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NICHOLAS. M. KATZ

Introduction. Hasse [20] and Hasse-Davenport [21] were the first to
realize the connection between exponential sums OVer finite fields and
the theory of zeta and L-functions of algebraic varieties over finite fields.
This connection was exploited by Weil ; one of the very first applications
that Weil gave of the then newly proven «“Riemann Hypothesis” for curves
over finite fields was the estimation of the absolute value of Kloosterman
sums (cf[46]). The basic idea (cf[20]) is that by using the theory of
L-functions, one can express the negative of such an exponential sum as
the sum of certain of the reciprocal zeroes of the zeta function itself;
because the magnitude of {hese zeroes is given by the © ‘Riemann Hypo-
thesis,”” one gets an estimate. In a fixed characteristic p» the estimate onc
gets in this way for all the finite fields F , is best possible. On the other
hand, very little is known about the variation with p of the absolute
values. even for Kloosterman sums, though in this case there is a conjec-
ture, of Sato-Tate type, which seems inaccessible at present.

One case in which the problem of unknown variation with p does not
arise is when the expression of the exponential sum as a summ of reciprocal
roots of zeta reduces 10 a sum consisting of a single reciprocal root; then
the Riemann Hypothesis tells us the exact magnitude of the exponential
sum. Conversely, an elementary argument shows that in a certain sense,
this is the only case in which such exact knowledge of the magnitude of
exponential sums can arise, and it shows further that a theorem of Hasse-
Davenport type always results from such exact knowledge. Examples of
exponential sums of this sort are Gauss sums and Jacobi sums.

Honda was the first to suggest that the identification of say, Jacobi
sums. with reciprocal zeroes of zeta functions could also lead to significant
non-archimedean information about Jacobi sums. A few years before
his untimely death, Honda conjectured a p-adic limit formula for Jacobi
sums in terms of ratios of binomial coefficients ([23]). 1 gave an over-
complicated proof (in a letter to Honda of Nov. 1971) which managed
to shed no light whatever on the meaning of the formula. Recently,
B.H. Gross and N. Koblitz [14] showed that Honda"s limit formula was
really an exaci p-adic formula for Jacobi sums in terms of products of
values of Morita’s p-adic T-function; as such. it constituted the first
improvement in this century over Stickelberger’s formula which gave the
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p-adic valuation and the first non-vanishing p-adic digit in the p-adic

expansion of a Jacobi sum!

In this paper, I will discuss the cohomological genesis of formulas of
the sort discovered by Honda. The basic idea is that the reciprocal zeroes
of zeta are the eigenvalues of the Frobenius endomorphism of a suitable
cohomology group; if this group, together with the action of Frobenius
upon it, can be made sufficiently explicit, one obtains the desired “explicit

formulas’”

There are two approaches to the question, which differ more in style
than in substance. The first and longer is based on Honda’s explicit
construction of the Dieudonné module of a formal group in terms of
“formal de Rham cohomology”. The second, less elementary but more
efficient, is grounded in crystalline cohomology, particularly in the theory
of the de Rham-Witt complex. I hope the reader will share my belief that
there is something to be gained from each of the approaches, and pardon
my decision t0 discuss both of them.

[ would like to thank B. Dwork for many helpful discussions concerning
the original proof of Honda’s conjecture. Whatever I know of the
Grothendieck-Mazur-Messing approach to Dieudonné theory through
exotic Ext’s, 1 was taught by Bill Messing. 1 would also like to thank
Spencer Bloch for his encouragement when 1 was trying to understand
Honda’s explicit Dieudonné theory, and Luc Tllusie for gently correcting
some extravagent assertions I made at the Colloquium.

Finally, I would like to dedicate this paper to the memory of T. Honda.

1. FElementary Axiomatics, and the Hasse-Davenport Theorem. Con-
sider a projective, smooth and geometrically connected variety X, say of
dimension d, over a finite field F, . For each integer n = 1, we denote by
X(F o ) the finite set of points of X with values in Fon and by # X(F )
the cardinality of this set. The zeta function Z(X/F,,T) of X over F is the
formal power series in T with Q-coefficients defined as

Tt

T
Z(X/F,,T)=exp( ?;1 ——# X(F )
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Thanks to Deligne [6], we know that this zeta function has a unique
expression as a finite alternating product of polynomials P;(T) € Z[T]‘
1=0,....,2d:

E

2d i+l
zx/F, D=1Ipm " =D Pun
i=0 P,P,.. Py,

in which each polynomial P,(T) ¢ Z[T] is of the form

deg Py
P(T)= JT(1-a,T)
with «,; algebraic integers such Jtillat
'(xi,j , = N/—q— ‘
for any archimedean absolute value{ l on the field Q of all algebraic
numbers. The extreme polynomials P, P,, are given explicitly:

P(T)=(1-T) P, (T)=(1—q*-T)

Despite this apparently “elementary” characterization of the poly-
nomials P;(T), their true genesis is cohomological. Let us recall this
briefly.

For each primc_e number / different from the characteristic p of F, let
us denote by H, (X) the finitely generated Z,-module defined as

H; (X) = limH e (X®F,.2/7" 2).

Corresponding to the prime p itself, we denote by W(F, ) the ring of

p-Witt vectors of F,, and by H., (X) the finitely generated
W(F, )—module defined as '

Ho (X) = imH, (X/W, (F,)).

The Frobenius endomorphism F of X relative to F q acts, by functoriality,
on these various cohomology groups H,i (X) for /# p, and H';m (X);
and F induces automorphisms of the corresponding vector spaces
H, (X) gj) Q,., H...(X) gv% K (K denoting the fraction field of
W(F, )). The polynomial lgi (T) € Z|T] which occurs in the factorization
of the zeta function is then given cohomologically by the formulas
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P(T) = det (1 - TF[H/(X)®Q,) for /# p
P,(T) = det (1 — TF|H,,(X) ®K).
The resulting formula for zeta as the alternating product of
characteristic polynomials of F on the H' | in each of the cohomology

theories H}(X)@Q, for I #+ p, Hicris (X) ® K, is equivalent, via
logarithmic differentiation, to the identities in those theories

#X(F )= 2 (=1) trace (F"|H"). foralin > 1.

By viewing the set X(F . ) as the set of fixed points of F" acting on X(I—Tq ),
this identity becomes a Lefschetz trace formula

#Fix (F") = 2 (=1) trace (F"|H') alln =1

for F and its iterates in each of our cohomology theories. If we take as
given these Lefschetz trace formulas, then the identification of P; with
det(1 — FT|H') is equivalent to the assertion:

On any of the groups H;(X)@Q, with / # p,

Hicris (X)® K, the eigenvalues of F are alge-

braic integers all of whose archimedean absolute

values are ,/E'.
In fact, there is not a great deal more that is known about the action of
F on the H;(X)®Q, for/ #+ p, and on H',, (X)®K. It is still not
known, for example, whether the action of F on these cohomology groups
is always semi-simple when i >1. (That it is when i = 1 results from the
theory of abelian varieties).

Suppose that a finite group G operates on X by F, —automorphisms.
Let us choose a number field E big enough that all complex representa-
tions of G are realizable over E, and whose residue fields at all p-adic
places contain F_ . (For example, the field Q({, _,, {, ), where N is the
l.c.m. of the orders of elements of G, is such an E). We denote by A an
l-adic place of E, / # p, and by P a p-adic place of E. Thus E | is a finite
extension of Q,, and E, is a finite extension of K.

Let M be a finite dimensional E-vector space given with an action of G,
say p:G—>Aut, (M). The associated L-function L(X/F,,p,T) is the
formal power series with E-coeflicients defined as
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, ™ 1
LX/F, . p.T)=exp Z T Ztr(p(g—‘)) # Fi(E"g))

nzl geG

whfre Fix (F"g) denotes the finite set of fixed points of F"g acting on
X (F,). We recover the zeta function of X/F, by taking for p the regular
representation of G. The usual formalism of zeta and L-functions gives

zx(F, T = II LX/F,, p. T

It follows from Deligne’s results that for any representation p, we have
a unique expression for the corresponding L-function as an alternating
product of polynomials P;, (T) € E[T],
2d
i+l
LX/F,,p. D)= I P, T

which are of the form
degPi p

p,, (T) = E (1—a,,T)
with algebraic integers «;, such that
\ aij,p \ = Jai

for any archimedean absolute value| lon the field Q of all algebraic
numbers.

The cohomological expression of these P, 1s straighforward (cf[18]).
Because the action of G is “defined over F,”, it commutes with F, and
therefore the induced action of G on the cohomology commutes wit,h the
action of F. Therefore G, acting by composition, induces automorphisms
of the E, -vector spaces, [+ p,

Hom,, (M®E,, Hi (X) @ E,).
!
and of the E, -vector spaces
Hom () M®E,, H_ (X) @(Fq)Ep).
The polynomials P;, P(T) e E[T] are given by the formulas
P, (T)=det(1—TF|Homp,, (MQF?EA,H,i (X)Z®,EA))forl4z p

PLP(T)=det(l—TF\HomEP[G](M®EP,HL,iS (X)® E,))
E wWE
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Let us recall the derivation of these formulas. We first observe that the
characteristic polynomial of F on Homg (M,H') ~MO®H)CM ®H
divides  det(l — FT\H')d‘m(M) . and hence the eigenvalues of F on
Hom (M,H')_ are algebraic integers, all of whose archimedean absolute
values are,/ﬁ'. So it remains only to verify that the alternating product
of those characteristic polynomials is indeed the L-function, i.e. that

LX/F, . p.T) = 1L det(l = FT|(M®H)° o
Equivalently, we must check that
1

I —1 . n
#GZ trace p(g ") # Fix(F 8

- Z(— 1) trace(1® F'|{(M ® H)®)

i 1 n v i
= Z(—l) ?GZtrace(g@)F g M®H)
geG
i 1 v . n i
z (-D ?GZtrace p(g) trace(F g\H )
geG
1 -1 z _ i n i
ﬁZtracep(g ) (—1)' trace(F gH").
3

To check this last equality, we would like to invoke the Lefschetz trace
formula, not for F", but for F" g, with gan automorphism of finite order
which commutes with F; this amounts to invoking the Lefschetz trace
formula for Fg on X and on all its «extensions of scalars” X®F . . But
an elementary descent argument shows that given an automorphism g of
finite order which commutes with F, there is another variety X'[F,
together with an isomorphism X ®F, =X ®F, under which Fg® 1
corresponds 10 F ® 1. Because this isomorphism also induces

isomorphisms of cohomology groups

LX) HL (X ®F, Z) = H (X®F.Z )" HIX),

il

i

H_ (X)OW(F)= H (X' ®F )= Hau (X®F,) =~
~ H. (X)QW(F,),
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the truth of the Lefschetz formula for Fg on X results from its truth for
Fon X’.

Let us now consider in greater detail the case of an irreducible p. Then
P, isa polynomial whose degree is the common multiplicity of p in any
of the H,(X) ®E,, I+ p, or in H.,..(X)® E, . Decomposing the
regular representation leads to the factorization

Py = Il p, (m)**
pirred
The coarser factorization

D= II @, @*)

pirred
corresponds to the decomposition of H,' (X)®E 5> T€Sp Hicris X)®E,,
into p-isotypical components

H(X)®E, ~ ® (HX®E,)’

irred p

Hicn's (X) ® Ep ot @ (chs (X) ® E )P

irred p
Indeed the corresponding identities, for p irreducible, are

P, (T)™* =det(1 - TF|(H;(X) ®E,)") I#p
P, (T)**® =det(1 - TF|(H',, (X)®E,)").

Let us denote by S(X/F,, p,n) the exponential sums used to define
the L-function:

1 n 1
S(X/Fy. ) = Z tr(p(g)) # Fix(F"g ™.

ge«G

The following lemma gives the cohomological meaning of theorems of
Hasse-Davenport type (cf [20]).

Lemma 1.1, Let X‘/Fq be projective and smooth. Let a finite group G
operate on X by F,-automorphisms, and let p be an irreducible complex
representation of G. Fix an integer i, and denote by H' any one of the
cohomology groups H, (X) ®E with | # p, or HC"rls (X)® o
Let| | be any archimedean absolute value on the field Q of all algebrazc
numbers. The following conditions are equivalent :
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(1) The multiplicity ofp in H ‘ is one, and the multiplicity of p in H 'is

zero if i # i,.
(2) Forall n =1, we have

(—1)° S(X[Fppn) = ((—1)° S(X|E,p.1) )",

and |S(X/F(,,P,1)‘=~/;o

(3) For alln =1, we have
| sxiF, el = Jq
(4) For alln =1, we have
|S(XIF,,pn)| = |S(XIF,,p,1)]|"

and Ja° <|S(X|F,,p.1)| <3 ™

(5) The polynomial P, , (T) is given by
P (T)=1—(~1)°S(X|F,,p,1)T
and for i # i, we have PLP (T)=1

(6) The p-isotypical component (Hi)'=0for i # i, (H™)® has dimen-
sion = deg(p), and F operates on (H°)* as the scalar
(—1)°S(X|F,.p.1).

Proof. This is an easy exercise, using the basic identities:

(= i+l

exp(z L Sx/F,. p.n) = L(X/Fy, p.T) = ITP, ,(T)
P, (T)= H(l—cx )., =43’

1 i
) — . . . . i — . d. H P .
L degP; multiplicity of pin H Wdeg(p) im((H)")

Suppose, first, that (1) holds, or equivalently that fori # i,, P;, F(T) =1,
while P, is a linear polynomial P,O.P(T) =(1 —AT) w1thi Al= ./— ‘.
The cohomological expression for L then becomes

Tn 1 (—l)i("
exp(ZF—S(X/FQ,p,n)):(-————1 AT .
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Taking logarithms and equating coefficients, we find
(—1)°S(X/Fq,p,n)=A“ foralln=1.
In particular (2) and (5) hold.

The implications (5) = (1), (6) = (1) are obvious. Also (5) = (6), for
if Py, 18 linear, then p has multiplicity one in H° |, so that (H‘°)" is
G-irreducible, and hence F must operate on (H‘ °Y asa scalar, which we
compute by the formula

P, , (D™ = detd _TE|H°Y).

Clearly we have =03 = (4). We must show that if (4) holds, then
exactly one of the Pi, is # 1, and that on¢ is linear. Logarithmically
differentiating the cohomological formula for L, we find

degP;

S(X/F,. o= 2 (=1 2, (ei5.,) > PERENCE

We must show thatif(4) holds, then the double sum has only a single term
in it. Separating the &; j , according to the parity of i, we get two disjoint
sets of non-zero complex numbers (disjoint because their absolute values
are disjoint), to which we apply the following lemma.

Lemma 1.2, Let N=>0and M = 0 be non-negative integers. Let{ Ai}
be a family of N not-necessarily distinct elements of C*,and { B.} a family
of M not-necessarily distinct elements of C". Suppose that for all i, j, A +
B, . If, for some real number R >0, we have

\ZAin-‘ 213';\———Rn forallnz1,

then N+ M =1, ie. either there is just one A and no B’s, or just one B
and no 4’s.

Proof. Suppose first that either N =0 or M =0, say M = 0. Then we
have
|I= A =R".
Squaring, we get
?—J,- AA) = (R*)" forn=>1
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whence
Ma-aAT=(0-RD,
iJ
and hence N= 1.

Tn case both N =1 and M > 1, squaring leads to

SAA) + 2 BB — (R} + 2(AB) + 2 (AB)

or equivalently,

1 To- ABDII0-ABT
G-RD TIa-AA,DIA-BBD

Let R pax b€ max(\Ai\ , \ B j\ ),and consider the order ofpoleat T = R .
The numerator’s factors 1 — Ai_ﬁjT, 1 — A;B;T are all non-zero there
(for if A-,—ﬁj =R%.., by maximality we must have A; = B =R nax »
in which case we s€€, using polar coordinates, that A, = B, which is
forbidden). In the denominatof, each of the terms - \Ai\zT),
(1 —|B/*T) with | Al =R, and | B,| = R s vanishes at T = R o -
Therefore we may conclude that in fact R=R,,, and that precisely one
among all the A, and B; has this absolute value. A similar argument shows
that R i, = R QED

In a similar but lighter vein, we have the following variant, whose

proof is left to the reader.

