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Abstract

We study the question of when the coe�cients of a hypergeometric
series are p-adically unbounded for a given rational prime p. Our �rst result
is a necessary and su�cient criterion, applicable to all but �nitely many
primes, for determining when the coe�cients of a hypergeometric series
with rational parameters are p-adically unbounded (equivalent but di�erent
conditions were found earlier by Dwork in [11] and Christol in [9]). We
then show that the set of unbounded primes for a given series is, up to a
�nite discrepancy, a �nite union of the set of primes in certain arithmetic
progressions and we explain how this set can be computed. We characterize
when the density of the set of unbounded primes is 0 (a similar result is found
in [9]), and when it is 1. Finally, we discuss the connection between this
work and the unbounded denominators conjecture for Fourier coe�cients
of modular forms.
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5 Hypergeometric series and modular forms 20

1 Introduction
Hypergeometric series are objects of considerable interest. From a num-
ber theoretic perspective, hypergeometric di�erential equations provide a
convenient and explicit launching point for subjects such as p-adic di�er-
ential equations [14], [13], rigid di�erential equations and Grothendieck’s
p-curvature conjecture [22], as well as the study of periods and motives.
Recent attention has focused on the relationships between quotient singu-
larities, integer ratios of factorials, and the Riemann hypothesis [7], [28],
[6]. It is the Beukers-Heckman [5] classi�cation of generalised hypergeo-
metric di�erential equations with �nite monodromy that underlies these
connections.

If F (z) is a solution of an ordinary di�erential equation (Fuchsian on
P1, say) with a �nite monodromy group, then it is an algebraic function.
Moreover if F (z) has rational Taylor coe�cients, then an old theorem of
Eisenstein states that for some integer N , the series F (Nz) has integer
coe�cients, save for possibly the constant term (see [15] for an interesting
discussion of this result). This says two things:

1. F (z) has p-adically bounded coe�cients for almost all primes p;
2. for those primes for which F (z) has p-adically unbounded coe�cients,

the coe�cients cannot grow too quickly in p-adic absolute value.
(We say that F (z) has p-adically unbounded coe�cients when arbitrarily
high powers of p appear in the denominators of the coe�cients.) In the
present paper, given a hypergeometric series with rational coe�cients, we
study the set of all primes for which the series has p-adically unbounded
coe�cients. We do not assume that the monodromy is �nite, although we
do impose some mild restrictions, such as irreducibility of the monodromy
representation. The discussion at the start of Section 3 gives a precise de-
scription of the conditions that we impose. See [12], [11], [9] and [10] for
earlier work on this subject. The work [10] and the references contained
therein describe how the subject of p-integrality of hypergeometric series
plays a role in the study of so-called mirror maps arising in mathematical
physics. See also [1] for a discussion of p-integrality of A-hypergeometric
series, and [21] for a related discussion of hypergeometric series with pa-
rameters taken in a quadratic extension of the rational numbers.

The basic tool that we use to study hypergeometric series is an old result
of Kummer (cf. Theorem 2.5), characterizing the p-adic valuation of binomial
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coe�cients in terms of counting p-adic carries in certain p-adic additions.
In Theorem 3.4 we employ Kummer’s result to deduce a formula for the
p-adic valuation of the coe�cients of a generalized hypergeometric series
nFn−1 with rational parameters.1 Our approach di�ers from that of [11]
and [9] in that we use binomial coe�cients to study hypergeometric series,
rather than studying arithmetic properties of the Pochhammer symbols
de�ning nFn−1 directly, as in [11] and [9]. As a result our proofs are more
combinatorial than the elegant p-adic analytic arguments of [11] and [9].

In Section 4 we specialize to the classical case of 2F1. The key result
there is Theorem 4.2, which uses our valuation formula to give a convenient
necessary and su�cient condition for 2F1 (a,b; c; z) (for generic rational
parameters a, b and c) to have p-adically unbounded coe�cients.2 Here,
generic means the fractional parts of a,b, c are admissible in the sense of
De�nition 3.1. In the remainder of the section we study the set S (a,b; c ) of all
primes for which a given hypergeometric series 2F1 (a,b; c ; z) has p-adically
unbounded coe�cients. It turns out (Proposition 4.10 and the following
discussion) that, up to a �nite discrepancy, the set S (a,b; c ) of unbounded
primes is a union of all primes in a number of arithmetic progressions. Our
results on the set S (a,b; c ) appear to be the primary new contribution of this
work. The Dirichlet density of this set is an explicitly computable quantity.
We characterize exactly when this density is zero (Theorem 4.12; compare
with Proposition 1 of [9]), and also when the density is one (Theorem 4.14).
It turns out that the density is zero (for generic parameters) precisely when
the monodromy is �nite. This result can be interpreted as a converse to
Eisenstein’s theorem, as it implies the existence of an in�nite number of
unbounded primes whenever the monodromy is in�nite3. Note that the
converse to Eisenstein’s theorem only holds for hypergeometric series with
generic parameters, as the famous example of 2F1 (

1
2 ,

1
2 ; 1; z) illustrates. At

the other end of the spectrum, we show that S (a,b; c ) contains all but �nitely
many primes precisely when c has the smallest fractional part of the three
(generic) parameters. Said di�erently, one third of all basic hypergeometric
series with rational parameters are as bad, from an arithmetic perspective,
as possible.

