3 L: b bp -2 p=13 (mod 30), p > e,
\ %}p—f—g p=19 (mod30),p>[$0_1‘§m,.
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In each case there is an integer A (in fact A = 1, 3,9 or 12) such that we win if there
exists a prime p = py (mod 30) with
Lo

[l’o - A[$0]5]15

o — A[IL‘O]5 o P
- R — < i
{ 15 }p 15 = 30

These two inequalities are equivalent with

<p

and

o <p< X
w0 — Alzolslis 7 o — Alzols)is — &

If we set X = ﬁ then this is equivalent with

0—Alzo]s]
[Io - A[$0]5]15 >
X <p< X
P ([930 — Alzols)is — 3

In all cases, the complicated scalar factor in the rightmost inequality above is mini-
mized as 28/27. Therefore, if we can show that for X > N for an explicit NV, there is
always a prime p = p, (mod 30) that satisfies X < p < (28/27)X, then we’ll be done
by the discussion following equation (13).

It is a standard argument from analytic number theory that such generalizations
of Bertrand’s postulate (incorporating more general scalar factors, and restricting to
congruence classes of primes) can be proven if one has a sufficiently good under-
standing of zeros of Dirichlet L-functions. For an explicit discussion involving effec-
tive results, see Appendix [Al In particular, Theorem [40| of Appendix [A] implies that f,
will not be integral as long as X > 6496. Therefore, f, is not integral if xy > 14 - 6496.
Since = = /5, the Proposition follows. O

Proposition allows the classification of all solutions to Equation (10) with
ly+ 1| < 1 and y of the form y = y,/5 such that the corresponding function f, has
positive integral Fourier coefficients, and such that the first two Fourier coefficients of
f1 and f, are nonnegative. We computed the first thousand Fourier coefficients of f,
f1 and f; for all solutions to Equation as in Proposition but with = < 18188,
and tabulated which have the property that

(1) the first thousand coefficeints of f, are nonnegative integers;
(2) the first thousand coefficients of f; and f, are nonnegative.

Using only the first thousand coefficients already cut the number of possibilities for
fo down dramatically. The results of this computation are in Figure

A similar argument works for all other y-fibers with |y + 1| < 1 of interest to us,
save for those with y = —1/2 and y = —3/2. As mentioned above, the issue in these
two cases is that the p-adic expansion of —y — 1 has a zeroth coefficient asymptotic
to p/2, so it is harder to use the technique described above to find primes such that
its zeroth digit is the largest among the five hypergeometric parameters appearing in
Equation (13]). Thus, we treat these two cases next.

Upon specialization to these two values of y, Equation factors as:

y=—1/2: (1282 + 248z —m + 120) = 0,
y=-3/2: (1282 + 360z — 3m + 256) = 0.
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Therefore, among the horizontal fibers, it remains to consider solutions (m,z,y) to
Equation (10) of the form

1 3 n2—64 —2484n 1 n?4+1472 —3604n 3
(m70, 2)7 (m,(), 2)> (512’ 256 2)7 ( 1536 ° 256 ° 2

The first two sections of Equation with x = 0 correspond to reducible mon-
odromy representations, since z is an integer, and so we can ignore them for the
present classification of VOAs with irreducible monodromy. Thus, since it remains to
consider solutions to in the horizontal region with > 3/2, the other points
having already been tabulated, it remains in this region to consider the two families
of solutions:

(n2764 n—248 _;) n> 632 (w n—360 _§) n > 744.

512 7 256 7 2 1536 > 256 ° 2

Any points above corresponding to a finite monodromy representation as classified in
Section [3| will necessarily correspond to imprimitive representations. In order to be
irreducible, the x values cannot be in (1/2)Z, and thus by Section (3| they must have
denominator equal to 4, 8 or 16 when expressed in lowest terms. Hence in the first

case we are only interested in values of n such that %5238 — # for an integer a # 0

256
(mod 8), while in the second we are only interested in values of n such that 252 = £
for § # 0 (mod 8). Thus, taking this integrality condition into consideration, we need

only consider solutions of the form
((a+15>(a+16) a _ 1) (52+456+512 B _§>
) )

2 7167 2 6 7167 2

where «a, § > 24 are integers such that «, 5 # 0 (mod 8). Notice that m = (at15)(a+16)

is always a positive integer for positive integral values of . On the other han?ﬁl, the
ratio w is only a positive integer if additionally 5 # 0 (mod 3). We shall show
in Section (8 below that the first family of points in terms of « do in fact correspond
to known VOAs - all but finitely many of the examples in Theorem 1| correspond to
points in this family! In the remainder of this section we show that the family of
points defined in terms of 5 does not correspond to any VOAs (save for some small
values of (3).

. 2 .
Consider now the values (m,z,y) = (822852 L —%) where 3 > 24 is not

divisible by 3 and it is not divisible by 8. In this case we have

vp(Ak) =¢p (_%7 k) + ¢ (_%v k) + ¢ (_%71{;)

B+16 1
o (2 K) — ey (.8).
Let p > 3 be a prime divisor of 5 + 24. The parameters above are congruent to the
following quantities mod p?:

7
L

y=-3/2| p=1 (mod3) | p=2 (mod 3)
g | O (e | () )
| e | () ()
o | (| () +
1 )

)
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Therefore, if p > 3 is a prime divisor of 5 + 24 we find that v,(A(,-1),2) = —1. Notice
that since [ is coprime to 3, § + 24 is likewise coprime to 3. Therefore, 5 + 24 can
only fail to have an odd prime divisor p > 3 if § + 24 = 2* for some u > 0. If u > 3
then this violates that 8 does not divide 5. We thus see that thanks to our hypotheses,
there is always a prime p > 3 that divides § + 24.

It now remains to verify that, for such a prime p, the factor of p in the denom-
inator of A(, 1)/, is not canceled upon multiplying the hypergeometric factor by the
power j9/4% and substituting 1728/; for the argument of 3F}, as in the definition of
fo. This is a straightforward computation using the g-expansions for 1728/; and j*#/%,
where the latter ¢-expansion is computed via the binomial theorem. Therefore, this
family of points does not contribute any series f, with nonnegative integer coefficients
for parameters, and hence there is no corresponding VOA for any of these choice of
parameters.

In this way one can parmeterize all possible rational solutions to in the
horizontal region in Figure 2| with |y + 1| < 1 where f, has positive integral Fourier
coefficients, and the first two coefficients of f; and f, are positive.

6.2. The diagonal fibers. It remains finally to treat the diagonal fibers in Figure
Thus suppose that © — y = a for some |a| < 1. In fact, we may suppose that y =z —a
for 0 < a < 1, since the cases where o = 0,1 correspond to reducible monodromy,
and we may assume « > 0 by making use of the (z, y) symmetry of Equation (10)). In
this case,

vp(Ar) =¢p (=5 + 252 k) + ¢ (52 + 257, k) + ¢ (=50 + 252, k)
—cp(—r—1,k) —cpla—x — 1, k).

By the classification of the possible monodromy representations of Section 3, we need
only consider the cases where a = b/5, ¢/7 or d/16, and then = must also be a rational
number with denominator supported at the same prime. These three cases can be
treated as we treated the horizontal fibers in the previous subsection, by choosing
primes so that the zeroth p-adic coefficient of —z — 1 is large relative to the other
quantities appearing above. It turns out that no new solutions to equation (10)) arise
in this diagonal region (outside of the boxed area where |z + 1| < 5/2, |y + 1| < 5/2
which was treated separately by a finite computation), where f; has positive and
integral Fourier coefficients. This concludes our discussion of how to describe a list,
corresponding to one infinite family and a number of sporadic exceptions, of solutions
to Equation that can be used to establish Theorem

In Figures[3|and [4 on pages[29]and [30] we list all possible solutions to equation
such that f,, f; and f, satisfy:

(1) the monodromy is irreducible with a congruence subgroup as kernel,
(2) the first thousand Fourier coefficients of f,, f; and f, are all nonnegative;
(3) the first thousand Fourier coefficients of f, are integers.