Lemma [.3. Let X|F, be projective and smooth. Let a finite group G
operate on X by Fy —automorphisms, and let p be an irreducible complex
representation of G. Denote by H' any of the cohomology groups
H (X) (Z>9 E, with | # p, or H..(X) (? E,. The following conditions

i
are equivalent.
(1) For all i , p does not occur in H , i.e. we have (Hi)" = 0.
(2) For all n =1, we have
S(X/Fq,p,n) =0.
175
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II. Gauss and Jacobi Sums as exponential sums, and as eigenvalues of
Frobenius

We begin by discussing Gauss sums. Let us fix an integer N > 2 prime
to p, and a number field E containing the Np’th roots of unity. Given an
additive character ¢ of F,,, i.e. a homomorphism

‘ﬁ: (Fp’+) —_— Ex;

we define an additive character ¢, of each finite extension F, by compos-
ing ¢ with the trace map: :

tracep
K > F ¢ —> E

1 ’ 1
%,

Given a character of u, i.e. 2 homomorphism

X: py(E) — E*,

a p-adic place P of E , with residue field Fy ), and a finite extension
F, of this residue field, the map “‘reduction mod P” induces an
isomorphism

Bn(E) —=— pu\(Fne)) = pnE)
Because F_ is cyclic, we know that q=1 mod N, and that the

q—1
map Xx ——» X N defines a surjection

qu —>> un(F) = py (Fyey) = pn(E)

We define the character X, of F; as the composite

X X X
Fq —>>punF ) = mn(Fnery) X pn(E)—> E.

|

X,

q

The Gauss sum g, (¥, X,P) attached to this situation is defined by the
* formula

g (b XP) = 2 (9%
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An elementary computation shows that

q—1 if ¢, X both trivial
gq(:/z, X, P = 0 if 4 trivial, X non-trivial
-1 if 4 non-trivial, X trivial

while
| &, (4, X,P)| = J/q_if §,X both non-trivial
for any archimedean absolute value on E (cf[47]).

Now consider the Artin-Schreier curve X/F, , defined to be the complete
non-singular model of the affine smooth geometrically connected curve
over F, with equation

TP — T = XN

Set theoretically, X consists of this affine curve plus a single rational
point at « . The group F, x u (F, ) operates on X/F, curve by the affine
formulas

@) :(T,X) —> (T+a,(X),
fixing the point at « . Via the “reduction mod P’ isomorphism

pnE) = py Fney) = pn(E),
we may view (¢, X) as a character of the group F, x gy (K ):
(£, %) @,0) = (@) X().

Thus we may speak of the sums

1 . ~
S(X/Fy,(,X),n) = N Z $(@) X({) #Fix(F" -@@,0) ™)
@lyeFpxuy
attached to this situation.
LemMa 2.1. If X is non-trivial and i is arbitrary, then we have

(2.1.1) S(X|Fy,(¥,X) 1) = gua (. X,P).
177
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Proof. It suffices to treat the case n = 1, for we have
S(X/F, n (P, X), D) = S(X/F, (¢, X),n).
We can rewrite S(X/F,,(¥-X),1) as

> Z b X(D)

x e X(Fq) (a.0)s.t
Fooy=(a,0)(0)

Given any point xch(i?'_q ), the set of (@,{) € F, x pPn which satisfy
F(x) = (a,{) (x) is either empty or principal homogeneous under the
inertia subgroup I, of ¥, > [y which fixes x; therefore if the restriction
of (¢, X) to this subgroup is non-trivial, the inner sum above vanishes.
Because X is assumed non-trivial, this vanishing applies to the point at
(for which I, is all of F, x pn) and to any finite point (T,0) whose
X-coordinate is zero (then I o, = {0} x pn)-

Given a point (T, X) withX =+ 0, wehave
F(T.X) = (T.XY)

and the inertia subgrowp I is trival. If there is an element
(a, L)eF, x pn satisfying F(T,X) = (T +a, {X), then it is given by the
formulas

aqu _T’;zxq—‘l
Since the point (T, X) is subject to the defining equation

TP — T =X"
we see that
q-1
(XM =X HYY = = I hence X~ € F,,{ =(XM) "
" —T=X" eFg,
a=T'—T=trace, , (T' —T)=traceyy, x™y.

For each ue F: . the equations (TM -T= u,XN = u) have pN solutions
(T,X) over F, , all of whi ch satisfy

F(T.X) = (@) (T.X)
178
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q—1!
with the same @,0), namely (traceg g, (u), u Ny, and every point
(T,X) which contributes to our sum lies over some u € Fg . Thus our sum

becomes

2 racey @)X@ ¥ )" g, (4. X,P) QED

ueFq

COROLLARY 2.2. Let H' denote any of the cohomology groups H\(X)®E N
withl # p,or H ;. ,(X)® E, of the Artin-Schreier curve X|Fg .
w

(1) If § and X are both non-trivial, then the eigenspace (H') **
is one-dimensional, and we have a direct sum decomposition

H=0H)**
indexed by the (p—1( N — 1) pairs (¥,X) of non-trivial characters.
(2) The eigenvalue of F on (H') ¥'* is — gq(lﬁ,X, P ), and for

eachn = 1 we have the Hasse-Davenport formula
—‘gqn(‘l',X,P) =( - & (')bax’P))n .
(3) The group Fy * P acts trivially on both H® and H* .

Proof. That the group acts trivially on both H® and H? follows from
the fact that these are one-dimensional spaces on which F always acts
as 1 and q respectively. The descent argument shows that for any auto-
morphism of finite order g which commutes with F, Fgalso acts as 1 and
gon I-go and H? respectively, and hence that g itself acts trivially on H°
and H.

That the multiplicity of ( P, X)in H! is one when both  and X are non-
trivial follows from the lemma of the previous section, given the identity
(2.1.1) and the known absolute value of gauss sums; and assertion (2)
above is just a repetition of part of that lemma in this particular case.
To see that no other characters occur in H', we recall that the dimension
of H' is known to be 2g, 8= genus of X, and so it suffices to verify that
2g=0p—1) (N— 1). This formula, whose elementary verification we
leave to the reader, is in fact valid in any characteristic prime to N@p—-1.
(Hint: view T —T= X" as an N-fold covering of the T-line!)

QED
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We now turn to the consideration of Jacobi sums. We fix an integer
N > 2 prime to p, and a number field E containing the N’th roots of unity.
Given a p-adic place P of E, a character X of gy

X : py(E) —> E”
and a finite extension F, of the residue field Fy ;) at P, we obtain the
character X,
X,:F, ——E
in the manner explained above. Given two characters X, X’ of py, the

Jacobi sum J, (X, X’,P) is defined by the formula

LOGX PYE 2 X ()X (1—x).

«Fq
x%0,1

An elementary computation (cf [14]) shows that if the product X X’ is non-
trivial, then for any non-trivial additive character P of F,, we have the

formula
g, (4, X,PYg (. X',P) = J, (4, X', Pg (. XX, P)
In particular, from the known absolute values of Gauss sums we obtain
|5, (X.x".p) | = /a

for all archimedean absolute values of E, provided that X,X’, and X X’
are all non-trivial.

Now consider the Fermat curve Y/F,, defined by the homogeneous

equation
xN+YN=2"
The group gy X gy Operates on this curve by the formula
€:.0,): (XY, 2) — (,X1,Y.2).
Viewing ( X, X) as a character of this group
(LX) (1,805 XLDX' (),

we may speak of the sums S(Y/F, , (X, X"),n) attached to this situation.
180
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In complete analogy with the situation for the Artin-Schreier curve, we
have the following lemma and corollary, whose analogous proofs are
left to the reader.

LemMA 2.3. If X and X’ are non-trivial characters of g such that X X’
is also non-trivial, then we have, for all n = 1, '

(2.3.1) S(Y/Fy, (X, X' )n) =T . (X,X",p).

COROLLARY 24.Let H denote any of the cohomology groups
H,(Y)® E, withl+p,orH  (X) @ E, of the Fermat curve Y|F, .
(1) 1f X, X’ and X X’ are all non-trivial, then the eigenspace (H' )(x'“ is

one-dimensional, and we have a direct sum decomposition
Hl —_ @ (HI)(X,X’)

indexed by the (N—1) (N—2) pairs (X, X’) of non-trivial characters of
W whose product X X' is also non-trivial.

(2) The eigenvalue of Fon (H' ) is—J, (X,X',P), and for each
integer n = [ we have the Hasse-Davenport formula

—an (X, x,a P) = (—Jq (xs x/, P))n -
(3) The group py X py operates trivally on both H® and H 2,

1. The problem of “explicitly” computing Frobenius. We return now
to the general setting of a projective, smooth, and geometrically connected
variety X/F, of dimension d. A tantalizing feature of all the cohomology
theories that we have been discussing is that when the variety X “lifts”
to characteristic zero, then the corresponding cohomology groups H' X)
have an “elementary” description in terms of standard algebro-geometric

and topological invariants of the lifting. '

More precisely, suppose we are given a projective smooth scheme X
over W(F, ), together with an F, -isomorphism of its special fibre with X.
(This is a rather strong notion of what a “lifting” of X should mean, but
it is adequate for our purposes, and it avoids certain technical problems
related to ramification). Then there is a canonical isomorphism

H,, (X) —> H(X/W(F,))

cris
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of H
27D.

To discuss H} (X), we must in addition choose (1) a complex embedding

with the algebraic de Rham cohomology of the lifting (cf[19],

cris

W(F,) = C.

By means of such an embedding, we may «extend scalars” to obtain from
X/W_ a projective smooth complex variety X ¢, and an associated complex
mamf old X, . For each prime number / + p, there is a canonical
isomorphism

HX) — H,,X D@ Z,

where H', denotes the usual “topological” cohomology.

To emphasize the similarity between these two sorts of isomorphisims
recall .that by GAGA and the holomorphic Poincaré lemma, we have a
canonical isomorphism

Hipp (X/W)®C _~ s H, X/C) — H

top

Xe 0

)

H, (X",2)®C

Unfortunately, these rather concrete descriptions of the various
cohomology groups H' (X) shed little light on their functoriality. In the
rather unusual case of an F, -endomorphism f:X—> X  which
happens to admit a lifting to a W-endomorphism

f:X — X,
we have the simple formulas

FonH  (X)=f* onHp, (X/W)

fonH (X)=(d2)* ®1on H  (XI,Z2)®Z,1+p
But for those f which do not 1ift, we are left somewhat in the dark as to an
explicit description of the map f* on cohomology.

Suppose for example that a finite group G operates on X by F, -auto-
. - - q
morphisms, and that this action can be lifted to an action of G on X by
W-automorphisms. Then our canonical isomorphisms
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H_ (X) — Hip X/W)

H (X) ——> H (XT,2)®Z forl+p

top

are G-equivariant. In particular, we can‘‘explicitly compute” the multi-
plicities of the various complex irreducible representations p of G in the
cohomology of X, and we can «explicitly compute” the various isotypical
components of the cohomology. If it turns out that @ given irreducible

representation p occurs in a given H' with multiplicity one, then we
know a priori that F must operate on the corresponding isotypical

component (H'Y asascalar, and we know this even when F itself does not

tift.

For example, we could recover the isotypical decomposition of H'
of the Fermat curve Y under the action of pn X Pn by lifting the curve
and the group action (use the “game”’ equations) and making an explicit
algebro-geometric or topological calculation of the corresponding
isotypical decomposition in characteristic Ze€ro. In terms of, say, the
crystalline cohomology, we obtain an F-stable decomposition

H (Y) — HY L (Y/W) = @H, (Y/W)*
in a basis of HlDR (Y/W) adapted to this decomposition, the matrix of F
is the diagonal matrix
., O
- Jq (x s X’ > P)
0O T

However, it must be borne in mind that the Fermat curve is atypically
susceptible to this sort of analysis; it i8 unusual for a group action, even
on a curve, to be liftable to characteristic zero0. For example, the action of
F, onan Artin-Schreier covering of A' doesn’t lift to characteristic zero.
To get around this non-liftability, we will be ledto consider the
Washnitzer-Monsky cohomology as well, in Chapter VIL

v. H' and abelian varieties; preliminaries. Consider an abelian
variety A/F,, say of dimension g. We denote by End(A) the ring of all

K, -endomorphisms of A, and by End(A)° the opposite ring. As
Z-modules, they are free and finitely generated. For each prime / + D,
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the cohomology group H}(A) is a free Z,-module of rank 2g, and is an
End (A)° -module. (It is also the case that H'_ (A) is a free W-module
of rank 2g, and is an End(A)°-module, but we will not make use of this
fact for the moment).

LEMMA 4.1. If E is a number field, and A is a place of E lying over a
prime [ s p, the natural maps

End(A4)°® E —— End(4)°®E, ———> Endy (H(4))®E,
!

1

are all injective.

Proof. The first map is injective simply because E C E,, and because
End(A)° is flat over Z . The second map is obtained from the map

End(A)’®Z, —— End,(H](A))
by tensoring over Z, with the flat Z,-module E, . In fact this flatness is
irrelevant, for the above map is injective and has Z,-flat cokernel. To see

this, recall that (by the Kummer sequence in etale cohomology) we have
a canonical isomorphism

H(A) = T, (Pic’(A)) (— 1) ~ Hom(T, (A), Z)),
under which the map considered above is the “opposite” of the map
End(A) Gz<) Z, —— End, (T, (A))

Our assertion of its injectivity with Z,-flat cokernel is equivalent to the
injectivity of (any one of) the maps

End(A)/I"End(A) ——> End(A;n),
and this injectivity follows from the exactness of the sequence

0 —> Apn > A —"> A—0

in the etale topology. QED

Now consider a projective, smooth and geometrically connected
variety X/K, . Its Albanese variety Alb(X) is an abelian variety over F,
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which for our purposes is best viewed as the dual of the Picard variety
variety Pic(X), itself defined in terms of the Picard scheme Pic X/F, as
(Pic’ XiFq )™ . The Kummer sequence in etale cohomology together with
the duality of abelian varieties gives isomorphisms for each/ # p

@.1.1) H}(X) == T, (Pic(X)) (— 1)
4.1.2) H'(AIb(X)) 2> T, (Pic(AIb(X)) Y(—1)=T,(Pic(X))(—1)
which combine to give a canonical isomorphism

forl+p

Suppose now that a finite group G operates on X by F, -automorphisms.
Let p be an absolutely irreducible representation of G defined over a
number field E, which occurs in H' (X) with multiplicity r. Denote by

4.1.3) H}(X) ~ H}(AlIb(X))

P,,(M=1+a,(p)T+.... +2,(p)T €0 [T]

the reversed characteristic polynomial of F acting on the space
Homg (p, H' (X)) of occurrences of pin H';

P, (T) = det(1 — TF|Hom, (p,H'(X)).
Let us denote by Proj(p) € @ [1/# G][G] the projector

deg(p)

%G tr(p(q 7)) [g]

Proj(p) =
geG
By functoriality, G also operates on Alb(X) by F, -automorphisms, so
we may view Proj(p), or indeed any element of the 0 [1/# G]—group
ring of G, as defining an element of End (AIb(X)) ® O [1/# G].