As was pointed out above, several of our results o�er new proofs of old

1See Lemma 1 and (6) of [9] for a similar formula.
2Compare with Lemma 2.2 of [11] and Proposition 2 of [9], which give di�erent but equivalent

necessary and su�cient conditions for p-integrality.
3The in�nitude of the number of unbounded primes in the case of in�nite monodromy was

known by Proposition 1 of [9], but we believe that this positive density result for the set of
unbounded primes is a new observation.
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results from [11] and [9]. We feel that our perspective, which traces back to
Kummer [23], one of the founding fathers of the study of hypergeometric
series, is not without independent interest. Further, the study of the struc-
ture of the set of all unbounded primes for a given rational solution of a
di�erential equation appears to be a new and interesting question. Given
that the p-adic nature of the coe�cients of hypergeometric series are gov-
erned by congruence conditions (cf. Proposition 4.10 below), which is an
apparently abelian phenomenon, it is natural to ask if there are nonabelian
analogues of these density results. More precisely, can one give an example
of a rational solution f (z) of a regular di�erential equation, along with a
corresponding nonabelian Galois number �eld K/Q, such that the Taylor
expansion of f (z) around some singular point is p-adically bounded (or
unbounded) according to whether the corresponding Frobenius conjugacy
class at p lies in some �xed subset of conjugacy classes in Gal(K/Q)? At
the moment we do not have any such examples.

Our interest in these questions comes from an old paper of Atkin–
Swinnerton-Dyer [2], which raised the question of whether nonzero non-
congruence scalar modular forms can have integer Fourier coe�cients. The
conjecture is that there will always be some unbounded primes4. Some of the
most interesting work on this unbounded denominators conjecture (UBD) is
due to Anthony Scholl [29] and Winnie Li and Ling Long together with their
collaborators and students [30], [24]. In [16] and [19], the authors showed
explicitly how to describe vector-valued modular forms of rank two for
SL2 (Z) in terms of hypergeometric series 2F1, and in [16] these series were
then used to verify the extension of the UBD conjecture to vector-valued
modular forms of rank two for SL2 (Z). Shortly after, a similar result was
proved [17] for some vector-valued modular forms of rank three, using
generalized hypergeometric series 3F2. An overview of the methods used to
prove these results is given in [18]. In these papers, only a very conservative
use of hypergeometric series was made. For example, in the case of series
with in�nite monodromy, unbounded denominators were established in [16]
by showing that there exists an arithmetic progression of primesp that occur
at least to power p−1 in the coe�cients of the given series. But it was unclear
whether the coe�cients were in fact p-adically unbounded for such primes.
The present paper gives rather complete answers to the questions raised
in the �nal sections of [16] and [26]. In particular, we prove (for generic

4Since every scalar valued modular form on a �nite index subgroup of SL2 (Z) can be expressed
as a power of the Dedekind η-function times an algebraic function of the classical j-invariant,
Eisenstein’s theorem implies there can only be �nitely many such unbounded primes if the
noncongruence subgroup is of �nite index in SL2 (Z).
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parameters) that if the SL2 (Z) representation has in�nite image, then there
is a positive density of unbounded primes (if the image is �nite, the kernel is
congruence and all primes will be p-adically bounded). In Section 5 we recall
some of these facts relating modular forms and hypergeometric series, and
we combine the results of [25] and [16] to enumerate a modular analogue
at level one of the famous Schwarz list classifying hypergeometric series
with �nite monodromy groups. Applying our results to these examples
yields an independent (and completely elementary) veri�cation that the
corresponding modular forms have bounded denominators.

More interesting is the application of our results to the UBD conjecture
for vector-valued modular forms of rank two for Γ(2). This will be a more
serious test of the UBD conjecture: there are three parameters worth of
2-dimensional Γ(2)-representations (SL2 (Z) requires only one parameter),
and almost every �nite image 2-dimensional Γ(2)-representation is non-
congruence, whereas all such 2-dimensional SL2 (Z) representations are
congruence. Richard Gottesman treats this question in his upcoming PhD
thesis [20].

Finally, we end this introduction by extending our thanks to Alan Adolph-
son for helping us to navigate the literature on p-integrality of hypergeo-
metric series and related topics.

2 Basic notions and notations
Throughout p denotes a rational prime, and Z(p ) denotes the ring of rational
numbers a

b where p does not divide b. Hence Z×
(p ) denotes the set of rational

numbers a
b such that p is coprime to both a and b. Let Zp denote the ring

of p-adic integers, which is the completion of Z(p ) for the p-adic valuation
vp normalized so that vp (p) = 1. Thus, for rational r , vp (r ) denotes the
exact power of p occurring in the prime decomposition of r . Let Qp denote
the �eld of p-adic numbers. We recall the following basic facts concerning
p-adic expansions.

Lemma 2.1. With notation as above:

1. An element x ∈ Z×
(p ) has a purely periodic p-adic expansion if and only

if x ∈ [−1, 0).