We believe that (3) could be easily strengthened to show that f; is in fact positive
integral in each case, but we have not gone to the trouble of doing so. This is because
in all of the cases of interest for this paper, namely those corresponding to VOAs,
integrality follows automatically since the Fourier coefficients count dimensions of
finite dimensional vector spaces. The one minor lacuna is the U-series of Theorem
where we do not in fact know whether a corresponding VOA exists. In those
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finite number of cases we have verified the positive integrality to several thousands
of digits.

We shall show that most of the entries in Figures 3| and 4] are not realized by a
strongly regular VOA with exactly 3 nonisomorphic simple modules and irreducible
monic monodromy. Presumably some of these sets of parameters are realized by VOAs
V with a 3-dimensional space of characters ch,, but more than 3 simple modules, and
therefore we include the full dataset.

mhlhch mhlhch mhthCE
0 |32l a e [ g3 oo |22
1| 3 |—3| 4|5 |22 |2 |12]112|| 1|2 |-1|-2]3%
22| b e s TS|t
3| -f|-fl-i2) 2|82 U2 2 0] 6 |22 L
sl i a g s |8y e ey e
O I AN CHE N N AN CHE S
2| 2 24 ||| a0 |34 BB 88|24y )y
2| | p e b |22 ase | 8| 4| 22
W 4|22 = s |21 u) o) 8|2 D )
58| 3|8 He Ul o0 M| 22| oy 2| e
02 | 5| & | 2[R | 80 |B| 2 |uEue) ) oag | R0y a2
104 & | 212 |2 aa0s [ 2] F[usus ] s B2 0
105 § | =2 -2]12] | 1536 | 2| 2 |22 348 2| 8 | ¢ 18
1200 2 [ £ 20|20 [ 1711 | 2| 5 | RE|BE] | 378 | & | § | 1F LB
136 | T4 e sen2 ] g el sgo | 2| ) )
144 2| 2] % [ jasn0 | %) 4| M s | B 4| e 0

1248 | 2| 2 | 0 1

FIGURE 3. Full dataset of parameters with f;, nonnegative integral and
f1 and f,; nonnegative, where parameters have denominators 5 and 7.
Since we only used one-thousand Fourier coefficients to generate this
data, some of these series could in fact fail to be integral, but certainly
the integral list is a subset of ours.

7. TRIMMING DOWN TO THEOREM [I]

Most of the potential examples that are tabulated in Figures [3| and |4] do not in
fact correspond to a VOA satisfying the conditions of Theorem (1. In this Section we
explain how to trim these lists down to the statement of Theorem

First we shall use the deep fact, proved by Huang [21]], that p(S) must be a
symmetric matrix, with p(7") diagonal. Since p(7") has distinct eigenvalues (cf. Section
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m| hy | ho c | ¢ m | hy | hs c | ¢ m |hy| hy | ¢ | €
01 % | 2 | 2 |2 |25 5|29 2| |25 % |5|%
V| —L | =5 [ -3 3] 30| —%|—-2|-30|15] | 255 | 3| £ |[15|15
1| =3 | -3 |-11|1 31| -2 | -21-31|% |21 ]3| & |99
Ll [ =6 —L 5| |33 -0 -5 | 335|261 ]3| 5% |53
2 |-t L |-102| |34 |-8| - |-34|17| 266 |2| L 2L
2 3 | —3|-2|1 35 | =2 | 8135 % 266 | 3| 2 14|14
3 & - 33|13 |-7|—-F|-36|18 270 3| ;1 |[10|10
41 =1 -4]2 37 | =B | -3 | 373 | 270 | & | L j2 )2
50 = | -2 513 38 | -2 -2|-38|19| | 213 |3 | & &%
6| L |-2]—6]3 39 | -3 -39 392|273 |3 ] 5 |13]13
Tk | TR s B8 S] s 8
9 -2 |1-2] -9 |2)]l66| I | 2 |22 22 |2t5|3 | 2 BB
10 -2 | -2 |-10|5| |8 | 2 | 3 | & |48) 96|35 1 |22
11| =2 | - -1 (2] j105] 2 | 2 | 21 |21 | 496 | 2| -5 | 16| %
12 =3 | =3 |-12(6 | (123 & | 2 | & | 2L| |49 |2 | -2 |16|25
B -2 |-2|-13|8 |16 3 | 2| 323 496 |12 | —L|16] 2
4] =2 | =2 |-14| 7| |17 3 |—&| % |15| |49 |53 |—%|16] %
15— | -2 |15 |2 171 3 | & | 19 |19] | 496 | 2 | =2 | 16|31
17| —F | —1e | —17| F | |[185] 5 | =3 | 5 [14] | 496 | 35| —15|16| %
18| -2 | -2 |-18|9 | |185| 3 | & | 3 |3 598 | 2| 1 |18]18
19| —% | -2 |-19 (2] |198| 3 | —=| & |13| [1118| I | 1 |26]26
20| =2 | =2 | —20(10| | 198 | 2 | 2 | 18 |18 |1194| § | —1 30|36
21| -2 |-z 1212|210 2 | -1 6 |12 |1298| 3| 2 |22]22
22| =T |- )—22(11| |210| & | B | & |35 11640 2| B L5
2 |- | -2 1233|221 § |- F |11 |2323| 3| I |23]|23
23| 2 | 2 | 23 |23 |221 & | % |17 |17||2778| 2| 2 [30]30
25| -1 | -2 ) 952 1231 2 | 1| 7 |10 |3599| 1| B & a
26 -2 | -2 —26(13| |231| &2 | &£ | | F w2 2 F|T
27| —19 | =30 | =27 | 3F | |240| 2 |—%| 2 | 9| |5239] 7| £ |31|31
28| =2 | -7 | —28(14] |248| 2 | 2 | 3 | &

FIGURE 4. Full dataset for imprimitive representations. This does not
include the one infinite family that we shall treat separately in Section
Also, the same remark on integrality as in Figure [3| applies here.

B), the only remaining freedom in changing the basis is in conjugating by diagonal
matrices. Since we wish to keep the coordinate f, fixed, this conjugation amounts to
rescaling f; and f,. Said differently, there is at most one choice of scalars A, and A,
appearing in the definition of f; and f, such that p(S) is symmetric. Since A; and
A, must themselves be integers, we performed a numerical computation in all of the
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finitely many remaining cases (with y # —1/2) to symmetrize p(S) and compute exact
values for A; and A;. We were then able to test the integrality of the first thousand
coefficients of all three coordinates of F'(7), whereas previously we had only been able
to make use of the integrality of the first coordinate f,. This cut our list of possible
character vectors down very dramatically. We then checked the remaining cases to
verify that the Verlinde formula holds for p(S). After all of this work, we found the
following exhaustive list of sets of data that could possibly correspond to a VOA as in
Theorem [1k

(1) examples corresponding to solutions of with y = —1/2;

(2) (m,c,hy,he) = (0,—68/7,—2/7,—3/7) which is realized by Vir(cs7);
(3) (m,c,hy,he) =(24,4,2/5,3/5) which is realized by A, ;

(4) 11 exceptional cases with y = 1/2, equivalently, h; = 3/2.

We refer to the 11 exceptional examples with h; = 3/2 as the U-series, and we shall
discuss them in greater detail in Section[9} Only two of the eleven U-series are known
to correspond to VOAs, namely the even part of the Baby Monster [20], and Ej,.
We provide some evidence in Section [9] that suggests that the other examples in the
U-series are in fact not realized by a corresponding VOA, but at the moment the
existence of U-series VOAs remains an open question.