PROPOSITION 4.2. In the above situation, we have the formula
(F'+a/(p)F~" +....4+a (p))eProj(p)=0
Proj(p)+ (F' +a,(p)F ™' +....+a (p))=0

in End(Alb(X))® O, [1/# G). (N.B. since F and G commute, these

formulas are equivalent ).
Proof. Since  End(AIb(X))® 0, [1/# G] is contained in
End(Alb(X)) ® E, which is in turn contained in End(H}(Alb(X))@ E))
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for any /#p, it suffices to verify that F* + al(p)Fr‘l +.... +a,(p)anni-
hilates (H' (Alb(X)Y'. But this space is isomorphic to (H' (X)), which is in
turn isomorphic to p ® Homg (p,H'(X)), with F acting through the
second factor, so we need the above polynomial in F to annihilate
Hom (p, H'(X)). This follows from the Cayley-Hamilton theorem. QED

COROLLARY 4.3. Let D be any contravariant additive functor from the
category of abelian varieties over F, to the category of O, 1] # G)-modules.
For any element m € (D (Alb(X)) )* , we have

F'(m)+a,(p)F™ (m)+ ... +a, (p) m=0
in D(AIb(X)).

We will apply this to the functor “Dieudonne module of the formal
group of A,” constructed a la Honda.

V. Explicit Dieudonné Theory a la Honda; generalities

5.1. BASIC CONSTRUCTIONS. We begin by recalling the notions of
formal Lie variety and formal Lie groups. Over any ring R, an n-dimen-
sional formal Lie variety Vis a set-valued functor on the category of adic
R-algebras which is isomorphic to the functor.

R’ ——> n-tuples of topolo gically nilpotent elements of R".

A system of coordinates X,,. . -»Xa for V is the choice of such an
isomorphism. The coordinate ring A(V) is the R-algebra of all maps of
set-functors from V to the «“identical functor” R’ F———" R’; in
coordinates, A(V)isjust the power seriesring R[[X, . .. .,X.11. Although
the ideal (X, .- -»Xa) in A(V) is not intrinsic, the adic topology it defines
on A(V) is intrinsic, and A(V), viewed as an adic R-algebra, represents
the functor V.

The de Rham cohomology groups HiDR (V/R) are the R-modules
obtained by taking the cohomology groups of the formal de Rham
complex Q'wk (the separated completion of the “literal” de Rham
complex of A(V) as R-algebra); in terms of coordinates X, . . . ., X, for
V, Q% is the exterior algebra over A(V) on dX,,....,dX,, with ex-
terior differentiation d: Q — Q'*' given by the customary
formulas.

186

CRYSTALLINE COHOMOLOGY

A pointed formal Lie variety (V,0) over R is a formal Lie variety V over
R together with a marked point “0” € V(R). A formal Lie group G over
R is a “group-object” in the category of formal Lie varieties over R.

We denote by CFG(R) the additive category of commutative formal
Lie groups over R. The *‘sum’” map

sum: GxG —> G
as well as the two projections
pr.pr,: G x G —> G

are morphisms in this category. For G ¢ CFG(R), we define D(G/R)
to be the R-submodule of H,, (G/R) consisting of the primitive elements,
i.e. the elements a € Hie (G/R) such that

sum*(a) = pri(@) + pry(@) in Hl, ((G x G)/R).

LEMMA 5.1.1. Over any ring R, the construction G ——> D (G/R)
defines a ( contravariant) additive functor from CFG(R) to R-modules.

Proof. Thisisa completely “categorical” result. To begin, let G, G’ €
CFG(R),and let{: G’ — > G be a homomorphism. Then the diagram

G xG -2, ¢

4 fxf + f

cxg =2 G

commutes, as do the analogous diagrams with «sum” replaced by pr, Of
pr,. Therefore given any element a € HlDR (G/R), we have
sum®* (* (a)) — pri(E* @) — pra (@) =
(F x )" (sum® (@) — pr’ (8) — Pr2(@)-
In particular, if a € D (G/R) then { *(a) e D (G’ /R).

Given f,,f, homomorphisms G — G, letf;be their sum.
Then we have a commutative diagram
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L x £ sum
G —> GxG —— G

f3
as well as a commutative diagram
f,
| £ xf PTy }
G —3 GxG G
pr, T
f2

Therefore for any a € H,, (G/R), we have
f3*(a) — fl*(a) — fz*(a) = (f, % fz)*(sum*(a) - prl*(a) _ prz*(a)).
In particular, if 2 € D(G/R), then f,*(a) = f,*(a) +f,"(a). QED

For the remainder of this section, we will consider a ring R which is
flat over Z, and an ideal 1 C R which has divided powers. The flatness
means that if we denote by K the Q-algebra R ® Q, then R C K. That
the ideal I C R has divided powers means that for any integer n = 1, and
any element i e I, the element i" /n ! of K actually lies in I.

Given a formal Lie variety V over R, we denote by V ® K the formal
Lie variety over K obtained by extension of scalars. In terms of coordi-
nates X,,....,X, for V, A(V® K) is the power-series ring K[[X,,. ...,
X,11. We say that an element of A (V ® K) is integral if it lies in the sub-
ring A(V); similarly, an element of the de Rham complex Q . s
said to be integral if it lies in the subcomplex Q , ; .

LEMMA 5.1.2. Let (V,0) be a pointed Lie variety over a Z-flat ring R.
Then exterior differentiation induces an isomorphism of R-modules

{feA(V ®K)|f(0) = 0,df integral} 7
— > Hpg (VIR
{Fe A(V) (0] =0} = (V1)

which is compatible with morphisms of pointed Lie varieties.
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Proof. Because K is a Q-algebra, the formal Poincare lemma gives
HS, (VOK/K)=K, Hp (VOK/K)=0 for i=1. Therefore any
closed one-form on V/R can be written as df with f € A(V ® K), and this
f is unique up to a constant. If we normalize f by the condition £(0) =0,
we get the asserted isomorphism. QED

KEYy LEMMA 5.1.3. Let (V,0) and (V' ,0) be pointed formal Lie varieties
over a Z-flat ring R, and let I CR be an ideal with divided powers. If f,, [,
are two pointed morphisms V' —> V such that f, = f, mod I, then the
induced maps

F5 10 Hog (VIR)——>Hog (V'IR)
are equal.

Proof. Let @,, @, denote the algebra homomorphisms A(V) —> A(V")
corresponding to f, and f,. By the previous lemma, we must show
that for every element f ¢ A(V ® K) with f(0) = 0 and df integral, the

difference @,(f) — @, (f) lies in A(V"), i.e. is itself integral. (Because f,
and f, were assumed pointed, this difference automatically has constant

term zero).
In terms of pointed coordinates X,,...., X, for V' and Y,,... Y
for V, the maps @, and @, are given by substitutions

@, (f(Y)) = f(@,(X))
9,(f(Y)) = f(p.(X))

where @, (X), ¢,(X) are m-tuples of series in X = (X, . . . ., X, ) without
constant term. The hypothesis f, = f, mod I means that the component-

by-component difference A = ¢,(X) — ¢,(X) satisfies
A(0) = 0, A has all coefficients in L.
We now compute using Taylor’s formula, and usual multi-index notation :
2, — @, (0) = f(@,(X)) — (P, (X))
= f(p,(X)+A)—f(p,(X))
Z ~(—§—! (;a;: D (@,(X))-

1n]21
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This last sum is X-adically convergent (because A has no constant term),
and its individual terms are integral (because A has coefficients in the
divided power ideal I, the terms A" /(n)! all have coefficients in I, and
hence in R; because df is integral, all the first partials of/0Y, are integral,
and a fortiori all the higher partials are integral). QED

THEOREM 5.1.4. Let Rbea Z — flatring, and I C R a divided power ideal.
Let G, G’ be commutative formal Lie groups over R, and denote by Gy, G,

the commutative formal Lie groups over R,=R/1 obtained by reduction
mod I.

1) Iff:G'—»Gisany morphism of pointed formal Lie varieties whose
reduction mod I, fo: Go—=> G o, 1s a group homomorphism, then the induced
map f*: Hor (GIR) > H.x (G'|R) maps D(G/R) 1o D(G'|R).

(2) Iff,, fo fs are three maps G° —> G ofpointed_/brmal Lie
varieties whose reductions mod Iare group homomorphisms which satisfy
(fs)o= (fi)o* (f,)o in Hom (G, Gy)» then for any element a € D (G/R)
we have

fla)+fila)=13(a).

Proof. Iff:G —> G is a pointed map which reduces mod 1 to a
group homomorphism, the diagram

G’)(G’ __SP_I"_l-} G’
$ fxf 4 f
sum

GxG —> G

commutes mod [, i.e.
sum- (f x f) = f-sum mod 1.

and hence foranya € HIDR (G/R) we have, by the previous lemma,
(f x f)"‘(sum=|= (a))= sum” (f* @)

The analogous diagrams with “sum” replaced by pr, of PI, commute,
hence
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(€ x H*r* @) =pr* (@) fori=1.2.
Combining these, we find
(F x O (sum* (@) — pr,"@ —pra" @) =
qum™ (% @) — pr, (% @) —pr, (T @).
In particular, if a € D(G/R) then f*(a) € D(G'/R).

" Similarly, if f;, f, and f, are as in the assertion of the theorem, the

diagram

£, xf, sum
G =3 GxG —>»C

1

f3
commutes mod I, and the diagram
fl
f1 X fz ___Er_l_-)
G —> GxG G
pr;
fZ

commutes. So again using the preceding lemma, we see that for any a €
H, (G/R), we have

£4) -, @ - £,*(a) = (f, x £,)*(Sum*a) — pr,*(a)— pr; (@)
In particular, for a € D(G/R), we obtain the asserted formula
£*@="f"@+ f,*(a). QED

Let CFG(R;R,) denote the additive category whose objects are the
commutative formal Lie groups over R, but in which the morphisms are
the homomorphisms between their reductions mod I:

Hom cporr, (G',G) = Hom (Gg,Go)-
Given a homomorphism f,: G = Go» it alWways lifts to a pointed
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morphism {:G’ ——> G of formal Lie varieties (just lift its power-
series coeflicients one-by-one, and keep the constant terms zero).
According to the theorem, the induced map

*: D(G/R) —> D(G’/R)

is independent of the choice of pointed lifting f of f,. So it makes sense to
denote the induced map

(f,)* : D(G/R) —— D(G’/R).

THEOREM 5.1.5. Let R be a Z-flat ring, and I C R a divided power ideal.
Then the construction G +———> D(G/R), f, +— (fO)* =
(any pointed lifting)* defines a contravariant additive functor from the
category CFG(R;R) to the category of R-modules.

Proof. This is just a restatement of the previous theorem. QED

REMARKS (1) Thanks to Lazard [33], we know that every commutative
formal Lie group G, over R, lifts to a commutative formal Lie group G
over R. If G’ is another lifting of G, then the identity endomorphism of
G, is an isomorphism of G with G in the category CFG(R;R,). Forma-
tion of the induced isomorphism D(G/R) —=— D(G’/R) provides a
transitive system of identifications between the D’s of all possible liftings.
In this way, it is possible to view the construction

G, t——> D(G/R), where G is some lifting of G,

as providing a contravariant additive functor from CFG(R,) to the
category of R-modules. We will not pursue that point of view here.

(2) Even without appealing to Lazard, one can proceed in an ele-
mentary fashion by observing that any commutative formal Lie group
G, over R, can certainly be lifted to a formal Lie “monoid with unit”
M over R (simply lift the individual coefficients of the group law, and
always lift O to 0). For a monoid, one can still define D(M/R) as the
primitive elements of H })R (M/R), and one can still show exactly as before
that the construction

G,——> DM/R), M anymonoid lifting of G,
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defines a contravariant additive functor from CFG(R,) to R-modules.

A variant. The reader cannot have failed to notice the purely formal
nature of most of our arguments. We might as well have begun with any
contravariant functor H from formal Lie varieties over a Z-flat ring R to
R-modules for which the key lemma (5.1.3) holds.One such H, which we
will denote H ,l)R (V/R;1), is defined as H' of the subcomplex of the de
Rham complex of V/R

“IA(VY —— Q' —> Q) ——>

where “IA(V)” denotes the kernel of reduction mod I:
“IA(VY’ = Ker(A(V) —>> A(V,)).

In terms of coordinates for V, “IA(V)” is the ideal consisting of those
series all of whose coefficients lie in I. The analogue of lemma (5.1.2)
becomes

{fe A(V®K)|f(0) = 0, df integral }

~ , H R;I).
{fe“IA(V)"|f(0)=0} o (V/R:D

This much makes sense for any ideal I C R. If I has divided powers, then
the proof of the key lemma (5.1.3) is almost word-for-word the same. (It
works because the terms A” /(n)! all have coefficients in 1.)

The corresponding theory, “primitive elements in H',, (G/R; I),”
is denoted D, (G/R). In terms of coordinates X =(X,,....,X,) for G,
we have the explicit description

D,(G/R) =
{£eK[[X]]|f(0) = 0,dfintegral, {(X +¥) —f(X) ~f(Y) e X, Y11}

{fe I[[X]]|f0)=0}

as compared with the explicit description

D(G/R) =
{f €K[[X]]{ f(0) = 0, df integral, f(X + Y)—f(X)—f(Y) integral}

- {feR[[X]]|f0)=0}
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For ease of later reference we summarize the above discussion in a
theorem.

THEOREM S5.1.6. Let R be a Z-flat ring, and I C R a divided power ideal.
The key lemma (5.1.3) holds for H‘DR (ViR ; 1), and theorems (5.14)
and (5.1.5) hold for D (G/R).

The natural map D, —> D is not an isomorphism, but its kernel
'fm.d cokernel are visibly killed by L. In the work of Honda and Fontaine
it is D, rather than D which occurs; in the work of Grothendieck anci
Mazur-Messing ([17], [35]), it is D which arises more naturally.

. Let us denote by w the R-module of translation-invariant, or what
is the same, primitive, one-forms on G/R. Because G is commutative
every element w € @ g is a closed form, so we have natural maps

Wor D, (G/R)

|

D(G/R)

(Notice that in the extreme case 1= (0), the map @ —> D, is an
isomorphism !) - I

LEMMA 5.1.7. Suppose R flat over Z, and I C R an ideal. We have exact

sequences

0 ———> Hom (6.6,)—2> @ —>D(GIR)

R-groups
0 ———> —_— —_—
Hom R/l-groups (G % (R/I) H (Ga)g/l) Dl (G/R) D(G/R)
Proof. The first is the special case I = 0 of the second; the' second is
clear from the explicit description of D and D given above. QED
COROLLARY 5.1.8. If Homg .o (G,G,) =0, then the natural maps
QG—————>D,(G/R) and QG—-—-*D(G/R)
are injective.

The reader interested in obtaining the limit formula for Jacobi sums
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conjectured by Honda may skip the rest of this chapter! Others may also
be tempted.

572. INTERPRETATION VIA EXT A LA MAZUR-MESSING. We denote by
Ext(G,G,) thegroup of isomorphism classes of extensions of G by G.,

ie. of short exact sequences

0——————>Ga——-—>E—————->G———-—>0

of abelian f.p.p.f. sheaves on (Schemes/R). We denote by Ext"® (G, G.)
the group of ijsomorphism classes of “rigidified extensions,” i.e. pairs

consisting of an extension of G by G, together with a splitting of the

corresponding extension of Lie algebras:
L
o—R= Lie(G)—> Lie(E) > Lie(G)—>0

Because Lie(G) 1s a free R-module of rank n = dim(G), any extension of
G by G, admits such a rigidification, which is indeterminate up to an
element of Hom(Lie(G), Lie(G,))=®or - Passing to isomorphism
classes and remembering that the set of splittings of a trivial extension of
GbyG,is itself principal homogeneous under Hom(G,G,), we obtain
a four-term exact sequence (valid over any ring R)

Hom(G.G,)—3+ @—Ext™" (G.G,)—>Ext(G,6)—>0
THEOREM 5:2.1. If R is flat over Z, thereisa natural isomorphism
D(G/R) <« Ext™ (G,G)
in terms of which the resulting four term exact sequence
0—> Hom(G.G,)—> g:_G——->D(G/R)———> Ext(G,G,)—>0
is the concatenation of the three-term sequence of (5 .1.3) and the map

D(G/R) —> Ext(G,G,) defined by

f ——> the class of the symmetric 2-cocycle
o f=f(X+¥)—f(X)=J(¥)
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Proof. We begin by constructing the isomorphism. Given a rigidified
extension

0——G, —E >G >0

. ¥
0 ———Lie(G,) ——> Lie(E) ——— Lie(G)—— 0,

extend scalars from R to K= R® Q. Because K is a Q-algebra, the Lie
functor defines an equivalence of categories between commutative
formal Lie groups over K and free finitely generated X-modules.