2. Let n
d ∈ Z

×
(p ) have a purely periodic p-adic expansion, of minimal period

M . Assume that gcd(n,d ) = 1. ThenM is the multiplicative order of p
in (Z/dZ)×.
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Proof. First let x = c0c1 · · · cM−1c0c1 · · · be the periodic p-adic expansion of
x . If y denotes the integer whose expanion in base p is y = c0c1 · · · cM−1,
then x =

y
1−pM . Since 0 < y ≤ pM − 1, it follows that x ∈ [−1, 0). Observe

that if x = n
d with gcd(n,d ) = 1, then this shows that d divides pM − 1, so

that the period M is at least as large as the order of p in (Z/dZ)×.
Conversely, suppose n

d ∈ Z
×
(p ) ∩ [−1, 0), with gcd(n,d ) = 1, and let M be

the order of p in (Z/dZ)×. Assume n > 0 and d < 0. Then 1 −pM = du for a
positive integer u, and thus n

d =
nu

1−pM . Observe that 0 < nu ≤ pM − 1, so
that the positive integer nu has a �nite p-adic expansion of at most M digits.
But then nu

1−pM visibly has a periodic p-adic expansion of period dividing M .
Since the order M of p modulo d was seen above to be a lower bound for
the minimal possible period, it follows that M is indeed the minimal period
of the p-adic expansion of n

d . �

If x is a real number, then let bxc denote the unique integer satisfying
bxc ≤ x < bxc + 1. Similarly de�ne the fractional part of x by {x } = x − bxc.
De�nition 2.2. If a ∈ Zp is a p-adic integer, then for each j ≥ 0 let τj (a)
denote the unique integer satisfying 0 ≤ τj (a) < p j such that τj (a) ≡ a
(mod p j ). The maps τj : Zp → Z are called truncation operators.

Lemma2.3. Letx = n
d denote a rational number with gcd(n,d ) = 1 satisfying

0 < x < 1, and let p denote a prime such that x − 1 ∈ Z×p . Let M denote the
order of p mod d , and let x − 1 = x0x1 . . . xM−1 denote the p-adic expansion of
x − 1. Then for each index 0 ≤ j < M ,

x j =
⌊{
−pM−1−jx

}
p

⌋
.

Proof. Our hypotheses on x ensure that both −x and x − 1 have periodic
p-adic expansions. Let −pM−1−jn = αd + r where 0 ≤ r < d . The p-adic
expansion of −pM−1−jx = α + 1 +

(
r
d − 1

)
is

−pM−1−jx =

M−1−j terms︷  ︸︸  ︷
00 · · · 0 (p − 1 − x0) (p − 1 − x1) · · · (p − 1 − xM−1)

Now, α + 1 is uniquely determined as that integer such that when you
subtract it from this expansion, you get a purely periodic expansion. Hence
−α − 1 = (p − 1 − x j+1) (p − 1 − x j+2) · · · (p − 1 − xM−1) and

r

d
− 1 = (p − 1 − x j+1) · · · (p − 1 − xM−1) (p − 1 − x0) · · · (p − 1 − x j ).

Observe that τM ( rd − 1) = (1 − r
d ) (p

M − 1) and hence

0 ≤
(
1 −

r

d

)
(pM − 1) − (p − 1 − x j )pM−1 ≤ pM−1 − 1.
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This is equivalent with

0 ≤
x j

pM − 1
≤

r

d
p − x j ≤

pM + x j − p

pM − 1
≤ 1.

Since
{
−pM−1−jx

}
= r

d , the proof is complete unless there is equality on the
right above. But equality can only occur if x j = p − 1 and r

dp − x j = 1, that
is, r

d = 1. Since r
d < 1, this concludes the proof. �

For x = n
d satisfying 0 < x < 1, and given a prime p, let x j (p) denote the

jth p-adic digit of x − 1. Observe that Lemma 2.3 implies that if p varies over
primes in a �xed residue class p ≡ r (mod d ), then the ratio x j (p )

p converges
to the quantity {−rM−1−jx }, which depends on the residue class r (mod d ),
but not on p. This fact will explain why if a hypergeometric series has
p-adically bounded or unbounded coe�cients for large enough primes, then
it will be similarly p-adically bounded or unbounded for all large enough
primes in a corresponding congruence class.

Lemma 2.4. Let x and y denote rational numbers satisfying 0 < x < y < 1,
and such that x −1,y−1 ∈ Z×p for a rational prime p. Let x −1 =

∑
j≥0 x j (p)p

j

denote the p-adic expansion of x − 1, and de�ne the digits yj (p) similarly. Let
D denote the least common multiple of the denominators of x and y. Then if
p > D, one has x j (p) , yj (p) for all j ≥ 0.

Proof. Observe that if p > D then both x and y satisfy the hypotheses of
Lemma 2.3. Thus, the condition x j (p) = yj (p) is equivalent with

⌊{
−pM−1−jx

}
p

⌋
=

⌊{
−pM−1−jy

}
p

⌋
. (1)

Let α
D and β

D denote the fractional parts above, and without loss of generality
take α ≤ β . Then (1) is equivalent with 0 ≤ (β − α ) < D

p . Hence if p > D

then (1) is equivalent with the simpler identity
{
−pM−1−jx

}
=

{
−pM−1−jy

}
.

