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ABSTRACT.

Grothendieck [7] (building on Birkhoff [2]) showed that all holomorphic vector
bundles on the complex projective line decompose uniquely into direct sums of line
bundles. This result can be thought of as saying that there exists an analogue of a
vector space basis for holomorphic vector bundles on the sphere. If you thus find
yourself with such a bundle in your hands, it is natural to ask how it decomposes into
line bundles.

This innocuous sounding question arises frequently in geometry, and it is a basic
problem in the study of vector valued modular forms. For example, a positive solution
to this problem would yield a dimension formula for spaces of congruence modular
forms of weight one, which is a difficult yet basic problem that has been open for
more than a century.

The history of vector valued modular forms dates back to Poincaré’s work on
Fuchsian functions and linear differential equations [9], [10]. In recent years, vector
valued modular forms have played a main role in the mathematics spawned by the
proof of the monstrous moonshine conjecture [3]. Indeed, these modular forms arise
as generating series for characters of rational vertex operator algebras, and thus form
an important part of their representation theory — see [6] for a survey.

Vector valued modular forms are multivalued sections of vector bundles on
curves. When a bundle is pulled back to the complex upper half plane H via a uni-
formisation map, its sections can be represented as single valued functions satisfying
a transformation law. A basic example is the case of a flat holomorphic bundle asso-
ciated to a representation ρ : Γ → GLr(C) of some Fuchsian subgroup Γ ⊆ SL2(R).
Sections of this bundle are holomorphic functions F : H → Cr satisfying the trans-
formation law

(1) F
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)
F (τ) for all

(
a b
c d

)
∈ Γ.

More generally one often incorporates an additional automorphy factor (for example,
the well-known factor (cτ+d)k) into (1), which at the level of vector bundles amounts
to a twist by a line bundle. If the Fuchsian group Γ has cusps, then one typically also
imposes some kind of mildness condition at the cusps (for example, meromorphy or
holomorphy are common conditions) — see [4] for details.

In practice one is often interested in modular forms for a specific Fuchsian group
Γ such as the modular group SL2(Z). One might imagine that this group is too simple
to be of much interest – after all, its corresponding coarse moduli space SL2(Z)\H is
just the field of complex numbers! But in fact, Belyi showed in [1] that every com-
pact algebraic curve defined by equations with algebraic numbers as coefficients can
be uniformized by a subgroup of SL2(Z) of finite index. Optimistically one interprets
this result as saying that the basic example of the modular group already contains a
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rich wealth of information of interest to both number theorists and geometers alike.
Pessimistically, Belyi tells us that even if one is willing to focus on a single Fuch-
sian group such as the modular group, the geometry and group theory can be quite
complicated.

Nevertheless, one can make nontrivial general statements about vector valued
modular forms for the modular group. For example, if the forms are associated with
a unitary representation of the modular group, then one has access to a vector valued
form of the Rankin-Selberg method. In [11], Selberg pushed forward scalar valued
forms on noncongruence subgroups to vector valued modular forms on the full mod-
ular group and used the Rankin-Selberg method to bound their Fourier coefficients.
This was one of the first successful applications of vector valued forms to the study of
scalar valued modular forms of more classical interest.

In joint work with Geoff Mason [5], we studied the decompositions of vector
bundles giving rise to vector valued modular forms for the modular group. In order
to state our results we must recall that the compactification of the moduli space of
elliptic curves SL2(Z)\H is isomorphic with the projective space P(4, 6) with non-
standard weighting arising from the action λ(x, y) = (λ4x, λ6y) of C× on C2. The
Grothendieck-Birkhoff splitting principle holds for holomorphic vector bundles on
P(4, 6) [8], and line bundles on P(4, 6) are isomorphic with the analogues of the
usual bundles O(k) on projective space. Hence, if ρ : SL2(Z) → GLr(C) denotes a
rank r representation of the modular group, and if V(ρ) denotes the corresponding
flat bundle on P(4, 6) (more precisely, V(ρ) is an extension to the cusp of the flat
bundle on SL2(Z)\H), then just as for P1 there is a decomposition

(2) V(ρ) ∼=
⊕
k∈Z

mkO(k)

for uniquely determined integers mk ≥ 0 giving a partition of the rank,
∑

k∈Zmk = r.
These integers mk can be difficult to compute: for example if ρ is a unitary represen-
tation, then m−1 is the dimension of the space of modular forms of weight one associ-
ated with ρ, a notoriously difficult quantity to compute in general. In the nonunitary
case the siutation is even worse. Setting our sights lower than obtaining general
formulae for these multiplicities, in [5] we proved the following:

Theorem 1. Suppose that ρ : SL2(Z) → GLr(C) is irreducible and let mk denote the
multiplicities in the decomposition (2). Then the following hold:

(a) no-gap lemma: if mk−2 6= 0 and mk+2 6= 0 then mk 6= 0;
(b) three-term inequality: if ρ is further assumed to be unitary, then the inequality

mk ≤ mk−2 +mk+2 holds for all integers k.

Note that in the irreducible case, all indices k for which mk 6= 0 must have the
same parity. The proof of Theorem 1 in [5] uses properties of a modular differential
operator that acts on sections of the bundle V(ρ). Computations outlined in [5] sug-
gest that part (b) of Theorem 1 should hold without the hypothesis that ρ is unitary,
although the nonunitary case remains open.
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