Therefore there is a unique splitting as K-groups

exp(s)

0—-———-—>G3%K————>E?K >G§;)K >0
whose differential is the given splitting S on Lie algebras,

At the same time, we may choose a cross section S in the category of
pointed £.p.p.f. sheaves over R

S

0———>G ——>E——>G —0.

The difference f=S —exp(s) is a pointed map from G® K to
(G,)®K, i.e. anelementf € A(G ® K), and it satisfies f(0) = 0. We have
df = dS — s, sodfisintegral, and the formula

f(Xx —(i;— Y)—f(X)—-f(Y)=S(X+Y)—S(X) — s(Y),
G
valid because exp(s) is a homomorphism, shows that f(X + Y)-f(X)-f(Y)
is integral. ¢

Because the initial choice of S is indeterminate up to addition of a
pointed map from G to G,, the class of f= S-exp(s) in D(G/R) is well-
defined independently of the choice of S, and it vanishes if and only if
exp(s) is itself integral, i.e. if and only if the original rigidified extension is
trivial as a rigidified extension. Thus we obtain an injective map

Ext™(G,G,) —— D(G/R).
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To see that it is an isomorphism, note that in any case the map
D(G/R) —> Ext(G,G,) defined by f—>the class of af sits in
an exact sequence

0 —— Hom(G,G ) —— @, —> D(G/R)—Ext(G,G,),
which receives the Ext™ exact sequence :

0—>Hom(G, G, )—>w ,—> D(G/R)—Ext(G,G,)

| I |

0~— Hom (G, G,)—> w,—>Ext "**(G,G,)—>Ext(G,G,)—>0

QED

The result is now visible.

Given an ideal I CR, we denote by Ext(G,G,;I) the group of iso-
morphism classes of pairs consisting of an extension of G by G, together
with a splitting of its reduction modulo I. We denote by Ext™*(G,G,; 1)
the group of isomorphism classes of pairs consisting of a rigidified exten-
sion and a splitting of the reduction mod I of the underlying extension.
Analogously to the previous theorem, we have

THEOREM 5.2.2. If R is flat over Z,and I C R an ideal, there is a natural

isomorphism
Ext"™(G,G, ) —~— D,(G/R)
and a four-term exact sequence
0——>H0m(G,Ga)—->¢L)G--—>Dl(G/R)-—9L>Ext(G,Ga I)—>0
in which the map 9, given by

f ———> the class of the symmetric 2-cocycle
f=f(X £ ¥Y)-f(X)=f(Y),
corresponds to the map “‘forget the rigidification” on Ext’s.

5.3 'THE CASE OF P-DIVISIBLE FORMAL GROUPS. Let p be a prime
number. A ring R is said to be p-adic if it is complete and separated in its
p-adic topology, i.e., if

R —~—» lim R/p R.
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A commutative formal Lie group G over a p-adic ring R is said to be
p-divisible of height h if the map “multiplication by p’” makes A(G) into
a finite locally free module over itself of ramnk ph.

If we denote by G' the dual of G in the sense of p-divisible groups, it
makes sense to speak of the tangent space of G' at the origin, noted t ;v ;
it is known that t v isa locally free R-module of rank h — dim (G), and
that there is a canonical isomorphism

5.3.1 Ext(G,G,) —=—> Lo -

Because G is p-divisible and R is p-adic, Hom (G,G,)=0,and the four-
term exact sequence becomes a Hodge-like exact sequence

5.32 0-——>_a_)G———>D(G/_R)———->LGV-———->0
Thus we find

TueoreM 5.3.3. 1) IfRisa p-adic ring which is flat over Z, then for a
p-divisible commutative formal Lie group G over R, the R-module D(G/R)
is locally free of rank h= height (G), and its formation commutes with
arbitrary extension of scalars of Z-flat p-adic rings.

If in addition I C R is an ideal which is closed in the p-adic topology,
then R/1 is again a p-adic ring, G ® (R/I)isstill p-divisible, and therefore
admits no non-trivial homomorphisms to G, over R/I. It follows that
(5.3.4) { D,(G/R)C D(G/R)
Ext(G,G, ;) ——> I Ext(G,G,) 1"ty
and we have a short exact sequence

(5.3.5) 0—> w ——>D (G/R)—> L 15 —>0.

5.5 RELATION TO THE CLASSICAL THEORY. Let k be a perfect field of
characteristic p >0, and take R = W (k), I =(p). Let CW denote the
k-group-functor «Witt covectors™ (in the notations of Fontaine ([13]),
with its structure of W(k)-module. According to Fontaine, for any formal
Lie variety V over W(k), we obtain a W(k)-linear isomorphism

(5.5.1) W CW(A(V ®k)) —=—H', (V/W(K):(P)
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by defining

~ p"
(5.5.2) w(...,a_n,...,a0)=d( 2 (a‘“n) )

nz0 P

where ;_n denotes an arbitrary lifting to A(V) of a_, e A(V®K).
Similarly, we can define, following Grothendieck, Mazur-Messing
(I35]), a o -linear isomorphism

(5.5.3) P :CWANV® k))——"i—->H1DR V/W(k))
by the formula
o prt!
(5.5.4) ¢(...,a_n,...,a0)=d(nzzo (_a;i)—);l-——)
These isomorphisms sit in a commutative diagram
Hl, (V/W(K);(®)

—~

CW(A(V®k))/ / ':SF
\

¢ Hp, (V/W().

(5.5.5)

When G is a commutative formal Lie group over W (k) which is
p-divisible, the «c]assical” Dieudonné module of G,=G®Kkis defined as

df
(5.5.6) M(G,) == Hom,_,(Go,CW)

l

the primitive elements inCW(A(G,))-

Combining this definition with the previous isomorphisms, we find a

commutative diagram of isomorphisms
D, (G/W(K))
—

(5.5.7) M(Gy) « / 1

\ p
¥ D (G/W(K)).
199
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NICHOLAS. M. KATZ

5.6. RELATION WITH ABELIAN SCHEMES AND WITH THE GENERAL
THEORY. In this section, we recall without proofs some of the main
results and compatibilities of the general D-theory of Grothendieck and
Mazur-Messing.

Given an abelian scheme A over an arbitrary ring R, there are canonical
isomorphisms
(5.6.1) { Ext " (A,G,)—=—>H, (A/R)

Ext (A,G,)—=—>H'(A,0,)=Lie(A")

in terms of which the Ext™ -exact sequence “‘becomes’ the Hodge
exact sequence
(5.6.2) 0— w , —> Ext"™® (A,G,)—>Ext(A,G,)—>0
zi g,
0—> w,—>H (A/R} —> H'(A,0,)—>0
Lie (A")
Given a p-divisible (Barsotti-Tate) group G = y_r_r; G, over aring R in

which p is nilpotent, the exact sequence

0

(5.6.3) 0—>G,——>G—L > G—>0

for any n sufficiently large that p' =0 in R, leads to a canonical

isomorphism

(5.6.4) Lie(G") = Lie(G, ) = Hom(G,,G,)—Ext(G,G,).
The Ext"® -exact sequence can thus be written

(5.6.5) 0 —> w ,—>Ext"™(G,G,)—>Lie(G")—>0,
where w,; is the R-linear dual of Lie(G).

Given an abelian scheme A over a ring R in which p is nilpotent, the

€xact sequence
n

(5.6.6) 0—>A ,—>A—L s As0
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for any n sufficiently large that p° = 0 in R leads to a canonical iso-
morphism

(5.6.7) Lie(A") = Lie(A,,) = Hom(A ,,G,)~~> Ext(A,G,).

p?
Therefore the inclusion A,. = A induces an isomorphism
(5.6.8) Ext(A,G,)—>—Ext(A,..G,)

(the identity on Hom(Ap,,, G,) 1), and consequently we obtain a com-
mutative diagram of isomorphisms

(5.6 9)
0—>w, ——> Ext""(A,G,) —> Ext(A,G,) ——> 0

| * ;

»G,) —> Ext(A__, G,) —> 0,

0—>w, —>Ext™(A
i.e., an isomorphism

(5.6.10) H, (A/R) —>~—» D(A,./R)
compatible with the Hodge filtration.

For variable B — T groups G over a fixed ring R in which p is nilpotent,
the functors w_, Lie(G"), and consequently Ext™ (G,G,), are exact
functors whose values are locally free R-modules of finite rank; their
formation commutes with arbitrary extension of scalars of rings in which
p is nilpotent.

Following Grothendieck and Mazur-Messing we define
df rigi
(5.6.11) D(G/R) == Ext"*(G,G,)
when G is a B— T group over a ring R in which p is nilpotent.

When R isa p-adic ring, and G isa B — T group over R, we define
1lim D(G® (R/p"R)/(R/p' R))

I

(5.6.12) D(G/R)

Lie(G) = lim Lie(G ® (R/p'R))
@, = lim o, ®R/p'R) ¢
201 5
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Thus for variable B— T groups G over a p-adic ring R, the fnctors
w,.Lie(G')and D(G/R) are all exact functors in locally free R-modules
of finite rank, sitting in an exact sequence

(5.6.13) 0————>QG-————-—>D(G/R)————->Lie(GV)————>0

whose formation commutes with arbitrary extension of scalars of p-adic
rings. When A is an abelian scheme over a p-adic ring R, we obtain an
isomorphism

Hy (A/R) —=—> D(A(P®)/R),
compatible with Hodge filtrations, by passage to the limit.

As we have seen in the previous section, this general Ext "84 potion
of D(G/R) agrees with our more explicit one in the case that both are
defined, namely when G is a p-divisible formal group over a Z-flat p-adic
ring R.

5.7. RELATION WITH COHOMOLOGY
THEOREM 5.7.1. Let A be an abelian scheme over the Witt vectors W(k)

of an algebraically closed field k of characteristic p > 0. There is a short
exact sequence of W-modules

[s./ B ~
0O—>H(A®KZ,)® w-"oH' (A® k/W)—>D(A|W)—>0

which is functorial in A® k.
Proof. We begin by defining the maps a and 8. They will be defined
by passage to the limit from maps «, , 3, in an exact sequence

572 0—>H A®KZ/P L)W, _ % LHL (A®K/W,)

B, ~
— >DA®W, /W, )—>0.
of W, -modules.

Ann element of H' (A® k,Z/p Z) is (the isomorphism class of) a
Z./p Z-torsor over A®k. An element of H'  (A®k/W,) is (the
isomorphism class of) a rule which assigns to every test situation
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Y c——» Y, consisting an A ® k schemeYand a divided-power thicken-
ingof YtoaW, _scheme Y, a G,-torsoron Y, ina way which is compatible
with inverse image whenever we have a morphism (Y,Y,)—> (Y’,Y)
of such test situations (cf. [35] for more details).

Given a Z/p Z-torsor T on A ® k, we must define for every test
situation Y e—> Y, @ G -torsor &, (T)yy, OB Y, . Because Y is
given as an A ® k scheme, we can pull back T to obtain a Z/p" Z-torsor
T, onY. Because Y, isa W, -scheme which is a divided-power thickening,
its ideal of definition is necessarily a nil-ideal; therefore the etale Y-
scheme T, extends uniquely to an etale Y,-scheme Ty, » and its
structure of Z/p Z-torsot extends uniquely as well. Because Y, is a
W, -scheme, the patural map

ZpZ—> W,

gives rise to a morphism of algebraic groups on Y,
n oy
@)y, —> Gy, s

the required G,-tOrsOr &, (M yyy 18 obtained by ‘‘extension of

structural group via &, » from the Z/pn Z-torsor Tiyy,) -

To define B,, we begin with an element Z of chﬁs (A ® k/W,). Wemust
define an element B, (Z) in Ext™® (A® W,,(G,)® W,)=D(A®W,/W,).
Its value on the test object A® k = AQ@W, is a G,-torsor
on A® W, which is endowed with an integrable connection (cf. [2],
[3D), i.e., it is an element of H;R (A® W, /W,). [This interpretation
provides the canonical isomorphism

H.. (AQk/W,)—> Hpr (A®W, /W) ]
Composing with the isomorphism '
H, (A®W,/W,)——> Ext™® (A®@ W,,G,®W,),

we obtain an element of Ext rigid (A®W,,G, ® W,), whose restriction
to the formal group AQW, is the required element 8,(Z). ‘

To see that the map B obtained from these By by passage to the limit
203
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NICHOLAS. M. KATZ

is in fact functorial in A ® k, we first note that it sits in the commutative
diagram :

L3

H' . (A®k/W) — D(A/W)
inclusion of
(5.7.3) . primitive
canonical isom elements
natural map

Hp, (A/W)

— - > Hp(A/W).
“restrictionto A”’

What must be shown is that if we are given a second abelian scheme B
over W, and a homomorphism

fo: B® k—> A®k

then the diagram

B
H, (A®Kk/W) > D(A/W)
(5.7.) (fo)* (any pointed
lifting of £,)*
, B X
H', (B®k/W) > DB/W)

1S commutative.

But in virtue of the commutativity of the previous diagram (5.7.3), it
1s enough to show the commutativity of the diagram

57.5
. restriction ~
H (A®Kk/W)~H', (A/W) >H' (A/W)
*
(f5) (any pointed
lifting of f)*
restriction A
H,, B®k/W)~H' _ (B/W) —>HY (B/W).
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This last commutativity has nothing to do with abelian schemes, nor
does it require pointed liftings. It is an instance of the following general
fact, whose proof we defer for a moment.

GENERAL FACT 5.7.6.  For any two pointed W-schemes A,B which are
both proper and smooth, any pointed map f, :B® k————> A® k, and
any integer i > 0, we have a commutative diagram

Hims (AR K/W) =~ HiDR (A/W) restriction HiDR (/T/W)
f )* (any lifting
of fo) *
restriction

H  (BRK/W)~H_ (BIW) >H o (BIW)

cris

To conclude the proof of the theorem (!), it remains to see that our
marvelously functorial maps «,8 really do form an exact sequence. Te
do this, we will use the abelian scheme A over W. Its formal group A is
p-divisible, and sits in an exact sequence of p-divisible groups over W,

0—> Ap., —A,. —>E—0,

in which E =_l_i'r_n’En denote the etale quotient of A,.. Because k is
algebraically closed, E is a constant p-divisible group, namely the abstract
p-divisible groupin_l Apn (k) of all p-power torsion points of A (k).

We will identify the exact sequence of the proposition with the exact
sequence

’ ’

0——>D(E/W) ——> D(A,./W) ——> D@A/W)—>0,
and we will identify the («, ,B, )-sequence with the exact sequence

14 B/n ~
0—>D(E®W, /W, )—$D(A,.® W,/W,)—>D(A ® W, /W, )—>0.
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.It is clear from the construction of B, that we ‘have a commutative
diagram A

BI; ~
D(A,.® W,/W,) —> D(A®W,/W,)
dfn
Ext rigid (A,,.. ®W..G,) restriction Extrigid (A ®W. .G,)
' o\:\o“ n a
s ,(e,“:\‘\

Ext"™(A®W,,G,)

|
Hp (A @W,/W,)

: $
H: A®Kk/W,)’

cris
To relate the map o, to the D-maps, use the exact sequence

0 —>E, ® W, —>E®W, P BE®W,—0

to compute
D(E® W,,/W,,)—"’—>Ext(E® w,,G,) =~ Hom(E, ® W,,G,)
|
constant)

HOm(En (Wn )’ G, (Wn ))

|

Hom(E, (k), W, )

Hom(E, (k),Z/p' Z) ® W, .
Next use the sequence

n

0—>A, ®W,—ABW, P L A®W,—>0
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to compute

Ext(A® W, .Z/p Z) = Hom(Ap @ W,.Zip Z)
(E, = etale quotient

S of Apn)
Hom(E, ® W,.Zip Z)
§
H. (A®K, Zjp Z) <= Hom(E, (k). Zip Z).