But this forces pM−1−j (x − y) to be an integer, contradicting the fact that p
is coprime to D. Thus, if p > D then x j (p) , yj (p). �

If a and b are p-adic numbers, then let cp (a,b) denote the number of
p-adic carries that are required to evaluate the sum a + b. Hence cp de�nes
a map cp : Q2

p → N ∪ {∞}. Recall that the binomial polynomials(
x + n

n

)
=

(x + 1) (x + 2) · · · (x + n)
n!

de�ne continuous functions on Zp that vanish only at −n,−n + 1, . . . ,−1.

7



Theorem 2.5 (Kummer). Let x ∈ Zp and n ∈ Z≥0. Then vp
(
x+n
n

)
= cp (x ,n).

Proof. This was proved by Kummer in [23] when x ∈ Z≥0. A uniform proof
that handles all p-adic integers can be given, but we will show that the result
for integral x extends to p-adic integers by continuity.

Since each polynomial
(
x+n
n

)
for n ∈ Z≥0 is continuous on Zp , and vp

is continuous on Q×p , the left side of the claimed equality is continuous on
Zp \ {−n,−n + 1, . . . ,−1}.

We claim that cp (x ,n) = ∞ if and only if x ∈ {−n,−n + 1, . . . ,−1}. First,
if x ∈ {−n,−n+ 1, . . . ,−1} then the p-adic expansion of x contains in�nitely
many nonzero digits. On the other hand, x + n is an integer such that
x + n ≥ 0, so that it has a �nite p-adic expansion (similarly for n). This
implies that an in�nite number of carries had to occur to evaluate x + n,
meaning cp (x ,n) = ∞ as claimed.

On the other hand, suppose that cp (x ,n) = ∞. Since n has a �nite p-adic
expansion, the only way this can occur is if eventually the p-adic expansion
of x is p − 1 repeated in�nitely often. That is, x = y − pN for some integer
0 ≤ y < pN and N ≥ 1. In particular, x is a strictly negative integer. Now
the condition that cp (x ,n) = ∞ is equivalent to y + n ≥ pN , hence x ≥ −n.

This veri�es that cp (x ,n) takes �nite values on Zp \ {−n,−n+ 1, . . . ,−1}.
It is easily seen to be continuous there, since if cp (x ,n) < ∞, then the
evaluation of x + n will not involve carries beyond a digit corresponding
to some large power pN . But then cp (x + αp

N+1,n) = cp (x ,n) for α ∈ Zp
shows that cp (x ,n) is p-adically continuous (in fact locally constant) on
Zp \ {−n,−n + 1 . . . ,−1}. Hence Kummer’s theorem extends to x ∈ Zp by
continuity. �

Remark 2.6. Kummer’s Theorem 2.5 does not extend to x ∈ Qp . For ex-
ample, if n ∈ Z≥0 then cp (

1
p ,n) = 0, while vp

( 1
p +n
n

)
= −n − vp (n!) < 0.

This observation is what prevents us from handling primes that divide the
denominators of hypergeometric parameters in a uniform manner with all
other primes.

3 Hypergeometric series
Recall that for integers n ≥ 1, the generalized hypergeometric series nFn−1 is
de�ned by the formula

nFn−1 (α1, . . . ,αn ; β1, . . . , βn−1; z) =
∑
m≥0

∏n
j=1 (α j )m∏n−1
k=1 (βk )m

zm

m!
.
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Here (a)m denotes the Pochhammer symbol de�ned by

(a)m =



1 m = 0,
a(a + 1) · · · (a +m − 1) m ≥ 1.

Let Am denote themth coe�cient of nFn−1 (α j ; βk ; z). Observe that each Am
is a rational number provided that the hypergeometric parameters α j and
βk are rational. In this note we only consider rational parameters.

Hypergeometric series are solutions of Fuchsian di�erential equations.
We restrict here to series with rational coe�cients, so we require the param-
eters α j , βk to be rational. If α j − βk ∈ Z for some indices j and k , then the
corresponding monodromy representation is reducible (Proposition 2.7 of
[5]). If some α j lies in Z<0, then nFn−1 (α j ; βk ; z) is a polynomial. Obviously
no βk can lie in Z<0 for nFn−1 to be well-de�ned, and if βk ∈ Z≥0 then the
monodromy around 0 will have repeated eigenvalues. Finally, provided none
of α j , βk ,α j − βk are integers, it can be shown that the series nFn−1 (α j ; βk ; z)
is p-adically bounded i� nFn−1 (α j +mj ; βk + nk ; z) is, for any mj ,nk ∈ Z
(the proof for 2F1 is given in Lemma 4.1; the proof for general nFn−1 is
given in [4]). Moreover, if the monodromy is irreducible, then shifting the
hypergeometric parameters by integers also does not a�ect the monodromy
(Corollary 2.6 of [5]). Thus we arrive at the following de�nition:

De�nition 3.1. Rational hypergeometric parameters (α1, . . . ,αn ; β1, . . . , βn−1)
are said to be admissible provided that the following two conditions are
satis�ed:

1. 0 < α j , βk < 1 for all j and k ;

2. α j , βk for all j and k .