Figure [5| on page [32] lists data for the hypothetical examples in the U-series,
and Figure [f] on page [33|lists the first several Fourier coefficients of fy, f1 and f, for
the examples in the U-series. For convenience we recall here the formulas for the
character vector F'(7) = (fo, f1, f)* in terms of the parameters hy =z + 1, hy =y + 1
and ¢ = 8(]11 + hQ) — 4.

fo= 555y (=5, 55 555 1 — o, 1= by 1128

247 240 24 0

 2hg—4hy -1 4h1—2ho+1 4h1—2ho+3 4h1—2ho+5 1728
i=Ay s 3F2< e T T e h = hey )

6 6

.2hy—4hy—1 4hy—2h1+1 4hg—2h;+3 4ho—2h1+5 1728
Ja=Agj o 3F2< s T, T hay e — by 25 )

Further, for the examples in the U-series p(T') = exp (2mi diag(— 5, P1=ghatl dha=2hitl))
and
L[ 1 V2
p(S) = 5| L 1 =2
V2 V2 0
In Section |8 we shall discuss the existence of VOAs for the infinite family of
solutions to Equation (10) with y = —1/2, and in Section [9] we provide some more

detail about the U-series.

8. SOLUTIONS WITH y = —1/2

We turn now to the solutions of (10]) with y = —1/2. Recall that equation (10)
specializes to

z(1282% + 2487 — m + 120) = 0,

and we can ignore the solutions (m, 0, —1/2) since they correspond to reducible mon-
odromy representations (cf. Section[3). Therefore we now study the solutions

s(s—1 s
(m,x,y)z < (2 )’1_6—1’—%>
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m | hy|hy| c | C Vi Ay Ay
0|3 |% 4% 0 4371 | 96256
45 | 3|8 2D Ds * 4785 | 46080
86 | 2 |2 | BB 2B, ®Gy* | 503122016
123 3 |2 |43 A@Ap* | 512510496
156 | 3 |22 2 2By 5083 | 4992
185 2 |2\ 3131 EaF 4921 | 2368
200 3 |3 |22 By * 4655 | 1120
231 | & | & 38]38 Dy * 4301 | 528
248 | & | B 1313l Eg 3875 | 248

AL @ Dy © G
261 | 2 | B|1212 ) A @By * 3393 116
270 | 3 | R | 22| A, @ Es @Gy 2871 54

C® B; ® Es

CoCso Ey

FIGURE 5. Data for the U-series. The expressions for V; are far from
unique in general. In the cases where there are at most three possibili-
ties for V;, we have listed all of them. In all other cases there are several
(in some cases thousands) of possibilities and we have only listed one
of them, along with an asterisk.

where s > 0 is an integer that is not divisible by 8. The restriction s > 0 arises from
the fact that m = dim V; must be a positive integer, and the restriction that 8 does not
divide s is due to the irreducibility of the monodromy cf. Section (3| The main result
of this section, whose proof occupies the remainder of the section, classifies exactly
what VOAs satisfying the restrictions of Theorem [1| correspond to these examples:

sl s g —%) for an integer s > 0 not

2 716
divisible by 8. Then V is isomorphic to one of the following:

Byi, Doy, Asq, A1z, Vir(csa),

Theorem 28. Suppose that (m,z,y) = <

where ¢ is restricted as in Theorem
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hy | hy ap, a1, Az, . . .

N[O

%% 1,0, 96256, 9646891, 366845011, 8223700027, 130416170627, . ..
4371,1143745, 64680601, 1829005611, 33950840617, 470887671187, . ..
96256, 10602496, 420831232, 9685952512, 156435924992, 1958810851328, . ..

N
I

fg 1,45,90225, 7671525, 260868780, 5354634636, 78809509455, . .
4785,977184, 48445515, 1241925725, 21267996075, 275102618220, . .
46080, 5161984, 199388160, 4423680000, 68709350400, 827293870080, . .

N
I

fg 1,86, 82775, 5989341, 182136390, 3421630228, 46706033862, . . .
5031, 819279, 35627220, 827820606, 13070793291, 157564970907, . ..
22016, 2515456, 94360576, 2013605376, 30017759232, 346922095616, . . .

25 1,123, 74374, 4586752, 124739876, 2143484264, 27115530974, . . .
5125, 673630, 25702490, 541136245, 7872255635, 88368399005, 816197168410, . ..
10496, 1227008, 44597504, 913172992, 13037354496, 144348958464, . . .

N
I

N
I

32 1,156, 65442, 3442179, 83713890, 1314851889, 15401260043, 145567687044, . . .
5083, 542685, 18172323, 346513193, 4640683320, 48464931804, 419554761418, . ..
4992, 599168, 21046272, 412414080, 5625756032, 59548105344, 520893998976, . . .

[\ o)
I

fé 1,185,56351, 2528691, 54987069, 788715865, 8545883340, 75369712213, . ..
4921, 427868, 12578261, 217080369, 2673896760, 25953557278, 210363766807 . . .
2368, 292928, 9914816, 185395456, 2410143296, 24333700608, 203337098176 . . .

1917 1,210, 47425, 1816325, 35302155, 461945596, 4624903605, 38016539200, . . .
4655, 329707, 8512950, 132853700, 1503485200, 13547531620, 102694766167, . . .
1120, 143392, 4661440, 82908000, 1024273600, 9839831680, 78373048544, . . .

[\J[oV)
I

N[O
I

}g 1,231, 38940, 1274086, 22116963, 263714253, 2436524530, 18642807645, . . .
4301, 247962, 5625708, 79296041, 823487514, 6879624345, 48709339624, . .
528, 70288, 2186448, 36857568, 431399936, 3932664912, 29784812640, . . .

N[O
I

}2 1,248,31124,871627,13496501, 146447007, 1246840863, 8867414995, . .
3875, 181753, 3623869, 46070247, 438436131, 3390992753, 22393107641, . .
248, 34504, 1022752, 16275496, 179862248, 1551303736, 11142792024, . ..

N[
I

}2 1,261, 24157, 580609, 8004754, 78925762, 618182705, 4079878514, . .
3393, 129688, 2270671, 25996789, 226351177, 1618088408, 9950251364, . .
116, 16964, 476876, 7131680, 74132236, 602971480, 4095721620, . . .

N
I

}é 1,270,18171, 375741, 4602852, 41167332, 296065548, 1809970083, . .
2871,89991, 1380456, 14210922, 112987953, 745155153, 4259274975, . . .
54,8354, 221508, 3097278, 30156048, 230475996, 1475743590, 8240806224, . .

FIGURE 6. Fourier coefficients for the characters of the U-series.

Remembering that ¢ = 8 (hy + hy — 1) =8 (z +y + 2) wehave c = ¢ = s/2. In
particular we have CG%Z, so that Corollary |4 applies. Our approach to the proof of
Theorem |28 is to deal separately with each of the possibilities (a)-(c) of Corollary
although the arguments are similar in each case. We try to determine the structure of
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the Lie algebra V1, or else prove that there is no choice of V; that is compatible with
the data. A basic property [[10] is that V; is reductive and its Lie rank is denoted by ¢
(cf. Subsection [2.1]). As for case (a), we will prove

Proposition 29. For (m, x,y) as in Theorem 28} Corollary 4(a) cannot hold.
Proof. Until further notice we assume that the Proposition is false.

Lemma 30. We have
202 +30+1<m.

Proof. Because we are assuming that (a) of Corollary [4 holds, then ¢ > ¢+ 1. There-
fore,

m= =626 — 1) > ((+1)(20 + 1) = 20> + 30 + 1.

As a reductive Lie algebra, V] has a direct sum decomposition

(15) =P

where g is abelian and each g; is a nonabelian simple Lie algebra (i > 1), say of Lie
rank /;. Let {y := dim go.Then the total Lie rank of 1} is /= Zizo ;.
The table of dimensions for simple Lie algebras compared with Lie rank is:

(]t 2 3 4 5 6 7 8 9 10 ¢
A, 13 8 15 24 35 48 63 80 99 120 (2+20
By| 10 21 36 55 78 105 136 171 220 202+(
C, 21 36 55 78 105 136 171 220 202+(
D, 28 45 66 91 120 153 190 20—/
C |1

Gy | 14

F 52

o 78

E; 133

o 248

TABLE 2. Ranks and Dimensions of simple Lie algebras

Now suppose that V; only has components g; that are classical (type Ay, ..., D,)
or of type G5 or Es. By Table[2|each of these satisfies dim g; < 2¢? + 3/;. Using Lemma
[30l we have

20+ 30+ 1 <dimVy <lo+ Y (207 +36;) <30+2) 0

i>1 i>1

so that ¢ 4+ 3 < >, (7, and this is impossible because each ¢; is a positive integer
and ¢ is their sum. This shows, with a rather naive use of inequalities, that V; must
have some component that is exceptional of type F}, F; or Eg.