Combining these isomorphisms, and remembering that Ext= Ext™
when either of the arguments is etale, we find a commutative diagram

D ® WoWy) e DA O VW)
S S
Hom(E, (),Z/p" Z) ® W, D(A® W,/W,)

| \\

B Kok k i
Extngld (A®Wn,Z/pn Z)®wn,__’——>EXtﬁgld (A®W“,Ga)
$

HLA®KZ/p Z)®W. T > Hu (ABKWL)

in which the arrow*** is “push-out” along the homomorphism
2)p" Z——> W, —> (Gl QED

COROLLARY 5.7.7. Let A be an abelian scheme over the Witt vectors
W(k) of a perfect field k of characteristic p > 0. Then we have a short

exact sequence of W (k )-modules
Gal(k/k)

0 —> ((H; (AQK.Z,)® W(E)> —_—

H', (A®KW(K)) —> (AW (k) ) —0,
in which k denotes an algebraic closure of k, and in which the galois group
Gal (kjk) acts simultaneously on Hlﬂ (A®k,Z,) and on W (k) by “trans-
port of structure.”
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Proof. One can obtain this sequence either by passing to Gal(k/k)-
invariants in the already-established analogous sequence for A ® W(k),
or by repeating the proof given for the proposition. In the latter case, one
finds, in the notations of the proof,

D(E ® W, (k)/W, (K)) = Hom(E, ® W, (k), (G,) 4 )
~ Hom(E, (k), W, (k) *™
~ Hom(A,, (), W, () **
= ( H,(A®KZ/p Z)®W, (E)) e

and the rest of the proof remains unchanged. QED

COROLLARY 5.7.8. Let Abe an abelian scheme over the Witt vectors of a
perfect field k of characteristic p> 0. The above exact sequence is the
Newton-Hodge filtration

0 ——> (slope0) ——> H', (A® k/W ) ——> (slope > 0)——>0

of H' (A ® k/W) ) as an F-crystal.

cris

Proof. Since F induces a o-linear automorphism of
H), (A®K,Z,)® W)™

_ _ \Galk/k)
:( Hom(T, (A ® k), W(k)) )

H

it remains only to see that F is topologxcally nilpotent on D(A/W(k)) for
its p-adic topology Because D(A/W(k)) 1s a finitely generated W (k) sub-
module of Hy (A/W (k)), the topology induced on D(A/W(k)) by the
inverse limit topology on H,, through the isomorphism (cf. lemma
5.8.1. ahead)

(5.7.9) Hi AWK) —=> limH}, (A® W, /W, ()

must be equivalent to the p-adic topology in D(A/W (k)). So it suffices to
remark that F" annihilates HY (A@ W, /W, ) (indeed F" annihilates
Q'2¢w,w, fori1,sincefor any pointed lifting of X —> X", F(dX)
=d(F(X)) =dX" + pY)e pQ’) to establish the required topological
nilpotence of F on D(A/W) QED
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5.8. THE MISSING LEMMAS. [t remains for us to establish the ““general
fact” (5.7.7), and to establish the isomorphism (5.7.9). In fact, the two
questions are intimately related. We begin with the second.

LemMA 5.8.1. Let R be a Z-flat p-adic ring, and let R, = R/p"R. For
any formal Lie variety V over R, we have isomorphisms

Hog (VIR) == lim Hyo (V@R [R, ).

Proof. Pick coordinates X,,...,Xy for V. Over any ring R, we can
define a ZN-grading of the de Rham complex of R{[X,,...,Xy]I/R, by
attributing the weight (a,,...,ay) € Z" to each “monomial”

o dX
(IIX; )(HS—{(—) S any subset of {1,...,N}.
je j

Exterior differentiation is homogeneous of degree zero, and the de Rham
complex is the product of all its homogeneous graded pieces

Q =11Q°%@,,...ay).
Because both cohomology and inverse limits commute with products,
we are reduced to proving the lemma homogeneous component by
homogeneous component.

The individual complexes Q° (a,,. . . ay) are quite simple. They vanish
except when all a; > 0. The complex Q°(0,...,0)is

R—0—>0—...

If some a; = 1, and all a; = 0, the complex Q° (a,,...ay) is the tensor
product complex
a,
(R———R).

anha, 21

What is important for us is that each of these complexes is obtained from
a complex of free finitely generated Z-modules (!) by extension of scalars

to R.

Thus let K denote any complex of free finitely-generated Z,-modules.
We must show that for a Z-flat p-adic ring R we have

H (K*®R) —%@Hi (K°®R,).
209
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The exact sequence of complexes

0 ————>K'®R——p—n-—>K'®R — > K*'®R,— 0
gives a ““universal coefficients” exact sequence
0 — H (K*®R)®R,— H (K"®R,)—> P’ “Torsion(H " (K*®R))—0.
Passing to the inverse limit over n lead s to an exact sequence
o—>1<imH* (K*®R)®R,— g_an*(K’ ®R") > T,(H " (K"®R)) = 0.

To see that T, (HH : (K°® R)) vanishes, notice that an element of this
T, is represented by a system of elements a, € K" ® R withd(a,) =0,
P dyp = —d(b,),a,=0; because both K' ® R and K" ® R are
p-adically complete and separated, we may infer

aﬂ = parH—l + d(bn)
= P(pan+z + d(bass ))+d(bn)

- d(go pPb..i)-
To see that the natural map
CH (K ®R)—————>l<i£1_Hi(K' ® R)®R,
is an isomorphism, use the Z-flatness of R and the Z-finite generation
of the K' to write
H (K*®R)«=-H'(K*) ®R = (fin. gen. Z-module) ® R

— (Zn @ (@Z/pni)e(prime-to-p))®R

torsion

i

R"®(DR,,;)-
QED

We now turn to the proof of the “general fact.”

LEMMA 5.8.2. Let k be a perfect field of characteristicp >0, A and B
two proper, smooth pointed W(k)-schemes, f,: BR®k—>A®k a
pointed k-morphism and f: B —> A a W-lifting of £, to the formal
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completions viewed as functors only on p-adic W-algebras. Then the diagram
i ~y 7 restriction S
H  (A®KW)™>Hyy (AIW) > H(AIW)

l (fo)* l (f)*

i ~_ restriction PN
Hcris (B0® k/W)__)HDR (B/VV)'—‘—_'—'—'____> HDR(B/W)

is commutative.

Proof. 1ff, lifted, this would be obvious. But it does lift locally, which
is enough for us. More precisely, let UC A and VC B be affine 6pen
neighborhoods of the marked W-valued points of A and B respectively
such that f, maps V ®@ k to U ® k. Because V is affine and U is smooth
over W, we may successively construct a compatible system of W, -maps
£:VOW,—>U @W, with fo=f mod p'. The f, induce
compatibli maps £ BOW,— A®W, of formal completions,

but these f, need not be pointed morphisms.

We denote by ?oo ﬁ——-*g the limit of these 'fn. (Strictly speaking,
f, only makes sensc as a map of functors when we restrict B and Ato
the category of p-adic W-algebras.)

For each n, we have 2 commutative diagram

reutr.

Hopx AW, /W) ~H, (A®KW,)—=> H..(U®KW,)=Hoe (G @W, W,)——+Hor AW, /W)

W, )= Ho (BOK/W)—=> Hau(V® KW, )= Hipg (V@ W, /W) —=> H e (BOWo/Wo)

Hps (BOW,

rer.

Passing to the inverse limit over n, and using the previous lemma to
identify the right-hand inverse limits, we obtain a commutative diagram

; i restriction ; ~
H . A®KW)=x Hopr (A/W) Hr (A/W)

l )" l .

i i A restriction ; N
H_(BOK/W) =Hp (B/W) Ho, (B/W).
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To conclude the proof, we need to know that the induced map
(t.)* :Hy., (A/W)——>H,, (B/W)

depends only on the underlying map fo B®k—sA® k, and not on
t he particular choice of lifting. In fact this is true for the individual f, as
well !

LEMMA 58.3. Let R be a p-adic ring. Let V and V' be formal Lie
varieties over R, and let f| and f, be morphisms of functors V' ——>V
of the restrictions of V', V to the category of p-adic R-algebras. If [, [,
nzod p, then for each i, the induced maps

S H (VIR)——————H  (V'[R)
are equal.

Proof. (compare Monsky [39]). In terms of coordinates X,,...,X,
forvV’,Y,,... Y, forV, thecorresponding R-algebra homomorphisms

PP, RIY,....Y, ]l ——R[[X,.....X,]]
are related by
?,(Y)=2,(Y) + p A(Y).
Introduce a new variable T, and consider the map
@ R[Y,,....Y,]] ——R[[X,,....X,.T]]
e(Y) =@ (Y)+ T- A(Y).

We have a commutative diagram of algebraic homomorphisms

7,
T—0
R[{Y]}] —— R[[X,T]] . R[[X]].
12 T—p
P,
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So it suffices to consider the situation

T-0
——

RIX.T]] RE{X1]

——
T—=p

and show that these two maps have the same effect on H .

A form w on R{{X,T]] may be written uniquely

n - dT

n=0

with a,, b, ’s forms on R{[X1]. This form is c/osed if and only if
d{(a,)=0 forn=0, n-a, +d(b,)=0 forn>1.

Its images under T——>0 and T——=p are

respectively. Their difference, if w is closed, is exact, namely

o P
w!T:O - w’T:p = bgl 4P = d(ngl Tl.bn)
QED

It seems worthwile to point out that this last lemma can be considerably
strengthened. :

LemMa 58.4. Let R be a p-adic ring, I C R a divided power ideal, V
and V' vwvo formal Lie varieties over R, and f,.f, two morphisms of functors
V'~V of the restrictions of V, V' to the category of p-adic R-algebras.
Iff, =/, mod I, then for all i the induced maps '

S1f3 H g (VIR)——>H yp (V'|R)
are equal.

Proof. 1f we had f, = f, mod I’ with I C I a finitely generated ideal,
then we could repeat the proof of the previous lemma, introducing several
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new variables T;, one for each generator of I’. In particular, the lemma is
true if f, and f, are polynomial maps in some coordinate system. But we
easily reduce to this situation, for in terms of coordinates X,,. .. X, for
V’, we have a Z’ -graduation of its de Rham complex and a corresponding
product decomposition

H,,(V/R)=1 Ho (V'/R) (@;,---8)-
(ay,-

1----2n
Therefore it suffices to show that the compositec maps -
, i,
Hpe (V/R) Hoz V'/R)
£

projection _ ; ,
—____———)HDR (V /R)(ap' . aan)

agree, for every (@a,,..-»@) € 7" . But for fixed (a,,.. .,a,), these
composites depend only on the terms of total degree < 2 a, in the power
series formulas for the maps f,,f;. Thus we are reduced to the case when
f, and f, are each polynomial maps. QED

REMARK 5.8.5. Iftheideallis closed, the proof gives the same invari-
ance property for the groups H (V/R;I) defined as the cohomology of

“IQIV—/; 7 "_d_—) Q‘V/R ‘_Sl—é Q‘\;r/l‘z .

5.9. APPLICATION TO THE COHOMOLOGY OF CURVES. Throughout
this section we work over a mixed-characteristic valuation ring R of
residue characteristic p, which is complete for a rank-one (i.e., real-
valued) valuation. Let C be a projective smooth curve over R, with
geometrically connected fibres of genus g. Its Jacobian J =Pic’(C/R)
is a g-dimensional autodual abelian scheme over R. For each rational
point x € C(R), we denote by @, the corresponding Albanese mapping

@, C—>1
given on S-valued points, S any R-scheme, by
@, (y) = the class of the invertible sheaf 1I(y) 1T ® 1(x),

where I(y) denotes the invertible ideal sheaf of y € C(S) viewed as a
214
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Cartier divisor in C x S. As is well-known (cf. [44], [45]), this morphism
induces isomorphisms

H'(J,0,) —— H'(C.0.)
59.1 H(, Q) )=, —> H(C,Qcr )
HY, J/R) —> H' . (C/R)

which are independent of the choice of the rational point X.

Let éx denote the formal completion of C along x; itis a pointed formal
Lie variety of dimension one over R. Because ¢,(0)=0, @, induces
a map of pointed formal Lie varieties

9.6, — 1,
whence an induced map on cohomology
~ 1 ~ (ax)* 1 ~
D(/R) C Hpr J/R)—> Hir (C,/R).
THeOREM 5.9.2. The composite map
Aok
pim B w, ER
is injective.
COROLLARY 5.9.3. The natural map
Ho (C, Qlc/k ) —> HIDR (Cx/R)
is injective, i.e., a non-zero diﬁ"er'ential of the first kind cannot be formally
exact.
Proof. Because 3 is p-divisible, the natural map @; —> D(J/R) is
injective.

The corollary then follows immediately from the theorem and the
commutativity of the diagram
Ak
D(/R) < @) L wem
594 U 1

0, —— H(C, Qg )
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“To prove the theoremn., we choose an integer 1= 2g— 1, and consider the

11 {
(H l«,(’

(n}

z?x (yg S e yu ) = ‘21 ';D (_“/x )~
. 1=
thie sumimation *aking place in J. Passi formal ¢ ctions, w i
e gplacein J. Passing to formal completions, we obtain

"m)

(C) —_— T

delfined by

A(n)

(yp' . 'ﬂyn): Z ;ax(}/l)
In terms of the projections
p\ri : (éx)n —_— 6)(
onto the various factors, we can rewrite this as
(n) n ”~ A
2. =2 p opr,
the: summation taking place in the abelian group of pointed maps to 7.
Bec:ause D(J /R) is defined to consist prec1sely of the primitive elements in
DR (J/R) we have, for any a e D(J/R)
(n) n ~ ~
@)@ = 2 3o @ = 2 (r)* ()" ().
Therefore the theorem would follow from the injectivity of the map
@) :DU/R) —— HY, ((C,)"/R).
Because D(J/R) 18 a flat R-module contained in HDR (J/R) it suffices to
show that the kernel of the map

(SD“”)* DR (J/R) B H] ((é\)n/R)

consists entirely of torsion elements. In fact, we will show that this kernel
t> annihilated by n!. To do this, we observe that the map

“(n) n
v O]
RN N . 1 Py S . N » ;

= obviously invariant under the action of the symmetric group & on "
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by permutation of the factors. Therefore we can factor it

4

T Symm" (C) ———> J.

(n)

Px

Passing to formal completions, we get a factorization

~ ~

& —" syma (@) — 3
o

We will first show that (zz;)* is injective on H, , by showing that the
map lZ has a cross-section. This in turn follows from the global fact that
¥ is a P"7* -bundle over J which is locally trivial on J for the Zariski
topology. To see this last point, take a Poincare line bundle ¢ on C x J.
Because n>2g—1, the Riemann-Roch theorem and standard base-
changmg results show that the sheaf on J given by (pr)« (¥ ® pry
a 't )) is locally free of rank n + I — g. The associated projective
bundle is naturally isomorphic to ¢.

It remains only to show that the kernel of the map

(m)* :HL, (Symm"(C,)/R) — HL. ((C,)'/R)

is annihilated by n'!. But if a one-form w on Symm" (éx) becomes exact
when pulled back to (C,) , say w = df with f ¢ A ((C,)" ), then
nle= 2 ow@=d(2 o)

1s exact on Symm” (C,). QED

REMARK. The fact that for n large the symmetric product Symm' (C)
is a projective bundle over J may be used to give a direct proof that C and
J have isomorphic H'’s in any of the usual theories (e.g., coherent, Hodge,
De Rham, etale, crystalline. ..).