De�nition 3.2. Let (α1, . . . ,αn ; β1, . . . , βn−1) denote rational hypergeometric
parameters. A rational prime p is good for these parameters provided that
vp (α j − 1) = vp (βk − 1) = 0 for all j and k .

Note that for �xed parameters, all but �nitely many primes are good.
For almost all choices of rationals α j , βk , the fractional parts ({α j }, {βk }) are
admissible and have the identical list of bounded primes as (α j , βk ).

De�nition 3.3. Let (α1, . . . ,αn ; β1, . . . , βn−1) denote rational hypergeometric
parameters, and assume that p is a good prime. The associated period is the
least common multiple of the multiplicative order of p modulo the various
(reduced) denominators of the quantities α j − 1 and βk − 1.

Good primes associated with admissible parameters are precisely the
primes such that the quantities α j − 1 and βk − 1 have purely periodic p-adic
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expansions. The corresponding period is then nothing but the least common
multiple of the various periods of these expansions.

Theorem 3.4. Let (α1, . . . ,αn ; β1, . . . , βn−1) denote rational hypergeometric
parameters, and let p denote a prime such thatvp (α j −1) ≥ 0 andvp (βk −1) ≥
0 for all j and k . Then if Am denotes themth coe�cient of nFn−1 (α j ; βk ; z),

vp (Am ) =
n∑
j=1

cp (α j − 1,m) −
n−1∑
k=1

cp (βk − 1,m). (2)

Further, assume that the parameters (α1, . . . ,αn ; β1, . . . , βn−1) are admissible,
assume that p is a good prime for this data, and letM denote the corresponding
period. Then

vp (AmpM ) = vp (Am ) (3)

for allm ∈ Z≥0.

Proof. First observe that

Am =

∏n
j=1 (α j )m∏n−1
k=1 (βk )m

1
m!
=

∏n
j=1

(
α j−1+m

m

)
∏n−1

k=1

(
βk−1+m

m

)
Thus (2) follows immediately from Theorem 2.5.

For the next claim, observe that since we have assumed that p is good,
each ofα j−1 and βk−1 has a periodicp-adic expansions of period dividingM ,
by Lemma 2.1. Hence cp (α j −1,mpM ) = cp (α j −1,m) and cp (βk −1,mpM ) =
cp (βk − 1,m), and thus (3) follows from (2). �

Remark 3.5. A formula equivalent to (2) can be found in [9] (see particu-
larly Lemma 1 and lined equation (6) of loc cit). The proof in [9] analyzes
Pochhammer symbols directly, as opposed to our use of binomial coe�cients
and Kummer’s classical Theorem 2.5. We believe that equation (3), which
we think of as a sort of periodicity result for the valuations, is a new result.

Remark 3.6. It follows immediately from Theorem 3.4 that under the hy-
potheses of that theorem,

−(n − 1) logp (m) ≤ vp (Am ) ≤ n logp (m).

Example 3.7. Consider the hypergeometric series 2F1 (
1
2 ,

1
2 ; 1; z) that arises in

the study of the monodromy of the Legendre family of elliptic curves. Theo-
rem 2.5 immediately implies the well-known fact thatvp (Am ) = 2cp (− 1

2 ,m) ≥
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0 for all odd primes p. This is an example of a solution of a di�erential equa-
tion with an in�nite monodromy group, but for which there is a a unique
prime such that the coe�cients of 2F1 (

1
2 ,

1
2 ; 1; z) are p-adically unbounded

(obviously p = 2 is the bad prime). This does not contradict Theorem 4.12
below, as the parameters ( 12 ,

1
2 ; 1) are not admissible.

Proposition 3.8. Let (α1, . . . ,αn ; β1, . . . , βn−1) denote admissible parame-
ters, and let p denote a corresponding good prime. Then

sup
m

vp (Am ) = ∞.

In particular, for any given set of admissible hypergeometric parameters, we
have supm vp (Am ) = ∞ for all but �nitely many primes p.

Proof. Let a be any nonzero p-adic integer with a purely periodic expansion
of period M , and let Nr = p

Mr −pM (r−1) − · · · −pM − 1 be the integer whose
p-adic expansion is M copies of (p − 1), and then this is followed by r − 1
segments of the form (p − 2) (p − 1) · · · (p − 1). Some digit in each segment
of size M of the coe�cients of a is nonzero. In fact, the �rst such digit is
indexed by vp (a). Since there are no carries before this digit, the number of
carries from computing a+Nr in the �rst segment of sizeM isM−vp (a), and
similarly for every other segment. Thus cp (a,Nr ) = (M −vp (a))r . Taking a
to be each of α j − 1 and βk − 1, it follows by Theorem 3.4 that

vp (ANr ) =
*.
,
M −

n∑
j=1

vp (α j − 1) +
n−1∑
k=1

vp (βk − 1)
+/
-
r = Mr ,

where the last equality uses the assumption that p is a good prime. Thus
vp (ANr ) is unbounded, which proves the Proposition. �

Remark 3.9. The proof of Proposition 3.8 shows that under those hypotheses,
the sequence vp (Am ) has a subsequence that diverges like logp (m).