We'll rework this argument. So essentially we backtrack because the inequalities
can be improved as we gain more restrictions on the g;. For any exceptional simple
component g; of type F}, E; or Eg we write dimg; = 20? + /; +e; and let 1 <i <e
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index such components. Note that e; < 14/;, with equality being met only if g; = Fk.
Then we have

20 +30+1<ly+ Y (2 +0;+e)+ Y dimg,

i=1 i>e
<lo+ ) (20 +Li+e)+ Y (20 + 1)
i=1 i>e

—£+Zez+2Z€2

1>1

It follows that

(16) 2£2+2€+1§Z€:ei+22£§
=1 i>1
=  202+4 Z (it +2Z£ +1<261§14Z€
0<i<y i>0
= (B+0)+2 ) L <6Z€
0<i<y

Because the possible exceptional components are Fy, £; and Eg, and because
there is at least one of them, the minimum of the ¢; (1 < i < e) is at least 4 and at
most 8. Then the previous inequality implies that

(G +90) +20:) 4 +2 > Lty <6646 ¢

2<j5 0<i<y,i#l 7j=2
and so
(17) (€2 +900) + (20, — 6) (Zz ) + 20, (Z @-) +2 ) il < 6Ly
j>e 0<i<y,i#l

From this we can deduce that
> <2
j>e
If the last displayed inequality is an equality then also
(20— 6)> ;<244
j=2

In this case we claim that > % _,¢; = 0. To see this, denote the sum by ¥. Then

(X —1) < 3% so that (¥ — 1) < $X. But this is impossible if 3> > 0 because ¢, > 4
and ¥ > 4.
By a very similar argument, suppose that isely = 1. This means that there

is a unique component A; apart from those of types F}, F;, Es. Moreover (X — 2) <
%E < 3%, whence ¥ < 8. And if ¢/, > 7 then 13 < 2, which is once again again
impossible unless ¥ = 0. The conclusion is that if we have a component of type A,
and two exceptional components then we must have ¢; = 4. Since ¢; could have been
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chosen to be any of the exceptional Lie ranks, all of the exceptional components must
be F4.
We can argue similarly if all components are exceptional. In this case the main

inequality reads

0<i<j,i#l

and all of the /; are equal to 4, 7 or 8. So if there are at least three components
then Zj>2 ¢; > 8 and we can deduce that 8(¢; — 3) + 16 < 34, i.e, 5, < 8, a
contradiction. Similarly if there are two components and the second is not F; we
obtain 7(¢; — 3) < 3¢;, whence ¢; < 5 and the first component is F;. So either way
one of the two components must be F.

To summarize so far, we’ve shown that one of the following must hold for the
semisimple part, that is the Levi factor L of V;:

.L:gl
o L=F,dm
e L=A Dy

o L=A®F,®F,
e L=A1 A Dy
o L=ADg
and in all cases g, is one of F;, F; or Eg.

Now let’s assume that there is no exceptional component of type Eg. Then
e; <4¢;and Y ;_, ¢; < 11. Going back to (16) we obtain

203 + 4 Z (il +2Z€ +1<262§4Z€

0<i<y >0

= (L+B+0)+2 ) Lli+) <Z£ <11

0<i<y i>e

= (4 0l)+200Y li+20 (Za) + Y 4 < 10.
1<i i>2 i>e
Therefore ¢, ) .., ¢ < 4, which can only happen if /;, = 4 and > ,.,¢, = 1, or if
> iy li = 0. The latter equation means that L is simple. The first conditions mean
that the first exceptional component is F}, it is the only exceptional component, and
if there are nonexceptional components they must comprise a single A;.

In the simple case (not Eg) we have ({2 + {y) + 2(y¢; < 10 and because ¢; > 4
then /, = 0. Observe, too, that if V; = Eg then ¢ = ¢ = ¢, an impossibility because
we are assuming that ¢ > ¢. If Fy is the only component then the very first inequality
202 + 30+ 1 < dim V; = {, + 248 together with ¢ = /; + 8 readily implies that ¢, < 2.

This allows us to refine the list of possibilities for V;:

.‘/1:F4

o Vi=F;

e N=CroEs, 1 <k<2)
OL:F4EBE8
.L:Al@F4

.L:Al@Eg
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o L=A A & Es
.L:AQ@Eg

Here’s another trick. We have dimV; = @ for a positive integer s. This
eliminates all possibilities when L is simple. Now we are obliged to look more closely
at /y. In the absence of an Eg component the possibilities are L = A; & Fy, so {; = 4,
¢, = 1 and the last displayed inequality implies that (¢2 + ¢) + 104y + 8 + 1 < 10, in
which case /o = 0 and dimV} = 3 + 52 = @ with s = 11. Then ¢ = %, ¢ = 5. But
we are assuming that ¢ — ¢ > 1, a contradiction. Now we’re reduced to the following

possibilities with an Fy component:

.L:F4@E8
.L:Al@Eg
.L:Al@Al@Eg
.L:AQ@E&

In the first case we may apply . We have (; = 4, (, = 8, so (2 + 90y) +
8 + 8¢y < 12 is enough to force ¢/, = 0. Therefore V;, = F,; & Es has dimension
524248 = 300,s0 s =25and c = ¢ = %, ¢ = 12. Once again this is outside of the
scope of the case under consideration, so this case does not occur.

In the second case we utilize together with ¢/, =8, /5 = 1, e; = 112 to find
that 2¢2 + 38/, < 61 and thus ¢, < 1. Then dim V; = 251 or 252 and neither integer
has the required form @ So this case does not occur.

The fourth case is similar, except that ¢, = 2. Just as before this leads to ¢, = 0,
so dim V; = 256, which does not conform to 8(82_ 1), so this case does not occur.

For the third and final case we proceed similarly, but now with ¢; = 8, {5 = (3 =
1. As before this leads to ¢, = 0, dim V; = 254 which once again is not of the form
@. This completes the proof of Proposition O

Our next goal is the proof of

Proposition 31. Let (m, z,y) be as in Theorem|[28|and assume that CorollaryH(c) holds.
Then V = Dy, for { = 5 or V = Az .

Proof. We are assuming here that ¢ = ¢ = / = 3 so by a Theorem of Dong-Mason (cf.
Theorem [3), we know that V' = V/, is a lattice theory for some even lattice L. Let
the root system of L (the configuration of norm 2 vectors) be denoted by L,. The
g-character of V' is then the quotient of modular forms

()

n(r)f ¢ P+ (C+ | Lal)g + - ).

fo(r) =

We have m = 271 = 22 — ¢, Therefore |L,| = 2¢> — 2(. Because L is an
even lattice then its root system is the direct sum of root systems of types ADE. Let g;
(1 <i < N) be the nonabelian simple Lie algebra components of V7, and let ®; be the
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root system of g;, say of rank ¢;. Then we have

N 2 N N
2 (Zz) =2 4 =20 =20 =B =) By Y[R+ > [y
r=1 r=1 7 7 k

=ST@ 1 0) + 3700 - 20) + 3 (26 - 20 + fi)
? J . k N

=Y (30 +Y fim2) L+2) 4
( k r=1 r=1

where |®;| = (2+4;, 202 —24;, 72, 126, 240 for g; of type A, Dy,, Eg, E7, Ex respectively,
and where we use i, 7, k to index the occurring root systems of type A, D, F respec-
tively. We also have f; := 18,42, 128 for Eg, E7, E respectively. Note that f;, < 164y.