THEOREM 5.9.5. Let k be a perfect field of characteristic p > 0, k its
algebraic closure, C a projective smooth curve over W(k) with geometri-
cally connected fibre, J = Pic® (C/W(k) ) its jacobian, x € C(W(k)) a
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rational point of C,and @, : C —> J the corresponding Albanese mapping.

There is an exact sequence of W-modules

0—>(H, (C® k,Z,)® W(E))Gal(i/k) @

L

B ~
' (C® kW (k)) —> H Y (CJW(k)),

the maps in which are functorial in (C,Xx) ® k as pointed k-scheme.

Proof. Themap o is defined exactly as was its abelian variety analogue
(cf. 5.7.1); the map B is defined as the composite

H', (C®k/W(K)) —=>H’py (C/W(K)) s, g, (C/WE).

B
By construction, « 1s functorial in (C,x)® k. By lemma (5.82), B is
similarly functorial. To see that the sequence is exact, use the fact that the
Albanese map induces isomorphisms on both crystalline (or de Rham!)
and etale H'’s, (cf. SGAIL, Exp, X1, last page, for the etale case), i.e., we
have a commutative diagram
0——(HL U ®E,z,,)®wu'<))6“‘_£‘;—>ﬂ‘cm (J ® k/W(k)) —> D(/W (k))—>0
Y (. O (9. ®K)" '1(6’,)'
(H. (C®K,Z,)® W(K)) "2 H i (COK/W(K)) _8 LW, (€W

COROLLARY 5.9.6. (1) The kernel of the “‘formal expansion ai a point”

map

H oy (CIW (k) ) ————> Hoy (C JW(k))

. 1

in H g (CIW(k) )1 ~ chm(C ®k/W(k) ) is the “slope-zero” part
of the F-crystal H_(C ® kIW(k)), i.e, we have a commutative
diagram

(Gatk k)

0 ! k i &
e (H (C®K.Z,)®W (k) ) —> h(‘m(C/W)————>(i»uzgeo/11‘nk (CIW ) inH'og (CW (k) )——>0

| ] zT IT

i
|
0 - -—(slope0) e KM\ (C®KW (k) ) (slope > 0) —— 0.

(2) The image of the “formal expansion at a point” map is the
slope > 07 quotient of H Ll g‘ ® k/W (k) ); this quotient is isomorphic,
via the Albanese map @, 1O DJIW(k)).
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V1. Applications to congruences and to Honda’s conjecture. Let C
be a projective smooth curve over W(Fy) with geometrically connected
fibres. Let G be a finite group of order prime to p, all of whose absolutely
irreducible complex representations are realizable over W(F,) (e.g., if
the exponent of G divides q—1, this is automatic). Suppose that G
operates on C by W(Fq)-automorphisms. Then G operates also on
C®F, by F, -automorphisms. For each absolutely irreducible repre-
sentation p of G, let Px,,,(T) e W) [T] be the numerator of the asso-
ciated L-function LIC®E, /F,G,p ;1)

P, (M=1+ a (p)T+. ...+ a (p)T .

Let w € H° (C, Qew) bea differential of the first kind on C which
lies in the p-isotypical component of H° (C, Qe w) Letx € C(W(Fy))
be a rational point on C,andlet X bea parameter at X (i'i" X is a coordi-

nate for the one-dimensional pointed formal Lie variety C, over W(Fq)).
Consider the formal expansion of around x:

. dX
w= zl b) X' —- b(n) € W(F,).
We extend the definition of b(n) to rational numbers n > 0 by decreeing
that b(n) = 0 unless n is an integer.

THEOREM 6.1. In the above situation, the coefficients b(n ) satisfy the
congruences
b(n) b(ng) b(nq")

+a1(p)-/+...+a,(p) —~ e« pW(F;)
n nq nq

for every rational n > 0.

Proof. LetJ denote the Jacobian of C/W(F,), and denote by wew;
the unique invariant one-form on J which pulls back to give w under the
Albanese mapping @, The group G operates, by functoriality, on Jand
on w,, ang the isomorphism @, = H°(C, QIC,W ) is G-equivariant.
Therefore w lies in (@w;)?. Via the G-equivariant inclusion

w, CD, (3/W)
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NICHOLAS. M. KATZ

we have

w e D, /W)y .

Now let F denote the Frobenius endomorphism of J ® F, relative to
F, . Then both F and the group G acton J® F, . By (4.2), we know that

(F" +2,(p)F™" + ... +a,(p))Proj(p) = 0

in End(J ® F,) @ W(Fq). Because D(:f/W) ii an additive functor of
J ®F, with values in W(F, )-modules, and w lies in its p-isotypical

component, it follows that
6.1.1 Fl(w)+a,(p)F ' (@) + ... +a.(p) a=0
in D, (J/W).

The Albanese map @, :C—>7J induces a map

~ A

?X:Cx_—_“-)-’l\,

whence a map

D, GW)CHL, Gwipy) P, HL, € ;)

which is functorial in the pointed schemes (.’I\,O)®Fq and (6 x)®F
X3 q -

§o if we denote also by F the g-th power Frobenius endomorphism of
C.,®F,, we have

(@)*°F = Fo(p)*,
whence a relation
6.1.2 F'(@)+2a,(p)F (@) + ... +a,(p) w=0
in Hy,, (C,/W;(p)).

.The as§erted congruences on the b(n)’s are simply the spelling out of
this relation. Explicitly, in terms of the chosen coordinate X for C. | a
particularly convenient pointed lifting of F on éx ® F, is provided by

F: X s X
220
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In terms of the isomorphism
HL . (€ /W) «—=— {feK[[X]]|f(0)= 0,dfintegral }
{fe pWIIX]][f(0Q)=0}

the cohomology class of w is represented by the series

f(X)= 2 b®) n

n>0 n
and the cohomology class of F' (w) is represented by

f(x'y= 2 3(1?—))("‘”.

The relation (6.1.3) thus asserts that
fX )+ a,(FE T )+ ...+ a.(p)(X)

is a series whose coefficients all lie in pW(F, ). The congruence asserted
in the statement of the theorem is precisely that the coefficient of X" in
this series lies in pW(F,). QED

ReMARK. In the special case G= {e}, p trivial, the polynomial
P, ,(T) is the numerator of the zeta function of C®F,, and every
differential of the first kind w € H' (C, QIC/W ) is p-isotypical. The result-
ing congruences on the coefficients of differentials of the first kind were
discovered independently by Cartier and by Honda in the case of elliptic
curves, and seem by now to be “‘well-known” for curves of any genus.

[11[5].(8].[22]).

THEOREM 6.2. Hypothesis and notation as above, suppose that the
polynomial P, (T) is linear

P, (T)=1+a,(p)T,
ie., that p occursin H 1 with multiplicity one. Then

(1) a,(p) is equal to the exponential sum S(C®F_|F,, p,1) and for
every n > I we have

(_al(P))n = _S(C®Fq/Fq;P’n)-
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(2) If poccursin H® (C, Qlc,w), then ord, (a,(p)) > 0,ie.a,(p)is
not a unit in W(F,).

(3) If poccursin H° (C, QIC/W), choose w € H° (C, QIC/W)P to be
non-zero, and such that at least one of coefficierits b(n) is aunit in W(EF, ).
For any n such that b(n) is a unit, the coefficients b(nq), b(ng*), ... are
all non-zero, and we have the limit formulas (in which p denotes the con-
tragradient representation )

q-b(ng")
_S(C®FEJF,.p.1) = —ay(p) = lim — o
q q 1 N —> @ b(nqN+1)

3 _ —q b(n N+l)
_S(C®F,[E,p.1) = —ar(p) = —lim
a,(p) ~N—ow D)

Proof. If p occurs in H' with multiplicity one, then p must be a non-
trivial representation of G (for if p were the trivial representation, G
would have a one-dimensional space of invariants in H': but the space
of invariants is H' of the quotient curve C ® F, modulo G, so is even-
dimensional!). Therefore p does not occur in H° or H?, as both of these
are the trivial representation of G. The first assertion now results from

1.n.

OIf P 1also occurs in H°(C, Qlc/w ), pick any non-zero « in
H°(C, Q'.)’ and look at its formal expansion around x:

= 2 b ax
I o)X <

An elementary “g-expansion principle”’-argument (cf. [28])

shows that if all b(n) are divisible by p, thenes is itself divisible by p in
H°(C, Qw )-So after dividing w by the highest power of p which divides
all b(n), we obtain an element w € H° (C, QIC/W )* which has some

coefficient a unit.
Consider the congruences satisfied by the b(n):

b
@, 4 (p 202

<« pW(E,).
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If a,(p) were a unit, we could infer (by induction on the precise power of

p dividing n) that
q b
foralln2 1,—5 ' e WE,).

In particular, we would find that%'w is formally exact at X, which by
(5.9.3)is impossible.
Given thata,(p)isa non-unit, choose n such that b(n) is a unit. Then

ord (b(n)/n) < 0.

From the congruences

b(n b(n

bW~ _ap) (29) mod pW
n nq

b(;‘qN) b(nqN+l )

e = —ay(p) W mod pW
nq nq

and the fact that ord (2, (p)) > 0,it follows easily by induction on N that

N
b(ng )
ord (T) = ord (b(n)/n) = N ord (a,(p))-

Therefore we may divide the congruences, and obtain

N
ord(qb(nq) +a1(P))Z1+(N+1)0fd(31(l’)) —ord (b(®)/n)

)

b(nq

bng""')  a q b(n)
ord(m)—-— + ;1(7;))2 1+ord(a—1—;—))+Nord(a1(p)) —ord( " ).

Letting N—©, We get the asserted limit formulas for —a,(p)and for
—q/a,(p)- BY the Riemann Hypothesis for curves over finite fields, we
know that —q/a,(p) is the complex conjugate a_l(’p-). Let p denote the
contragradient representation of p; because the definition of the L-series
L(C ®F,/F,G.p -T) is purely algebraic, the L-series for p is obtained
by applying (any) complex conjugation to the coefficients of the L-series
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NICHOLAS. M. KATZ
for p. Therefore a (p)=a l(;), and p also occurs in H' with multiplicity
one.
QED

Example 6.3. Consider the Fermat curve of degree N over W(F, ), with
q =1modN. For eachinteger 0 <r < N_ 1, denote by X, the character
of py given by

X ()=

We know that under the action of By X py (acting as (x,y) —s

.( g x, 1{ 'y) in the affine model x" + yN = 1), the characters which occur
in H" are precisely

X, xX, l_<_r,sSN—l,r+s#N,

each with multiplicity one. Those which occur in H°(Q ') are precisely
the

’ X, x X, I=srssN-—-1,r+s<N,
the corresponding eigen-differential w,  is given by

. = x v dx ‘
s =Xy —x.

Xy

If we expand w,, atthe point (x =0,y = 1), in the parameter x, we obtain

S dx
w, =x'(1—xN)W~1 X
E
- _Nnif{=—1\_r+N d
2 ol s
= 2 b(n)x"—q)—(.
n21 X

Conveﬁmently, t}:e first non-vanishing coefficient b(r) is 1. The successive
coefficients b(rq") are given by

=

brg" )= (- [ N
r.,n
ﬁ(q -1
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The eigenvalue of F on the X, x X, -isotypical component of H' is the
negative of the Jacobi sum J, (X, , X, ). There we obtain the limit formulas

L@-1.q S

¥ g (N
r,n
S@ =D

L (X,,X,) = lim

n -0 S

~@-1-.q ( -1 )
(—DN . N
r n+l_
N(q 1)

r n
‘N(q -1

_Jq(xN—r ,XN—s)= lim

n->o0

Z|w
|

valid for 1 <r,s < N—1,r + s + N. These formulas are the ones
originally conjectured by Honda, and recently interpreted by Gross-
Koblitz {1-'" in terms of Morita’s p-adic gamma function.

VII. Application to Gauss sums. In this chapter we will analyze the
cohomology of certain Artin-Schreier curves, and then obtain a limit
formula for Gauss sums in the style of the preceding section.

We fix a prime p, an integer N = 2 prime to p, and consider the smooth
affine curve U over Z[1/N(p—1)] defined by the equation

™ -T=X".

It may be compactified to a projective smooth curve C over Z[1/N(p—1)]

with geometrically connected fibres by adding a single “point at infinity”,

along which T """ is a uniformizing parameter.

The group-scheme u y,_,, operates on U, by
{H(TX)—> (¢ "T,{X).
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This action extends to C, and fixes the point at infinity.
A straightforward computation gives the following lemma.

LEmMma 7.1. 1) The genus of C is 1(N—1) (p—1),and a basis of
everywhere holomorphic differentials on C is given by the forms
x*T® dr
XN—I
withO < a <N-2,0< b < p-2,andpa + Nb < (p—1) (N-1)—1.

sioif?N T};e)(sPaCIe Hon (€ ® O/Q) ~ > Hiyx(U® Q/Q) has dimen-

Torms p—1), any d basis is given by the cohomology classes of the
x'r® dT

XN—l

(3) The characters of Bnp—n which occur in H'p (C®Q[Q) are

precise ly.those whose restrictions t0 IS non-trivial, and each of these
occurs with multiplicity one.

In characteristic p, there are new automorphisms. The additive group
F, operates on C®F, by

a: (T, X) — (T + a,X).

This action does not commute with the action of pnp-1- However, the
two together define an action of the semi-direct product

Fp X fne-n
formed via the homomorphism

—N
Prne-1 —_— | _"_’F: = Aut(F,)

Explicitly, the multiplication is
@) (®,L) = @+ b1y,
and the action is
@) (T,X) —— @ T+1TalX).
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The group Fy X Bne-n contains F, x pn a8 @ normal subgroup,
actingon C @ F, in the usual manner.

REMARK. This action of a group of order p(p — 1)N on a curve of
genus g = ip—D (N-1) provides a nice example of how “wrong” the

characteristic Z€r0 estimate 84(g—1) can become in the presence of wild

ramification!

Let E be a number field containing the N(p—1) ’st roots of unity, P a
p-adic place of E, F, a finite extension of the residue field Fuey» of P, G
the abstract group F, % Eone-n(Fa ). Let H* denote any of the vector
spaces Hi(C ® Fq )(;9/15A for | #+ p, of HL (C ® F/ W(F,))® K.

By functoriality, the group G operates on H'. Because the center of G

is pn(Ey ), the decomposition
H' =® (H)
of H' according to the characters of py 18 G-stable.
PROPOSITION 7.2. For eachof the N—1 non-trivial E-valued characters X
of HBn (E)——C"——>;J.N(FN(P))= pn( Fo)s the corresponding eigenspace

(H')Y isa p—1 dimensional absolutely irreducible representation of G
1 \x is the augmentation re resentation of Fy:
) P P

the restriction to Fy of (H
)X is the induction, from fn 10

the restriction 10 Fnp-1) (F,) of (H1
Fne-1 ’Ofx'

Proof. All assertions except for the G-irreducibility of (H")* follow
immediately from the preceding lemma, giving the action of Hne-1 > and
from Corollary (2.2), giving the action of Fy % [n- The irreducibility
follows from these facts together with the fact that in any complex repre-

sentation of G, the set of characters of F, which occur is stable under the

action of Brugp-v in F, by conjugation; because this action has only the
two orbits F, and 0 , as soon as any one non-trivial character of F,

occurs, all non-trivial characters must also occur.

CoroLLARY 7.3. 1) Over any finite extension Fy of Fy which contains all
the N(p—1) st roots of unity (i, q4 = 1 mod N(p—1), the Frobenius F
relative to F, operates as a scalar on each of the spaces (H')¥, X a non-
trivial character of pw - This scalar is the common value

_'gq (4’7 X . P)
227

“M\\Mrw bbb

3 4ol 52 el o1l b i

s R

s W sl B R kil

ik aibeds



NICHOLAS. M. KATZ

of the Gauss sums attached to any of the non-trivial additive characters  of
F

o

Proof. Over such an F,, Frobenius commutes with the action of G
on H', so it acts on each (H')* as a G-morphism. Because (H")* is G-
irreducible, this G-morphism must be a scalar, and this scalar is equal to
any eigenvalue of F on (H')* . As we have already seen (2.1), these eigen-
values are precisely the asserted Gauss sums, corresponding to the de-
composition of (H')* under F,.