4 The case of 2F1

We are more interested in characterising when infm vp (Am ) = −∞, that is,
when nFn−1 has p-adically unbounded coe�cients. It will be convenient to
specialize to the case n = 2. First we show, using an argument that goes
back to Gauss, that there is no loss in generality when considering only
admissible parameters.
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Lemma 4.1. Let (a,b; c ) and (r , s ; t ) denote two sets of rational hypergeomet-
ric parameters, and assume that

(i) none of a, b, c , a − c or b − c is an integer;

(ii) a − r , b − s and c − t are all integers.

Then for each prime p, the series 2F1 (a,b; c; z) has p-adically unbounded
coe�cients if and only if the same is true for 2F1 (r , s; t ; z).

Proof. Let θ = z d
dz . Then one easily veri�es the following identities, which

go back to Gauss (see section I.1 of [27]):

2F1 (a + 1,b; c; z) =
(
1 +

1
a
θ
)
2F1 (a,b; c; z),

2F1 (a − 1,b; c; z) =
(
(1 − z) −

(a + b − c )z

c − a
+
1 − z
c − a

θ

)
2F1 (a,b; c; z),

2F1 (a,b; c + 1; z) =
(
(a + b − c )c

(c − a) (c − b)
+

(1 − z)c
(c − a) (c − b)

d

dz

)
2F1 (a,b; c; z),

2F1 (a,b; c − 1; z) =
(
1 +

1
c − 1

θ
)
2F1 (a,b; c; z).

From this one sees that the claim holds if (r , s; t ) = (a ± 1,b; c ) or (r , s; t ) =
(a,b; c ± 1). The general case then follows by symmetry and repeated
application of the cases already treated. �

Next we establish a necesary and su�cient condition for a hypergeo-
metric series to have p-adically unbounded coe�cients for all good primes
p. Recall that if x is a p-adic integer, then τj (x ) denotes the truncation of x
mod p j .

Theorem 4.2. Let (a,b; c ) denote admissible hypergeometric parameters, and
let p denote a good prime. Then the following are equivalent:

(i) for some index j , we have τj (c − 1) > τj (a − 1) and τj (c − 1) > τj (b − 1);

(ii) 2F1 (a,b; c; z) has p-adically unbounded coe�cients.

For good primes p, if the coe�cients of 2F1 (a,b; c; z) are p-adically bounded,
then they are in fact p-adic integers.

Proof. Let aj , bj and c j denote the digits in the p-adic expansions of a − 1,
b − 1 and c − 1, respectively. First assume that (i) holds, and let j denote the
smallest index such that τj (c − 1) > τj (a − 1),τj (b − 1). By minimality of j
we can’t have c j−1 = aj−1 = bj−1. Without loss of generality we may assume
that one of the following two conditions holds:
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(a) c j−1 > aj−1 and c j−1 > bj−1;
(b) c j−1 = aj−1 but c j−1 > bj−1.

We will de�ne two di�erent subsequencesmr , one for each case, such that
vp (Amr ) diverges to −∞.

In case (a), letmr =
∑r

s=0 (p − c j−1)p
Ms+j−1 where M is the period of the

data (a,b; c ) and p. Observe that c j−1 is nonzero, since it is strictly larger
than aj−1, say. Hence the expression de�ningmr is its p-adic expansion. We
have cp (c − 1,mr ) ≥ r + 1 while cp (a − 1,mr ) = cp (b − 1,mr ) = 0. Thus by
Theorem 3.4 we have vp (Amr ) ≤ −r − 1, which shows that the coe�cients
Am are p-adically unbounded in case (a).

In case (b), since c j−1 = aj−1 while τj (c − 1) > τj (a − 1), there exists a
string of digits where ci−1 = ai−1 for i in some range k < i ≤ j, but then
ck−1 > ak−1. Let

mr =

r∑
s=0

*
,
(p − ck−1)p

k−1 +

j−1∑
i=k

(p − ci − 1)pi+
-
pMs .

Again, in this case ck−1 > ak−1 ≥ 0, which shows that ck−1 is nonzero and
the expression de�ningmr is its p-adic expansion. Clearly cp (c − 1,nr ) ≥
(r + 1) (j − k ) and cp (a − 1,mr ) = 0. Similarly, since c j−1 > bj−1, there
can be no carry at the jth digit when evaluating b − 1 + mr , and thus
cp (b − 1,mr ) ≤ (r + 1) (j − k − 1). Hence by Theorem 3.4 we have

vp (Amr ) ≤ (r + 1) (j − k − 1) − (r + 1) (j − k ) = −r − 1.

This shows that in case (b), the coe�cients Am are p-adically unbounded.
Conversely, assume that (i) does not hold. That is, assume that for every

index j, we have

τj (c − 1) ≤ max(τj (a − 1),τj (b − 1)).

We will show that if τj (c − 1) ≤ τj (a − 1), and if there is a p-adic carry at the
jth digit when evaluating (c − 1) +m, then there is also a carry at the jth
digit when evaluating (a − 1) +m. If τj (c − 1) = τj (a − 1), this is obvious.