This begins to look like what we faced in the course of the proof of Proposition
where we first made a relatively naive estimate, then backtracked. The previous
displayed equality yields

43 0l=—2+D (B 43+ f
1<r<s<N % k

Therefore, if there is a component of type F then for some ¢, say with £ = N, we

have ¢ > 6 and
1y 0, <Z (€2 + 30;) +ka

r<N
=(4ln -3 Zé +Z (4lnLly — fr) <fz\/—z:£2
k<N

Because the sum over k < N is nonnegative we then have
Ay =3)> i+ > < fx

and so

2

Now we find that if fy = 128, then ) . (;<5;if fy =42then ) . ¢; < 1;andif fy = 18
then ) . ¢; = 0.
If >, ¢; = 0 then there are no type A components, and we then have

4y 0 <ka = 4fNZ£<ka,

1<r<s<N 1<r<N

from which it follows easily that there is at most one nonzero type £ component. And
if there are any of type D, then 4fx >, ¢; < fn, contradiction. So we are reduced to
the possibility that there is a single component, of type E. Then 240 = 2(*> — 2/, an
impossibility. This shows that some ¢; > 0.

We have therefore shown that if there is a type £ component, then there must
also be at least one type A component. Suppose there is a unique type £’ component.

Then
4£NZ€Z < Z(—Ef + 361) + fNu
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and so >, ({7 + 214;) < fn, forcing fy = 42 or 128. If fy = 42 then necessarily
{¢;} = {1}, i.e., there is a unique type A component and it is A;. Then L, = A; & E;
and |L,| = 128 # 20> — 20. Suppose that fy = 128. Then > ¢, < 4 and |L,| €
{240,242, 244, 246, 248, 250, 254, 260}, none of which are 2¢2>—2¢. This shows that there
are at least two type F components. In this case we have

4eNZe +4) Gl <Z —0? + 30;) +ka

k<k’

SN2 r210) +4Y tty < Z fi

i k<k'
and since each ¢, > 6, and 4¢,(;, > f., then there can be no more than two type E
components. Moreover they are both of type Es, whence Y_.(¢7 + 21¢;) = 0. Hence
Ly = Es @ Es, |Lo| = 480, and ¢ = 16. Now L = Eg & Fg, in which case V=V, is
holomorphic, a contradiction.

We have finally shown that V; has no components of type E. So we have

N 2 N
2 (ZE) —2) 4, =20" -2
r=1 r=1
:Z|@i| +Z|‘I)j|
i J
=D (B + )+ (20 —21)
i J

N N
=Y (-2 +3t)-2) 6 +2) 0
i r=1 r=1

and so

so that

<Z£> :Z; (—07 +3¢;) +2;£2

and 4%, 0l = > ,(—07 + 3(;). If there are no type A component then the right
hand side of this inequality vanishes, whence so does the left hand side, meaning that
there is a unique component, and it has type D. Here, then, we have V' = D,;, and
the Theorem holds in this case.

Suppose there are some type A components. Then the last displayed inequality
implies that such a type A component is unique, call it g;. Then

0=46) € =—03 43,
2<r
so (4=3 and V = V|, = A, as required. This completes the proof of Proposition
31l O

The final case is:

Proposition 32. Assume that (m,x,y) is as in Theorem [28| and that Corollary [4{(b)
holds. Then V' = By, A2 or Vir(csy).
:s—l’m: 5(5 D _ 2€2+£

Proof. In this case we have c = ¢=3, (= ¢ — ==

N[
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Now we have seen that the ¢-character of V' (and that of its simple modules,
too) is uniquely determined by this data. It follows that the ¢-character of V' is equal
to that of one of the VOAs in the statement of the Proposition.

Suppose first that £ = 0. Then s = 1,é = ¢ = 1, and by [29] Theorem 8, it
follows that V' contains the Virasoro VOA Vir(c;4) as a subVOA. However from the
last paragraph V' has the same g-character as this Virasoro VOA and therefore they
are equal. This proves the Proposition if ¢/ = 0. Thus from now on we may, and shall,
assume that V; # 0. We would like to then show that V; is isomorphic to By, or Aj.

Suppose that ¢ = 1. Then m = 3 and V; = A;. By [11] the subVOA U := (V)
generated by V] is isomorphic to an affine algebra A, ; of some positive integral level
k. Now we can use the majorizing Theorem in Appendix [B| to see that because the
g-character of V is the same as that for A, , by the first paragraph, then £ < 2, and
if k =2then U =V = A,,. Suppose that £ = 1. Then the commutant C' of U has
central charge ;. Now consider U ® C: it is a subVOA of V and from what we have
said it majorizes A, ; ® Vir(cs4) or is equal to it. But this latter VOA itself majorizes
A, 5 as one sees by a direct check of ¢-expansions, and this shows that the case £ =1
does not occur.

Now suppose that ¢ > 2. By the first paragraph V' has the same g-character as
By,. If we can show that V; = B, then the same arguments used in the previous
paragraph show that V' = B, ,, and the Proposition will be proved.

We can attack this much as we did in the proofs of Propositions [29| and Let
Vi have Levi decomposition (15). Then ¢ = ¢, + >, ¢;. Let ®; be the root system of g;.
Then

202 40 =2 (Z&) + (Z&) =dimV; 250+Z(€z‘ + | ®4)

>0 120 i>1

2
>0 i>1

(19) = 20+46> Li+4 > Lli=> (|0 —26).

i>1 1<i<y i>1

Now |®;| — 202 = ¢; — (2; 0; —24;; 6; 20; 6; 35; 120 for types Ay,; By, or Cy.; Dy.; Ga;
Fy; Es, Er, Eg respectively.

Suppose that the left hand side of is 0. Then ¢, = 0, V4 has a unique
component, and it has type B or C. If the type is B then V = B, as we have already
explained, so we are done in this case. If the type is not B then V; = C, with ¢ > 3.
By Theorem 1.1 of [11] it follows that the subVOA U := (V;) generated by V] is
isomorphic to Cy, for some positive integral level k. Since U is generated by weight 1
states, a consideration of the conformal subVOA U ® C, where C' is the commutant of
U, shows that dim U; < dim V5 and hence that dim(Cj ). < dim(Bg;).. However this
contradicts Theorem 42| in Appendix Bl This proves Proposition [32] if the left hand
side of is 0.

This reduces us to consideration of the case that the left hand side of is
positive, so the right side is too. So there must be at least one exceptional component

Suppose there are k£ components of type Eg, and r exceptional components not
of type Es. The right side of is at most 120k + 35r, whereas the left side of
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is at least 4(64(%) + 16kr + 4(})). Therefore

16(k* — k) + 8kr + (r* —r) < 15k + Lr

= 16k” — 31k + 8kr + (r* —r) < 2r
It follows easily that & < 1, and if £ = 1 then r? — 15 < =2 = r < 2. Again with
k = 1 we can argue more prec1se1y that if the exceptlonal components are g, = Fg,
92, g3 then

4(80y + 803 + lol3) < 120 + (|®g| — 265) + (| D3| — 203)

and the two terms on the right hand side are among {6, 20, 6,35}, and /», /3 are each
one of {2,4,6,7}. We see that this can never hold.

This shows that £ = 0, i.e., there are no components of type Eg. Repeating the
argument if there are £’ components of type F; and ' other exceptional components,

then
K r
4 (49(2) + 4(2> + 14k’r’> < 35K" + 2077

= 98K'(K' — 1)+ 8" (r" — 1) + 56k'r" < 35k" + 207"

= DK+ 4 14k < BB 7

= B 1924 4 -T2 4k < D(2)P 48 361 3L 5
We readily deduce that at least one of £’ or 7’ is 0. Thus if there are any exceptional
components then either there is an F; and no other exceptional component, or else
there are no exceptional components of type Eg or F;. In the former case, if V; = E;
then the right side of (19) is odd, while the left side is even, a contradiction. If there
are no Fs, E; components, then as before we have in case there are ¢ exceptional
components that 8¢(¢ — 1) < 20¢, which implies (t* — 4t) < 0,so t < 2. But if t = 2 we
get equality, meaning two F; components and [/, = ¢, = 4, impossible.