The common value of these Gauss sums over a sufﬁciently large F, is
itself a Jacobi sum, in consequence of the fact that universally, i.e., over
Z[1/N(p— 1)), the curve C is the quotient of the Fermat curve
Fermat (N(p-—1)) of degree N(p—1) by the subgroup H of
Brnp—1y X Hnp-p consisting of all (£, {,) satisfying

0 =1
Explicitly, the map is given rationally by the formulas

(W,V) on WN(p—l) + VN(p—l) =1

(T,X)on TP — T=Xx"
T=1/VY, X =W /v°,

LEMMA 7.4. Let X be a character of g,y whose restriction to puy
is non-trivial. Under the map

H'y, (COQIQ) —24—> H' (Fermat(N(p—1))®Q/0)"

we have

~-p

H'op (C®Q)Q)"—> oy (Fermat(N(p—1))®0/@)"

Proof. That H'(C)—>H" (Fermat)" in rational cohomology results

from the Hochschild-Serre spectral sequence. Since the characters of

B np—y (tesp of py, ;) X Bne-1) ) occur, if at all, with multiplicity

onein H'(C) (resp H' (Fermat)), it suffices to check that the X -eigenspace

of H'(C) is mapped to the (X" ~*, X 7*)-eigenspace of H'(Fermat). This
228
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we do by inspection :

X°T? 4T =
~ N-1
X b p—1 a+1-—-N bl dZ
= XN T AT (W (Z_N,) (~N )
T VP z

QED

COROLLARY 7.5. If F, contains theN(p—1 )’st roots of unity, then for
any non-trivial character X of py, any extension X, of X 10 p -1 and
any non-trivial additive character ¢ of F,, the scalar by which F acts on

H'(C ® F, )Xis given by
FIH' (C®F, )% = FIH' (C®F )»** = —g, (. X;P)

-1 _ ]
FIH' (C®F, )+ = F|H'(Fermat® F)*1 X" = —J(X] X7 /P)

We now turn to the “determination” of the Gauss sum —g (¥, X5P)
over an F, which is merely required to contain the N'th roots of v'.mity.
Unless p—1 and N are relatively prime, such an F, need not contain the
N(p— 1)’st roots of unity! Moreover, the Gauss sum does ot in gener’al
lie in the Witt vectors W(F, ), as it does when K, contains the N(p—1) st

roots of unity!
Let = denote any solution of
We recall without proof the following standard lemma (cf.[31}or [32] ).

LEMMA 7.6. ThefieldsQ,(L,)andQ,(m) coincide. There is a bijective
correspondence

. -1 __
primitive p’th roots of 1 <——> solutions mw of #* = —p
under which [ <———> w if and only if
{ =1+ wmodw 2
For each solution 7 of #*' = —p, we denote by

'ﬁ-:Fp — Qp(gp)x
229
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the unique non-trivial additive character which satisfies
g D=1+ wmod 7.

If we fix a W(E, )-valued point x on C, we have the map ““formal expansion
at x”’

H. (C®F,/W(,)) — Hox (€. ® W(E,)/W(E,)).
If we denote by R the ring
R = W(E,) 7]

which is a free W-module of finite rank (p— 1), we may tensor with R to
obtain

HY (C®F,/W(E,)) ®R——>Hby (€, @ R/R).

H) (C ®R/R)
THEOREM 7.7. (1) For any W(Fq)-value.d point x on C, the “formal
expansion’ map is injective : A

H (COF|W(F)) e s HL (C.® W )IW(F))

(2) Let mbe any solution of at = —p, P, the corresponding addi-
tive character, a an integer ]<a<N—1 and X, the corresponding
nontrivial character of  Pn (X, (C)= ¢* ). If we take for x the point
(T=0,X=0)onC, with parameter X, then the image of

HL (COF, IW(E,)) ®Qy(m))* > Hon(C,ORIRIQL ()

is the one-dimensional @ (7 )-space spanned by the cohomology class of

exp(—-erN)Xafli(—z E b(n)X" ax
X X

COROLLARY 7.8. Notations as above, let f( X') denote the power series

n n nN+a
f(x)= Z b(n) X _ (—m) X
n ~ n! nN+a

n>1 nz>0
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Then the series
F(X%) + g ($er X0 P) f(X)
has coefficients with bounded denominators, and we have a limit formula

g (., X, P) = lim  a-b(ad’)
b(aqr+1)

7.8.1 {
G EN
vithblag') = o ")
((g"—1)n)!

We first deduce the corollary from the theorem. We know that F has
eigenvalue — g, (., X, ;P) onthe i, x X, -eigenspace of HL..® Q,(7),
hence F has the same eigenvalue on the image of this one-dimen-
sional eigenspace in Hpr €. ® R/R) ® Q, (). This image is spanned
by the cohomology class of df :therefore F + &4 ($.,X.:p) annthilates
the class of df mod torsion, whence

F(XY) + go(Pes Xo s P) XD

has bounded denominators. The final limit formula comes from looking

. . +1 . .
successively at the coeficients of X aa"+1 {5 the above expression; one has

b(aq') bag™")
ord( +gq(¢',,xa P —— | Z —A
aq aq

T

for some constant A independent of . An explicit elementary calculation

shows that

as r————>+®©

ord(b(aq)) —_— =

T

and this allows us to «divide” the additive congruence and obtain the

asserted limit formula.
It remains t0 prove the theorem. In view of the exact sequence of
(5.9.5), the injectivity of
HCOEWE) — HoCOWW
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1
cris *

1s equivalent to the absence of any p-adic unit eigenvalues of F in H
But these eigenvalues are the Gauss sums

—8, (. X) = — 2 4, (0 X, (x).

Because ¢, (x) = 1 (7) for all x, while X, is a non-rrivial character of

F,", we have

—g(¢,X) = —~ 2 X, (x) =0mod .

(Alternately, one could observe that each non-trivial character X of #yhas
at least one extension X, to M 1, Which occurs in H(C®Q, Q‘C®Q );
the eigenvalue of F® "' on this eigenspace is then a non-unit by (6.2.2);

1 . 1 . . .
as F*¥ 'is a scalar on (H")*, this scalar is non-unit.)

It remains to verify that the image of the Y. x X, -eigenspace is indeed
spanned by
( X)X dX
exp (— -
p(—m %

This seems to require the full strength of the Washnitzer-Monsky ‘“dagger”
cohomology, as follows. Let A’ denote the “weak completion” of the
coordinate ring R[T,X]/(T° - T — XN) of U ®R. Because U ®F, isa
“*special affine variety” with corrdinate X, there are unigue liftings to A"
of the actions of F and of the group F, ® u,, whose effect on X is given by

{ F(X) = X°

@@, X)) =X

Thanks to Dwork, we know that the power series in T
exp(nT—#wT")

actually lies in R[T]', and hence in A', for any ar satisfying w°~ ' = —p.
As Monsky pointed out, under the action of F, on A', this series trans-
forms by thecharacter ¢ _ . It follows thatfor 1 < a < N—1thedifferential
form

oy wadX
exp(wT - #TP)X <
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transforms by 4, x X, under the action of F, x pu. Therefore its

cohomology class in
dfn . ,
Hy_w(U®F, ;R)® Q=—H"(Q,erp®A)®Q

lies in the ¥_ x X, eigenspace of HIW_M. A direct computation ( [31],
[32]) shows that each of these eigenspaces is one-dimensional, and is
spanned by the above-specified form.

Furthermore, there is a natural “‘formal expansion map” attached to
any R-valued point x of U ;
Hy w(U®F, ;R) — H'; (0,®R/R).

For the particular choice of point (T = 0, X = 0), the formal expansion

map carries

dX )
exp (wT — pr)Xa—X— ——sexp (—mX")X X

To conclude the proof, we need to identify Hy,, (U ® F, ;R) ® Q with
H',. (C® F,/R)®Q in a way compatible with the formal expansion
map and with the action of F and of F, x u. We will do this with a

somewhat ad hoc argument.

Because U is the complement of a single point in C, it follows from the
theory of residues for both H ,, and H ,_,, that we have isomorphisms

H'p (COR/R)® Q5>H' (U R/R)®Q5Hy,_ (URF, ;R)® Q.
These sit in a commutative diagram

I ¥
—H 4 (COF, /R)®Q— Hp (U®R/R)® Q—>Hj,,,(URF, ;RI®Q

@ T~ | / ®

(imH o, (U ®Fq/Rn)®Q—é+(lgr_nHLR (U®R,/R,))®Q

(limH', (0, ®R,/R,))®Q
@ ©) — ﬁ

_3HL, (U, ®R/R)®Q
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In this diagram, the maps @, @ and @ are each compatible with the
actions of Fand of F xpy imposed by crystalline and by W-M theory
(simply because these actions /ift to the U @ W, ). Therefore the compati-
bility of the isomorphism with the actions of F and of F; % g would
follow from the injectivity of arrows @ and (6). The injectivity of these
arrows follows from the commutativity of the diagram and the already
noted injectivity of arrow @ (which is injective exactly because F has
no p-adic unit eigenvalues in H}, of our particular C). Q.E.D.

A QUESTION (7.8.2). Let U be a smooth affine W-scheme which is the
complement of a divisor with normal crossings in a proper and smooth
W-scheme.

Are the maps
Hop (UW)®Q —> (L{N_T_HIDR (URW,/W,))®Q
always injective?

7.9 THE GROSS-KOBLITZ FORMULA. In this section we will derive the
Gross-Koblitz formula from our limit formulas.

Morita’s p-adic gamma function is the unique continuous function
r, Z,—/> Zz,

whose values on the strictly positive integers are given by the formula

7.91 I‘p (1+n)=(_1)n+l . H i = (__1)n+1 alt
pin [D/P]!P[n/p]

where [ ]denotes “integral part.”

LEMMA 7.9.2. For any integer n = 0, and any w satisfying 7" = —p,

we have the identity

(—m)" n! )P
(— )" Inlp)! p (1 1)
Proor. This is just a rearrangement of (7.9.1). Q.E.D.
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COROLLARY 7.9.4. Let = pfwithf=1,w any solution of w*™'= —p and
n > 0 any integer. Let

n=ny,+mp+t... 0<n<p-—1

be the p-adic expansion of n. Then we have

(—'qr)“/n! (—I)f-(qr)“(’+"1+"‘+“f—l

7.9.5 fzm) 7 =

()™ TIT,(1+00PY

proor.  Simply apply (7 9.3) successively to 1, [n/pl.- - - [n/pr_l ]. QED.
For a fixed integer i = 0, the map on positive integers
n — [n/p]
extends to a continuous function z, —> L, which we denote
n —> /0,

In terms of the p-adic “digits” of n, this map is just the i-fold shift :
(1.9.6) ne S — Zma 8 =]

Lemma 7.9.7. Let 0<a < | be a rational number with a prime-to-p
denominator. If p' =1 mod denom («) for some f =1, then we have the

identity

(7.9.8) —<p la> =[-a/p),inZ

for i=0,1,..., f—1 (where< > denotes the “fractional part” of a
rational number ).

ProoF. Write p'-Dea=A Then A is an integer, 0 < A<p —1,50

we may write its p-adic expansion as

A=ao+a1p+...+af_1pf"; 0<a<p-l
a;, < p— 1 for somei.
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We now extend the definition of a, toalln €Z by requiring

A, =ayy VneZ.
Then
5
L Fj-i
p = p A _ 5 &P
pf_l pf_l
f—1 .
go aj+il:)J
= - mod Z
p—1
whence
El
—i : a i !
—<pla>= i Hf) = ZampJ
1— p 20
= Jgo aij
pi
p
But we readily calculate
- l—pr - jzo 4P
QED
COROLLARY 7.9.9. Letq = p' withf > I, w any solution of n° ~ — —p,

and o any rational number satisfying
0< ax<]
(g—1) x e Z.
Let
A=(Q‘1)“=ao'*;alp+...+af_1pf_1, 0<a<p-1
236
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be the p-adic expansion of (q—1) a, and let
S((g—1)a)=ay+a,+ ... +a,_,

be the sum of the p-adic digits of (q— 1) «. Then we have the formula

o o $((g=1a)
(79.10) w222 ()

no-—a [n/q]
— ! i
(—m) " n/g)! iI—Io Lo(l-<poa>)
in which the limit is taken over positive integers n which approach —o

p-adically.

Proof. Simply combine (7.9.5) and (’_/.9.8), and use the p-adic con-
tinuity of both I', and of n—— [n/p'] QED

Combining this last formula with our limit formula for Gauss sums, we
obtain the Gross-Koblitz formulas.

THEOREM 7.10. (Gross-Koblitz). Let N = 2 prime to p, E a number field
containing the Np'th roots of unity, P a p-adic place of E, m € E, a solution
of w* 7' = —p, . the corresponding additive character of F,,aaninteger

1 < a < N—1, X, the corresponding characer { ——>{ *of i, and Fy,
g=7p,a finite extension of the residue field K, of E at P. We have the
Sformulas, in E

(-1 Il T,(-< iN‘f>)

i mod f

7.10.1 — ,X,;P) =
{ ) g (¥, . X, P) () SUaDY

(7.102)  —g ($. R, P) = ()59 TT T, (< LN€>)

i mod f

Proof. The sequence n, = (q@" — 1) (a/N) tends to —a/N as r grows,
and satisfies [n,/q] = n,_, for r = 1. Therefore the first formula follows
from the limit formula (7.8.1) and from the preceding formula (7.9.10)
with & = a/N. The second formula is obtained from the first by replacing
a by N—a. QED
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VIII. Interpretation via the De Rham-Witt Complex. Throughout
this chapter, we fix an algebraically closed field k of characteristic p, and
a proper smooth connected scheme X over its Witt vectors W = W(k).
For each n = 1, we denote by X, the W, -scheme X @ W, .

The “second spectral sequence” of de Rham cohomology of X, /W,
EY Y (n) = HP (X,, 5 (X./W,)) = H "I (X,/W,)

has an intrinsic interpretation in terms of X ® k as the Leray spectral
sequence for the “forget the thickening’ map

X®K/W,), ., —— (X®K),,. .

cris

As such, it may be rewritten
Cris

E'(m)=H (X®k #L (X®K/W,)) = H: (XOK/W,).

An explicit construction of this spectral sequence may be given in terms
of the De Rham-Witt pro-complex on X ® k

{w.Q°},

of Deligne and [lusie; it is simply the second spectral sequence of this
complex :

B2 (m)=H (X®k,#'(W, Q)) = H I (X®KW,Q).

It is known that the E, terms of this spectral sequence are finitely gene-
rated W, (k)-modules. Therefore we may pass to the inverse limit and
obtain a spectral sequence

E}? =limE} () = HY.' X®K/W).

cris

Let x be a W-valued point of X, and assume X connected. The formal
expansion map we have exploited

Hei (X ® k/W) 2 Hipg (X/W) ———> Hpp (X/W)
is the composition of the edge-homomorphism
Hiy, (X/W) ——>> E% &> EY
with the natural map
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! ‘ im Hp (X, ® Wa/Wa).
EY" = [mHO(X, , 2 (%a/Wa)) — o (K OWe/ )

LEMMAHS. 1. This map is in fact injective; indeed, the induced maps

HO (X, o (X [Wa ) ) — Hog (X, ® WalWo)

are injective.
Proof. Because X, 18 irreducible, it suffices to show

(*) for any closed point y of X,, and any affine open V2 y whlcht }iz
stale over standard affine space A = Spec(W, [T ... ST,

natural map

HOV, -, (X, [Wa))—> # g V, /W,).

is injective. |
For once (*) is established we argue as follows. Let £ be a global section
over X, of o# iDR which dies formally at x. We must show tha.t for ari,y
closed point z in X,, there is an open set V>Z such that & dies orfxﬁ .
Let U be an affine open neighborhood of x étale OVEl" A , andy an S nn\f;
open neighborhood of z étale over A. Because Xn' is 1rr‘edu01b1;,

is non-empty. Let y be a closed point of X, contained in UN V.