We may thus assume that τj (c − 1) < τj (a − 1). It follows that there is
an index 0 ≤ s ≤ j − 1 such that cs < as but ck = ak for s < k ≤ j − 1 (if any
such indices k exist). Letm =m0m1 · · · . Since there is a carry at digit j in
(c − 1) +m, there are two possibilities:

(a) mj−1 ≥ (p − c j−1) and the carry did not rely on an earlier carry;
(b) mj−1 = (p − c j−1 − 1) and the carry only occured because it was

preceded by an earlier carry.
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Ifmj−1 ≥ (p − c j−1), then there is clearly also a carry at digit j in (a − 1) +m.
So it remain to treat case (b).

Suppose thatmj−1 = (p−c j−1−1), so that the j carry in (c−1)+m implies
that there is an earlier carry. If the earlier carries do not extend back past
digit s , there is somemk in that range such that ck , 0 andmk ≥ (p − ck ).
But then in this range ak ≥ ck and there must alo be a sequence of carries
in (a − 1) +m from the kth digit up to the jth, forcing a carry at digit j as
claimed. If the earlier carries in (c − 1) +m go even further to the left, past
digit s , then we still win since as > cs . Hence even ifms = (p −cs − 1), there
is a carry at digit s in (a − 1) +m, and this will then force a sequence of
carries up to the jth digit.

This veri�es the claim that if τj (c − 1) ≤ τj (a − 1) and there is a carry at
digit j in (c − 1) +m, then there is also a carry at digit j in (a − 1) +m. By
symmetry we see that necessarily cp (c−1,m) ≤ cp (a−1,m)+cp (b−1,m) for
all integersm ≥ 0. Hence vp (Am ) ≥ 0 by Theorem 3.4, and this concludes
the proof of the Theorem. �

Remark 4.3. In Lemma 2.2 of [11] and Proposition 2 of [9] one �nds di�erent
necessary and su�cient conditions for a hypergeometric series to be p-
adically unbounded.

Remark 4.4. The proof of Theorem 4.2 shows that under those hypotheses, if
the coe�cients of 2F1 are p-adically unbounded, then the sequence vp (Am )
has a subsequence that diverges to −∞ at least as quickly as 1

M logp (m).

Remark 4.5. Ifp is larger than the least common multiple of the denominators
of a, b and c , then it su�ces, by Lemma 2.3, to compare the p-adic digits of
a − 1, b − 1 and c − 1 in Theorem 4.2, rather than their truncations.

Remark 4.6. Theorem 4.2 omits consideration of the �nite number of primes
that are not good for a given set of parameters. Recall that this means that
for at least one of the parameters x , either vp (x − 1) > 0 orvp (x − 1) < 0. In
the �rst case, we can write x − 1 = pre for some other rational number e in
(−1, 0) that is coprime to p, and which thus has a periodic p-adic expansion.
In this case x − 1 has an expansion beginning with r zeros, and then it
becomes periodic. Theorem 2.5 can still be used to analyze such primes as
in our proof of Theorem 4.2. The case where vp (x − 1) < 0 is even easier,
as then one can write x = p−r nd for some r ≥ 1 and n,d ∈ Z coprime to p.
Thus

(x )m = p
−rmd−mn(n + prd ) (n + 2prd ) · · · (n + (m − 1)prd ),

andvp ((x )m ) = −rm. However, since there are three parameters to consider,
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and it becomes cumbersome to formulate a de�nitive result for all cases
that arise, we opted to state Theorem 4.2 only for good primes.

Example 4.7. Consider the admissible parameters a = 1/6, b = 5/6 and
c = 1/5. They correspond to a hypergeometric equation with a �nite
monodromy group, and hence there should be only �nitely many primes p
such that 2F1

(
1
6 ,

5
6 ;

1
5 ; z

)
has p-adically unbounded coe�cients.

Let p ≥ 7 be a prime. Then by Lemma 2.3,

a − 1 = −
5
6
=




( 5p−5
6

)
p ≡ 1 (mod 6),(p−5

6

) ( 5p−1
6

)
p ≡ 5 (mod 6),

b − 1 = −
1
6
=




(p−1
6

)
p ≡ 1 (mod 6),( 5p−1

6

) (p−5
6

)
p ≡ 5 (mod 6),

c − 1 = −
4
5
=




( 4p−4
5

)
p ≡ 1 (mod 5),(p−4

5

) ( 4p−1
5

)
p ≡ 4 (mod 5),( 2p−4

5

) (p−2
5

) ( 3p−1
5

) ( 4p−3
5

)
p ≡ 2 (mod 5),( 3p−4

5

) (p−3
5

) ( 2p−1
5

) ( 4p−2
5

)
p ≡ 3 (mod 5).

There are thus eight cases to consider, and it is straightforward to use
Theorem 4.2 to check that 2F1 (

1
6 ,

5
6 ;

1
5 ; z) is p-integral in each of them. For

example, suppose that p ≡ 7 (mod 30). We see that a − 1 and b − 1 are both
1-periodic and max{τj (a− 1),τj (b − 1)} = τj (a− 1) for all j . As long as p > 7,
then 5p−5

6 is larger than each p-adic digit of c − 1, and hence 2F1 (
1
6 ,

5
6 ;

1
5 ; z)

is p-integral for such primes. If p = 7 then we have

a − 1 = 5555, b − 1 = 1111, c − 1 = 2145.