Thus ¢ = 1, i.e., there is a unique exceptional component, and 2¢% + 8¢, < 20.
Then ¢y < 1 and dim V; = 20? + ¢ = 14(15),52(53), 78(79) (parentheses denotes the
case /y = 1), which can only occur when ¢ = 6, /{; = 0 and V; = FEs. Furthermore
¢ = ¢ = £ and the commutant of U := (V;) is isomorphic to Vir,,,, the Virasoro of
central charge 1 (Ising model). Note that U = Eg for some positive integral & by
[11]. But it now follows that U has central charge 6. Since Ej, has ¢ = % we must
have k=1.

We must be in Case (i) because ¢ = ¢ (cf. Tables on P.19) so we have x = —13—6 and
y = —3, and the conformal weights of irreducible modules for V" are {0, 5, 12}. Now
Eg, has two irreducibles, and the conformal weights are {0,2}. Those for the Ising
model are {0, 3, 15 }. Looking at the tensor products, we must have V = Es1®Vir(csa),
a contradiction because this VOA has 8 irreducible modules. This finally completes
the proof of Proposition O

With these Propositions in hand, we have finally proven both Theorem [28| and
Theorem (1| In the next and final section we provide a discussion of the hypothetical
U-series.
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9. THE U-SERIES

By their very definition, potential VOAs that belong to the U-series have three
simple modules and survive all of the numerical tests that we have so far applied.
From an arithmetic perspective they are exquisitely balanced.

In this Section we discuss further properties of these VOAs, especially the ques-
tion of whether they actually exist. We shall present some results that render it likely
that there are just two VOAs in the U-series, namely the two known examples Ejg » and
Hohn’s Baby Monster VOA VB?O) [20]. This comes about on the basis of a surprising
connection between VOAs in the U-series and VOAs on the Schellekens list [34] of
holomorphic VOAs with ¢ = 24. We propose two related conjectures (Hypotheses S1
and S2 below) which, if true, allows us to establish this result. Hypothesis S1 has to
do with glueing VOAs together to form VOAs on the Schellekens list, while Hypothesis
S2 is a statement purely about the algebraic structure of VOAs on the Schellekens list
and is independent of the hypotheses of our main theorem. The ideas of the present
Section are closely related to, and in some ways constitute a generalization of, the
setting considered by Gerald Hohn in his thesis [20], and we are grateful to Gerald
Hohn for explaining his ideas to us (personal communication).

9.1. Connections with the Schellekens list. Let us record some of the properties of
a VOA V that lies in the U-series:

(i) V is strongly regular and has just 3 simple modules My =V, M;, M.

(ii) The g-characters f;(7) of the M, are each congruence modular functions of
weight 0 with nonnegative integral Fourier coefficients described explicitly in
Figure [6]

(iii) The character vector F' = (fy, f1, fo)* is a vector-valued modular form whose
associated MLDE is monic with irreducible monodromy p.

(iv) There is an integer p in the range 5 < p < 15 such that the central charge c,
the dimension m of the Lie algebra on V;, and the conformal weights h; of the
M; are as follows (cf. Figure [5):

c=p+4 m =(15 — p)(2p + 17), ho =0, hy =3, hy =21,

The formula for m derives from that for the elliptic surface (10).
(v) The S-matrix is

e 1 V2
(20) p(S)=§ \}_ 1f -2
2 —V/2 0

In particular the fusion rules for V' are the same as the Ising model Vir(cs4).
Especially, it follows that M; has quantum dimension 1 and is a simple current.

Now let k£ be a nonnegative integer. We define a family of VOAs V*) as follows:

Vir(ess) k=0,
V=S A, k=1,
By k> 2.
As a reminder, from Table we see that, like VOAs in the U-series, V%) is a simple VOA

with just three simple modules. Denote these by V*)| M}, M), say with conformal

weights 0, b} = 1 and h}, = 2% respectively. The central charge of V*) is equal to
o 2k+1
Cr ‘— 5 .
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Now choose any VOA in the U-series with parameter p as before, and denote
this VOA by W) and choose k := 15 — p, so that 0 < k < 10. For this choice of k the
tensor product VOA

TF = W® gy ®

is a simple VOA with central charge ¢ = p + f + 2251 = 24, Let us consider the
TP-module
X =W ovW)e (M o M) (Mo M).

Gerald Hohn calls this procedure glueing W® and V*). Each M; ® M/ is a simple
module for 7%, j = 1, 2. The next result is very useful.

Lemma 33. The conformal weights of M; ® M; for j = 1, 2 are both equal to 2. In
particular the conformal grading on X is integral.

Proof. We have hy + h} = 24+ 1 = 2 and hy + b} = 224289  The Lemma

follows. O
Corollary 34. The conformal weight 1 piece X; of X satisfies
X =Tk =wP e v,
0

Let x := xx = Trx ¢“(©~! be the ¢-character of X. It follows from Lemma
that

(21) X € q~'Z[[q]].
Lemma 35. y is the modular function of level 1 and weight 0 given by
x = J(q) + 48k.

where J(q) := ¢ ' 4 196884q + - - - is the absolute modular invariant with constant term
0.

Proof. After (21I)), x is invariant under the T-action 7 — 7+1. So to prove that y
is modular of level 1 it suffices to establish invariance under the action of S. This
will follow directly by a formal calculation based on the nature of p(S) (20). For the
VOAs W® and V® have identical S-matrices. Therefore if we formally let {e;}, {f;}
(j = 1,2, 3) index bases with respect to which the two S-matrices are written then

S@S:Y e f;i=i{2e@fi+e®fr+2e30 fs)+2er® fi+e® f)}

:Zei®fi7

which is the required S-invariance.

It is well-known [36] that the g-characters of simple modules for strongly regu-
lar VOAs are holomorphic in the complex upper-half plane. Therefore y is modular
of level 1 with a simple pole at co and no other poles, and leading coefficient 1. It
follows that x = J(7)+~ for a constant k.
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To compute the constant «, which is equal to dim X, use Corollary |34 to see

that
dim X; = dim W”+ dim v,
=m + dim By,
—(15 — p)(2p + 17) + (2k* + k)
=48k.
This completes the proof of the Lemma. O

Lemma [35| naturally suggests

Hypothesis S1: X carries the structure of a holomorphic VOA containing 77 as a
subVOA.

Hypothesis S1 is completely analogous to Hohn’s Vermutung 3.2.1 in [20]]. In
the following paragraphs we discuss some of the consequences of Hypothesis S1. The
first, of course, is that X is a holomorphic VOA of central charge 24, and therefore it
is a VOA on the Schellekens list [[34]. For a recent survey on the status of the VOAs in
the Schellekens list, we refer the reader to [25]].

We consider some relevant Virasoro elements. First, it is known [9] that the
Virasoro element w of a Schellekens list VOA X is contained in the subVOA generated
by X;. Thus by Corollary (34, w € T*, which entails that T* is a conformal subvVOA
of X. Similarly the Virasoro element of W® is in the subVOA generated by W,”.
Thanks to the construction of X it follows that our U-series VOA W® as well as V(¥
are subVOAs of X and that each is the commutant of the other.

After Corollary [34 we have

WP k=0,
(22) X =1 =wPa vV 2w oA, k=1,
WP @By, k> 3.

Remark 36. We emphasize that the notations A; ; and By ; have two meanings. First
they indicate the finite-dimensional Lie algebra which is a summand of X;. Second
they indicate which affine algebra is generated by this finite-dimensional Lie algebra.

Based on the argument of Lemma we expect that any such X will have the
property that 48 | dim X, and this is indeed the case. All 14 examples with & > 1
from [34] are listed in Table|3| The first thing to note from the Table is that the cases
k =17,9,10 do not occur. The X;-column lists the decomposition of the Lie algebra X,
in the form C'@ A, » or C'@ By, ; for some other semisimple affine algebra C'. The same
naming convention mentioned in Remark [36]is in force here. Consider the following:

Hypothesis S2: Hypothesis S1 holds, and C' is the commutant of Vl(k) in X.