@O

Then (*) for U s x shows that ¢ dies on U. Therefore £ di'es formally
at y.Applying (*) to V >y, we find that £ dies on V, as required.

We now prove (*). Let F: A—> A be any o -linear map lifting
absolute Frobenius (e.g. T,—> T‘i’ ). Because V is étaleover A, F extefxds
@) which lifts absolute Frobenius.

i a g -linear map F:V—V b
e al it ’ lly F":v—>V""’.are homeomor-

Because all iterates of F, especia
phisms, the functor (F"), is exact. Therefore we have

{ HO(V, o, (VW) = HOV' () (o (VW)

(F™), o (VIW,) = o (F)(20w,))

But the complex (F)u(£2"yw,) o0 v " is a complex of locally free
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sheaves 9f finite rank on V™, with @-linear differential. For any
closed point y V, the formal stalk aty " is

E Q) B O

n ®
yie™ vieMy(o™ x (F )* Q Vyrwn'

Therefore the sheaves on vy

Fi =g din n i i
Fvw = (FM)(oF pp (V/W,)) =W‘((Fn)*ﬂ://wn)

are coherent, and (by flatness of the completion) their formal stalks are
given by

(&) o = Hy (V, /W)
We must show that

H VO, ) e (81,7
For this, it suffices to explicit a finite filtration

FioFl'Fio ...
whose associated graded sheaves are locally free sheaves on VeI ® k.
We claim that the filtration induced by the p-adic filtration on Q'V/W

has this property.

To see this, we first reduce to the case V = A, as follows. The diagram

v Fn o V(Gn)

A F > A

is cartesian (because V is étale over A). Therefore we have an isomorphism
Fn L] ~ n °
( )*Qv/wn«———-((F )*QA/W,,)O?(U") @V(o") .

.

Because 0,°" is flat over 0 ,(™, this isomorphism is a filtered

isomorphism (for the p-adic filtrations of Q% and of Q'aw )
n n :
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By flatness again, this filtered isomorphism induces isomorphisms
gr JFil('g'—lV,wn) = (ngFily;/wn) 0?(q“)0v“’n)

It remains to show that gri (F ‘A,Wn) is a locally free sheaf on AT ® k.
It is certainly a coherent sheafon A «" (because the p-adic filtration on
(F") Qw18 0, - -linear), and it is killed by p; thereforeitisa coherent
sheaf on A" @ k. Because it is coherent, it is locally free on a non-void
open set; if we knew that it were translation-invariant, i.e. isomorphic to
all it translates by k-valued points of A®" ® k, we would conclude that
it is locally free everywhere.

As a sheaf of abelian groups, it is visibly translation-invariant. It’s
O, Mok -module structure is the composite of its natural module-
structure over the sheaf of rings

gro, # (A W)
with the g"-linear isomorphism
000 ——> Emd (AW:)
) O

where T denotes any local section of 0, lifting .

To conclude the proof, we must verify that this isomorphism is trans-
lation-invariant. For this, it suffices to show that it is independent of
the particular choice of F lifting Frobenius which figures in its definition.
For this independence, We simply notice that an “intrinsic”” description
of the same g"-linear isomorphism

0o ——> gr‘;uaﬁ(A/Wn)
is provided by o
o f — O

where again f € @, denotes any lifting of f. oED

Lemma 8.2. The Eiz’ % terms of the spectral sequence are given by
E,°~ H (X®kZ)® W(k)
Proof. For each integer n = 1, there is an isomorphism (cf. (241, 251 )
W, (Oxer ) > 1 (Xa [Wn)
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defined by

. ot i A~ ph—i
®0- -8y ) ——> 2 p'E)
whereEi is a local lifting of g € Oy, to Oxn (Compare (5.52)).

For variable n, these isomorphisms sit in a commutative diagram

n+rOx e ) > Hpr X,y W, )
usual projection
W, Oy, ) reductionmodp”
B
W, (Oxgy ) s (X, W),

Therefore we may calculate
E;° = imH (X ® k, 0 (X, /W,))
3 lim (N (image of F" on H' (X ® k, W, (040, ))).
= lim (fixed pointsof Fin H' (X ® k, W, (Oyq, )) ® W, (k)

Z/p"Z

~limH,(X ® k, Z/p" Z) ® W, (k). QED
Consider now the exact sequence of terms of low degree

d,

0—E;° —H, (X®k/W)—>E?! g2

LEMMA 8.3.  The map da>! :Eg’l———>E§'° vanishes

Proof. Because bothH!, (X® k/W)and E;°=H (X® k.Z,)®@W,
are finitely generated W-modules, we see that Eg'l is a finitely
generated W-module. Therefore its inverse limit topology (as LI_I‘E Eg’ '(n))
is equivalent to its p-adic topology. Because F" annihilates the sheaf
.}f’in.s (X®k/W,), it annihilates its global sections Eg‘l(n), and hence
F is topologically nilpotent on Eg'l. But F is an automorphism of the
finitely generated W-module E>°; as d, commutes with F, this forces

d2* to vanish. QED
Thus we obtain the following theorem.
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THEOREM 8.4. The exact sequence of terms of low degree
»1
0—H.(X®k,Z,) ®W—H, (X®k/W)—>E)'—>0

mq

formal MRS
! H: (X, /W)
HonlXIW) cpansion " on %!

1

defines the Newton-Hodge filtration on H
0—>(slope0) —>H'_ (X ® k|W )—> (slope > 0)—>0.

[When X/W is a curve, or an abelian scheme, this exact sequence coincides

with the exact sequence ((5.7.2) or ( 5.9.5)!]

Illusie and Raynaud have recently been able to generalize these results
toH' . foralli. Their remarkable result is the following.

THEOREM 8.5. (lllusie-Raynaud). Let X, be proper and smooth over an
algebraically closed field of characteristic p >0. The second spectral
sequence of the De Rham-Witt complex

E =lim H (X,, (W, Q%)) = H* (X, /W)
<
degenerates at E, after tensoring with Q :
- ~ P4 — 22’
EX® ®Q~Eg® 0.4, ®Q=0forr
and defines the Newton-Hodge filtration on H ; (X, /W)® Q :
q— 1 < slopesof E}* ® Q <q.

COROLLARY 8.6. If X,/k lifts to X/W, then for any W-valued point x
of X, and any integer i, the image of the formal expansion map

(X®k/W)®Q ~ Hoo(XIW)® Q—>H (X, /W)® Q

H
is precisely the quotient *‘slopes >i— 1" of H,, ® Q.

cris

243



10.

i1

12.

13.

14,

15.

16.

NICHOLAS. M. KATZ
REFERENCES
ATKIN, A. O. L. and P. H. F. SWINNERTON-DYER, : Modular forms on non-

congruence subgroups. Proc. Symposia Pure Math X1X, 1-25, A.M.S. (1971).

BERTHELOT, P. : Cohomologie Cristalline des Schemas de Caracteristique p > 0.
Springer Lecture Notes in Math 407, Springer-Verlag (1974).

BERTHELOT, P. and A. OGUSs,: Notes on Crystalline Cohomology. Princeton
University Press (1978).

BLOCH, S.: Algebraic K-theory and crystalline cohomology. Pub. Math.
1. H E.S 47,187-268 (1978).

CARTIER, P.: Groupes formels, fonctions automorphes et fonctions zeta des
courbes elliptiques, Actes, 1970 Congrés Intern. Math. Tome 2,291-299 (1971).

DELIGNE, P. : La conjecture de Weil | Pub. Math. . H. E. S. 43,273-307 (1974)

. Sommes trigonometriques, S. G. A. 4%, Cohomologie Etale.
Springer Lecture Notes in Math 569, Springer Verlag (1977).

DITTERS, B. : On the congruences of Atkin and Swinnerton-Dyer. Report 7610,
February 1976, Math Inst. Kath. Unis, Nijmegen, Netherlands (preprint).

DWORK, B.: On the zeta function of a hypersurface. Pub. Math. I. H. E. S.
12 (1962).

. On the zeta function of a hypersurface II. Ann. Math. (2) (80),
227-299 (1964).

- Bessel functions as p-adic functions of the argument. Duke Math.
J. vol. 41, no. 4, 711-738 (1974).

M. BOYARSKY, : P-adic gamma functions and Dwork cohomology, to appear in
T.A.M.S.

FONTAINE, J.-M. : Groupes p-divisibles sur les corps locaux. Asterisque 47-48,
Soc. Math. France (1977).

Gross, B. H. and N. KoBLITz, : Gauss sums and the p-adic T'-functions. 4nn.
Math. vol. 109, no. 3 (1979).

Gross, B. H.: On the periods of abelian integrals and a formula of Chowla-
Selberg, with an apperidix by David Rohrlich. Inv. Math. 45, 193-211 (1978).

GROTHENDIECK, A.: Revétements Etales et Groupe Fondamental (SGA 1).
Springer Lecture Notes in Math. 244, Springer-Verlag (1971).

244

CRYSTALLINE COHOMOLOGY

17. — ——: Groupes de Barsotti-Tate et Cristaux. Actes du Cong. Intern.
Math. 1970, tome 1, 431-436 (1971).

17 bis. — ——— : Groupes de Barsotti-Tate et cristaux de Dieudonné. Sem. Math.
Sup. 43, Presses Univ. de Montréal (1970).

18. —— ——: Formule de Lefschetz et rationalité des fonctions L. Exposé
279, Seminaire Bourbaki 1964/65.

19. HARTSHORNE, R.: On the de Rham cohomology of algebraic varieties. Pub.
Math. I H. E. S. 45, 5-99 (1976).

20. Hassg, H.: Theorie der relativ-zyklischen algebraischen Funktionenkorpér,
insbesondere bei endlichem Konstantenkdrpér. J. Reine Angew. Math. 172,
37-54 (1934).

21. and H. DavenporT: Die Nullstellen der Kongruenz zeta-funktionen
in gewissen zyklischen Fillen. J. Reine Angew. Math. 172, 151-182. (1934).

22. HonpaA, T.: On the theory of commutative formal groups. J. Math. Soc. Japan,
22, 213-246 (1970).

23. - On the formal structure of the Jacobian variety of the Fermat curve
over a p-adic integer ring. Symposia Matematica X1, Istituto Nazionale Di
Alta Matematica, 271284, Academic Press (1973).

24. TLLUSIE, L. : Complex de DeRham-Witt et cohomologie cristalline. to appear.

25. : Complex de DeRham-Witt. Proceedings of the 1978 Journeés de
Géométrie Algebrigues de Rennés, to appear in Asterisque.

26. and M. RAYNAUD, : work in preparation.

27. Katz, N.: Nilpotent connections and the monodromy theorem. Pub. Math.
I. H. E.S.39,175-232 (1970).

28. - P-adic properties of modular schemes and modular forms. Proc. 1972
Antwerp Summer School, Springer Lecture Notes in Math 350, 70-189 (1973).

29. and W. MESSING, : Some consequences of the Riemann hypothesis
for varieties over finite fields. Inv. Math. 23,73-77 (1974).

30. . Slope filtration of F-crystals. Proceedings of the 1978 Journeés de
Géométrie Algébrique de Rennes, to appear in Asterisque.

31. KoBLiTZ, N.: A short course on some current research in p-adic analysis. Hanoi,
1978, preprint.

32. LANG, S.: Cyclotomic Fields 1I. Springer Verlag.

245

sk o bbb, haistcdabbon gt b RMBHI = Db

oo

B foille s e dd i sla ik i

.ﬂun'\ NI PR

b b s M 14

s bl 3

o B

ot

db b

T



NICHOLAS. M. KATZ
33. LAZARD, M.: Lois de groupes et analyseurs. Ann. Sci. Ec. Norm. Sup. Paris
72, 299-400 (1955).

34. ———: Commutative Formal Groups. Springer Lecture Notes in Math. 443
Springer-Verlag (1975).

35. MAZUR, B. and W. MESSING, : Universal Extensions and One-Dimensional
Crystalline Cohomology. Springer Lecture Notes in Math. 370, Springer-Verlag
(1974).

36. MESSING, W.: The Crystals Associated to Barsorti-Tate Groups. Springer
Lecture Notes in Math 264, Springer-Verlag (1972).

37. ————— The universal extension of an Abelian variety by a vector group.
Symposia Matematica X1, Istituto Nazionale Dj Alta Matematica 358-372,
Academic Press (1973).

38. MonsKy, P.: P-adic analysis and zeta fimctions. Lectures at Kyoto University,
Kinokuniya Book Store, Tokyo or Brandeis Univ. Math. Dept. (1970).

39. ———— and G. WASHNITZER, : Formal Cohomology I. 4nn. Math. 88, 181-
217 (1968).

40. ———: One-dimensional formal cohomology, Actes, 1970 Congrés Intern.
Math. Tome 1, 451-456 (1971). :

41. MORITA, Y.: A p-adic analogue of the I'-function. J. Fac. Sei. Univ. Tokyo 22,
255-266 (1975).

42. MUMFORD D. : Geometric Invariant Theory. Springer-Verlag ( 1965).
43. ————: Abelian Varieties. Oxford Univ. Press (1970).

44. Obpa, T.: The first de Rham cohomology group and Dieudonné modules. 4nn.
Sci. Ec. Norm. Sup. Paris, 3i€éme serie, Tome 2, 63—135 (1969).

45. SERRE, J.-P. : Groupes Algébriques et Corps de Classes. esp. Chapt VII, Hermann
(1959).

46. WEIL, A.: On some exponential sums. Proc. Nat. Acad. Sci. US.A 34, 204-
207 (1948).

47. —————: Number of solutions of equations in finite fields. Bull. 4. M. S.
497-508 (1949).

48.

: Jacobi sums as Gréssencharaktere. Trans. A. M S. 73, 487-495
(1952).

246

e ]

S

g

ESTIMATES OF COEFFICIENTS OF
MODULAR FORMS AND GENERALIZED
MODULAR RELATIONS

By S. RAGHAVAN

WE SHALL BE concerned here with two questions, motivated by
arithmetic, from the theory of modular forms. The first one deals with
the estimation of the magnitude. of the Fourier coefficients of Siegel
modular forms, while the second pertains to certain generalized modular
relations (which may also be called Poisson formulae of Hecke t}tpe and)
which appear to provide some kind of a link between automorphic forms
(of one variable), representation theory and arithmetic.

2 Modular forms of degree n
Let r_(t) denote the number of ways in which a natural number t can

be written as a sum of m squares of integers. We have the well-known
Hardy-Ramanujan asymptotic formula [H-R] form > 4:

r®)=a" o, ®t™7 TmpR) + on™) 1

with @ _(t) denoting the ‘singular series’. Arithmetical functions such as
1,,(t) or, more generally, the number A(S, t) of m-rowed integral colurTlns
x with 'x S x = t for a given m-rowed integral positive-definite matrix S
(where 'x = transpose of x) occur as Fourier coefficients of modular
forms. While Hardy and Ramanujan used the ‘circle method’. to prove
(1), the approach of Hecke [H1] to (1) was via the decompositw.n of tl-le
space of (entire) modular forms into the subspace generated by Elsenstem
series and the subspace of cusp forms, the explicit determination of t‘he
Fourier expansion of Eisenstein series and the estimation of the Fourier

k/2
coeflicients c(t) of cusp forms of weight k as c¢(t) = O(t™").

More generally, let A(S, T) be the number of integral matric&tes G sgch
that ‘GSG = T for n-rowed integral T (For any matrix B, let ‘B denqte
its transpose and for a square matrix C, let tr(C) and det C denote‘lts
trace and determinant respectively). For A(S, T), we have, as a ‘generating
function’, the theta series (S, Z) = g exp(2my/—1tr('GSGZ)) where
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