This is purely a property of the Schellekens list VOA X, however in our set-up it
carries the implication that C = W® is in the U-series. Then Table 3|tells us that, at
least for k > 1, only the case with k = 8 and W7 = Ey, survives.

Remark 37. An advantage of Hypothesis S2 is that it is independent of the other as-
sumptions in this paper and it can possibly be proved independently. However, there
are other possible approaches that circumnavigate this assumption. For example, we
know the g-characters of W and its modules. Moreover C C W® is a conformal
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# X1 k
5 (A%) ® Aip 1
7 (A3 4) A1 1
8 (A56C23) & A2 1
10 (Ds8) ® Arg 1
25| (D580 6 By |2
26| (AZ,A3,)@ By |2
28 |  (EeaAs1) @By |2
39 | (Dg2Cs1Bs1) @ B3y | 3
40 (Ag2As1) ® B3 3
47 (Ds2By1) ® Baga 4
48 (C2,) @ Bag 4
53 (Er2Fy1) ® Bsa 5
56 (Cho1) ® Bea 6
62 (E&Q) ©® Bg,l 8

TABLE 3. VOAs on the Schellekens list with X; having a summand By, ;
or A;,. Columns give the Schellekens list number, the structure of the
Lie algebra X; with levels, and the k-value.

subVOA, so we can study the decomposition of W) and its modules into simple C-
modules. In this way we are able to eliminate some of the Examples listed in Table
such as entry #5.

Remark 38. The case k = 0 is rather different to the others inasmuch as X; = Wl(15) =
0. Thus one may expect that X = V¥ is the Moonshine module [19], in which case
Hypothesis S2 implies that W is the centralizer in V* of V(©) = Vir(cy3). This is
precisely how Hohn constructs the Baby Monster VOA VB(UO) [20].

9.2. Some SVOAs. Closely related to the ideas of the previous Subsection is the fact
that a U-series VOA V may possibly define some natural holomorphic super VOAs
(SVOAs). We will briefly consider this possibility. Once again this parallels the ideas
in [20], where in fact SVOAs play as big a réle as the associated VOAs. The main point
hinges on the fact that the simple module M; for V' is a simple current (cf. property
(v) for the U-series). Thus we may define a simple current extension S :=V & M.

Whether or not S is a true SVOA or perhaps a more general Z/2Z-intertwining
algebra in the sense of [7], Chapter 12, is an interesting question. We have to de-
termine if a certain Eilenberg-MacLane abelian 3-cocycle on Z/2Z is trivial or not.
In a sense it comes down to a choice of sign among the intertwiners. For a general
discussion of such problems, see [6].

In [20], Hohn constructs the SVOA S in the two cases when V = Eg, or VB(UO).
We will simply assume that S is indeed a SVOA and draw some simple conclusions.
Let o be the canonical involution of S that acts as +1 on the even part IV and as —1 on
the odd part M. Recall that the Ramond sector for S is the simple o-twisted module
for S, which is unique as we show in the next result.

Lemma 39. Suppose that S is a SVOA. Then it has the following properties:
(i) S is holomorphic,
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(i) Sis 3Z-graded and S, = 0,

(iii) M, is the (unique) Ramond sector for S.

Proof. For (i) we have to show that S is the unique simple module for S, and that every
admissible S-module is completely reducible (i.e., S is rational). The first assertion
follows easily from the fact that V' is a subVOA of S with only 3 simple modules V,
M, M. Rationality is proved by Dong and Zhao [12].

Part (ii) follows immediately from the fact that the conformal weight of A/ is
hy = 3.
2Finally, (i) implies the uniqueness of the Ramond Sector for S, and in fact it is
nothing but M, because the Ramond sector is an ordinary VV-module, and M, is the
only simple module for V' apart from V" and M;. O

APPENDIX A. PRIMES IN PROGRESSIONS

In Section [6] we cut down the possible character vectors for VOAs occuring in
Theorem [1| by making use of hypergeometric formulas for the character vector. To
prove nonintegrality of the vectors not contributing to Theorem |1, we produced non-
trivial denominators in all but finitely many cases. Our argument relies on the exis-
tence of primes in progressions that lie in specific intervals. In this short appendix
we explain how to use effective versions of the prime number theorem for primes in
arithmetic progressions to prove what we need. These sorts of results, which go back
to Bertrand’s postulate that there is always a prime between x and 2x, are well-known
to analytic number theorists. A recent paper [3] enables us to get the precise results
necessary for our application to the problem of classifying VOAs as in Theorem (1| To
treat solutions (m, x,y) to equation with y = a/5 where a is an integer coprime
to 5, we make use in Section [f] of the following result:

28 X1 contains at least one prime from

Theorem 40. If X > 6496 then the interval [ X, 5-
each congruence class a (mod 30) with ged(a, 30) = 1.

Proof. Let 7(X;q,a) denote the prime counting function for primes p = a (mod q).
By Theorem 1.3 of [3]]

Li(X) X
5@ | < Diogxy

for all X > z,(q) for explicit constants c,(q) and z,(q). We are interested in the
function

m(X;q,a) —

F(X)=m(28X/27;q,a) — 7(X;q,a).
We must prove that there exists an /N such that /(X)) > 1 for all x > N. Notice that
it X > z,(q),

| Li(28X/27)  28¢:(q) X
m(28X/27; q,a) > o(q) 27 (log X + log(28/27))2
o X)X
(X;q,a) > 3(0) =(q) (log X )?

Therefore for X > x(y),

Li(28X/27) — Li(X) 28 L !
[F(X)| > 4(q) — (@)X (2_7(logX +10g(28/27))2 (1OgX)2)
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Taking ¢ = 30, the paper [3] gives z,(30) = 789693271 and ¢,(30) = 0.0005661. One
sees that for X > w,(30), |F(X)| is much larger than 1. To prove the theorem for
6496 < X < x.(30) we used a computer to verify it in every case. This required about
twenty minutes of computer time using some unoptimized Sage code running on a
commerical desktop computer. O

Other solutions to equation (10) can be treated in a similar manner, where the
relevant moduli are 6 - 7 = 42 (primitive fibers) and 6 - 16 = 96 (imprimitive fibers
with y # —1/2); both of these moduli are treated in [3]].

APPENDIX B. AFFINE ALGEBRAS

Let G be a finite-dimensional simple Lie algebra of type A, B, C, D, E, F or
G and Lie rank ¢ (dimension of a Cartan subalgebra). In this Appendix we discuss
some properties of the universal vertex algebra V' (G, k) of level k£ and its simple quo-
tient VOA G, ., which is often called a WZW model when £ is a positive integer. For
convenience, the constructions of these VOAs will be recalled below. For additional
background, see [23], [26].

B.1. Statement of the main results. There are two main results that we intend
to prove in this Appendix, both having to do with the conformal grading of WZW
models. The first one we call the majorization Theorem:

Theorem 41 (Majorization). Fix the type G and Lie rank (. Regarding G, as a linear
space equipped with its conformal Z-grading, there are surjective Z-graded morphisms

Gow — Gog
for all positive integral k' > k.
The second result is more specialized:
Theorem 42. For all positive integers k, ¢, we have
dim(Cy)2 > dim(Bg)e
with equality only if { = 2.
Remark 43. The proof will show that
dim(Cy)2 — dim(Byg ) > 20 — 4.

B.2. The universal affine VOA V (G, k). Let G be a finite-dimensional nonabelian
simple Lie algebra with Killing form (,). The affine algebra associated to G is the Lie
algebra defined by
G®Clt,t e CK
where K is a central element and the nontrivial brackets are
[a@t™ bR t"] == [a,b] @ t™" +mb,1nola,b)K
for a,b € G. There is a natural triangular decomposition
G=G"2G G
with
(j:ﬁ: =0 ® t:tlc[t:tl]
Go=g 21" ®»CK ~G o C.
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G is also naturally Z-graded by:
g:@gm Qn::g®t_n (H#O),

neZ

SO that [gAm, gn] g gm—&—rw

Choose any scalar (the level) k€C, and let C;, denote the 1-dimensional (G* @
GO)—module defined as follows: G* acts as 0; G = Gxt° acts as 0; K acts as multipli-
cation by the level k. The corresponding Verma-module is the induced module

V =V(G,k) = UG) Sygrasy) Ck-
where, here and below, i/ denotes universal enveloping algebra. Using the PBW the-
orem and the triangular decomposition for G, one sees that V is linearly isomorphic
to the symmetric algebra S(G~). The conformal grading on the symmetric algebra is
related to the grading on Ginwhicha®t™ (n>1, a € G) has weight (i.e., degree)
n and the vacuum element 1 := 1 ® 1 has weight 0.

(23) V=V(G,k)=S(G) = @®n=05(G n
where
S(G™)o =C1, S(G ) =Gt

As long as k is a positive integer (the only case that we care about) then V'
carries the structure of a VOA, and the grading on V' induced by the L(0)-operator of
the Virasoro element is the conformal grading we just described. An obvious — though
important — point is that this is independent of the level k.

B.3. The quotient VOA L (G, k) and the Majorization Theorem. We continue to dis-
cuss the VOAs V := V(G, k), always with k a positive integer. Up to scalars, V admits
a unique nonzero, invariant, bilinear form by, by a Theorem of Li [27]], however by
is always degenerate for the values of & under consideration. The radical of by is the
unique maximal 2-sided ideal in V, and we denote the simple quotient VOA by

L(G, k) = V(G, k)/Rad(by).

If G has type A, B, ..., F,G and Lie rank ¢ we will often denote this VOA by G, .

A fundamental Theorem for us is the determination of Radby, by Kac [23]. See
also [26]], Proposition 6.6.17. To state the result concisely, we need some notation.
Let ® be the root system of G and let § € ® be the (unique) positive root of maxi-
mal height. Let Sy C G be a fundamental sly-subalgebra determined by # having a
Chevalley basis {ey, fo, ho}-

Proposition 44 (Kac). We have
Rad(by) = U(G)eg(—1) 1.

We are now ready for:

Proof of Majorization Theorem [41] We have seen that, considered as just a Z-graded
linear space, V' (G, k) coincides with the graded symmetric algebra which does
not depend on k. From Kac’s Theorem it is clear that the radical ideals R, := by g )
are graded subspaces that satisfy

Row € Ry
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for k¥’ > k. These containments induce surjections of graded linear spaces
L(ga kl) — L(ga k)
and this is the statement of Theorem O

B.4. Proof of Theorem In order to prove Theoremwe may assume that ¢ > 3,
and we shall do this. Furthermore, by applying Theorem 41|we are reduced to proving
Theorem [42]in the case k& = 1, and we shall from now on also assume that this is the
case.

Thus we must compare the dimensions of the weight 2 pieces of the VOAs C,;
and By;. According to Proposition (44 these are given by the weight 2 pieces of the
graded quotients

Cy1 =V (Cp, 1)/UC)ege(—1)1,
Bg71 ZV(Bg, 1)/U<Bg)693(—1)21,

where 6B and 6C' are the highest roots for the root systems of type B, and C, respec-
tively.

From the description of the underlying Z-graded space of V (G, 1) as a graded
symmetric algebra presented in Subsection[B.2] and because By, C; are Lie algebras of
equal dimension, it follows that the degree 2 pieces of V (B, 1) and V(Cy, 1) are also
equal. Therefore, in order to prove Theorem [42] we must compare the dimensions of
the degree 2 pieces (U(B;)egs(—1)?1), and (U(C;)ege(—1)%1),. Indeed, we shall prove
the next result (and Remark [43] also follows from this):

Lemma 45. We have
dim (U (Be)egp(—1)1)y — dim (U (Cp)ege(—1)%1), = 20 — 4.

The remainder of this Appendix proceeds with the proof of this Lemma. It
amounts to a fairly elaborate computation of the dimensions of the 2 graded spaces
in question.

We begin with any simple Lie algebra G. U(G) is spanned by elements of the
form

{a'(—my) ---a" (=m, )b (0) - - - b5(0)ct (ny) - - - ¢ (ng) | My, my > 1}
where the Lie algebra elements a’, b, ¢’ span G, the m; and n,; are decreasing se-
quences of integers, c'(n;) is the operator induced by ¢’ ® t", etc. Now it is well-
known that the radical spaces (1/(G)es(—1)21) contain no nonzero elements of degree
less than 2. Thus the weight 2 piece is the lowest nonzero part. Because the operators
¢'(n;) are lowering operators for n; > 0 they must annihilate e,(—1)?1 (a result that

can be checked directly). Similarly, the v’(0) are weight 0 operators and the a‘(—m;)
are raising operators for m; > 0. The upshot is that we have

(U(G)eo(—1)"1); = Goeg(—1)°1.
For b € G we also have
b(0)ea(—1)*1=2[b, eg](—1)eq

and as b ranges over G we generate in this way ey(—1)? as well as e (—1)eg for positive
roots a, -y such that v + a = . Let the number of such positive roots v be denoted by
N = Ng. This argument shows that

dim(24(G)eg(—1)?1)y = 1 + Ng.
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There is a representation-theoretic meaning of the integer N. Recall the sl, Lie
algebra S := Sy = (eq, fo, hy) C G, and decompose the adjoint representation as a
direct sum of irreducible S-modules. We assert that

(24) G=Cg(S)oSal,V

where Cg(S) is the centralizer of S and where each V; is 2-dimensional. Indeed, the 1-
dimensional summands are all contained in the centralizer and there is at least one 3-
dimensional summand, namely, S itself. Note that a Cartan subalgebra # is contained
in the sum of these two modules. Let V; C G be any other nonzero irreducible S-
submodule. On one hand V; is spanned by root vectors because G is, and on the other
hand it contains a unique highest weight vector for e¢4. Because 6 is the highest root
for G then every root vector v, (y € ®*) is annihilated by ey, and this means that
V; contains exactly one positive root vector, call it v,, and exactly one negative root
vector, which must be v,_y. Setting § := 6 —y € ®* we have a + § = 6.

This argument shows that dimV; = 2, thereby confirming the decomposition
(24). Note that we obtain such a V; whenever § = « + 3 is decomposed into a sum of
two positive roots, so that the number of 2-dimensional summands in is indeed
equal to N.

We now find that

(25) Ng = 1(dim G — dim C4(S) — 3).
Finally,

Lemma 46. We have

(1) Ifg = Bg then Cg(S) = Al D Bg_g,'
(2) Ifg = Cg then Og(S) = Cg_l.

Proof. We tackle the case C first. In standard notation (cf. [22], Section 12) we
choose an orthonormal basis {e;} in Euclidean space R. A root system of type C
may then be chosen to consist of {£e; £e; | i # j} U {%2e;}, and we have 0 = 2e;.
Then all roots with indices i, j greater than 1 correspond to elements of Cg(S), and
these form a root system of type C,_;. The assertion of the Lemma in this case follows
immediately.

Similarly, a root system of type B, may be taken to be {+e; e, | i # j} U {=xe;}
and in this case # = e; + e,. Here, all roots with indices greater than 2 together
with e; — ey correspond to elements in the centralizer, and the conclusion is that
Cg(S) = A @ By_s. O

At last we can compute the needed dimensions using Lemma 46| and (25). We
find that
Np, =3((20° +0) — (2(t =2 + (¢ —2) +3) —=3) =40 — 6
Ne, =5(2C +0) = 20l =1 + (= 1)) =3) = (—(-40+2+ (-1)) = 3) =20~ 2

Therefore N, — N¢, = 2( — 4, and this completes the proof of Lemma [45|and thereby
that of Theorem [42] also.

4
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