In this case we still have 7-integrality since, in terms of 7-adic expansions,
2 ≤ 5, 21 ≤ 55, 214 ≤ 555 and 2145 ≤ 5555. Hence if p ≡ 7 (mod 30),
then 2F1 (

1
6 ,

5
6 ;

1
5 ; z) is p-integral, as was claimed. The other seven cases are

similar.

Example 4.8. Next consider a = 1
5 , b = 1

3 and c = 1
2 . As above, there are
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eight cases. If p ≥ 7 is prime then

a − 1 = −
4
5
=




( 4p−4
5

)
p ≡ 1 (mod 5),(p−4

5

) ( 4p−1
5

)
p ≡ 4 (mod 5),( 2p−4

5

) (p−2
5

) ( 3p−1
5

) ( 4p−3
5

)
p ≡ 2 (mod 5),( 3p−4

5

) (p−3
5

) ( 2p−1
5

) ( 4p−2
5

)
p ≡ 3 (mod 5),

b − 1 = −
2
3
=




( 2p−2
3

)
p ≡ 1 (mod 3),(p−2

3

) ( 2p−1
3

)
p ≡ 2 (mod 3),

c − 1 = −
1
2
=

(p − 1
2

)
.

It is straightforward to check that for prime p ≥ 7, the coe�cients of
2F1 (

1
5 ,

1
3 ;

1
2 ; z) arep-adically unbounded if and only ifp ≡ 2, 8 or 14 (mod 15).

For the remaining primes p ≥ 7, the coe�cients are in fact p-integral.
Thus, the set of primes such that 2F1 (

1
5 ,

1
3 ;

1
2 ; z) has p-adically unbounded

coe�cients has a Dirichlet density of 3
8 .

De�nition 4.9. Let (a,b; c ) denote rational hypergeometric parameters such
that c is not a negative integer. Then let S (a,b; c ) denote the set of primes p
such that 2F1 (a,b; c; z) has p-adically unbounded coe�cients.

As an application of Theorem 4.2, we show that the set S (a,b; c ) of
unbounded primes for some admissible 2F1 always has a Dirichlet density.

Proposition 4.10. Let (a,b; c ) denote admissible hypergeometric parameters,
and let D denote the least common multiple of the denominators of a, b and c .
If p > D is a good prime that satis�es p ∈ S (a,b; c ), then for all primes q ≥ p
such that q ≡ p (mod D), necessarily q ∈ S (a,b; c ) too. Thus S (a,b; c ) has a
Dirichlet density of the form α

ϕ (D ) for an integer α satisfying 0 ≤ α ≤ ϕ (D),
where ϕ (D) denotes Euler’s ϕ-function.

Proof. Let aj (p) denote the jth p-adic digit of a − 1, and de�ne bj (p) and
c j (p) similarly. Then by Lemma 2.4, if p > D we have aj (p) , c j (p) and
bj (p) , c j (p) for all j. Hence by Theorem 4.2, to determine whether such
a prime lies in S (a,b; c ), we need only determine whether there exists an
index j such that c j (p) > aj (p) and c j (p) > bj (p). If M is the period of this
data, then by periodicity of the p-adic expansions, we can concentrate on
those j in the range 0 ≤ j < M .

Let p > D be a good prime such that c j (p) > aj (p) for some index
0 ≤ j < M . By Lemma 2.3, this is equivalent with

⌊{
−pM−1−jc

}
p

⌋
>

⌊{
−pM−1−ja

}
p

⌋
. (4)
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Let q = p + tD denote another prime, where t is a positive integer. Then the
condition that c j (q) > aj (q) is equivalent with

⌊{
−pM−1−jc

}
p

⌋
+

{
−pM−1−jc

}
tD >

⌊{
−pM−1−ja

}
p

⌋
+

{
−pM−1−ja

}
tD.

But this inequality is implied by (4). Hence if c j (p) > aj (p), then c j (q) >
aj (q) for all primes q ≥ p such that q ≡ p (mod D). Since the same argu-
ment holds with a replaced by b, this concludes the proof of the Proposi-
tion. �

Remark 4.11. There exists a simple algorithm for computing the Dirichlet
density of S (a,b; c ) for any admissible parameters. One can simply use
Theorem 4.2 to check primes p > D lying in the ϕ (D) possible congruence
classes mod D. Once a prime is found such that 2F1 (a,b; c ; z) has unbounded
p-adic coe�cients, then the rest of the primes q ≥ p in the arithmetic
progression q ≡ p (mod D) are contained in S (a,b; c ) by Proposition 4.10.
Lemma 2.3 can be used to provide a stopping criterion to determine if
a congruence class has �nite intersection with S (a,b; c ). For example, if
x ∈ (0, 1) is rational, and x − 1 ∈ Z×p , then by Lemma 2.3, the jth p-adic digit
x j (p) of x − 1 satis�es

{−pM−1−jx } −
1
p
<

x j (p)

p
< {−pM−1−jx }.

Observe that the fractional part above only depends on p modulo the de-
nominator of x . By the proof of Lemma 2.4 and since p > D, if we consider
the corresponding fractional parts with x = a,b, c , then they are distinct.
By periodicity of the p-adic expanions of a − 1, b − 1 and c − 1 for admissi-
ble parameters, we need only check a �nite number of coe�cients using
Theorem 4.2. Hence if p is large enough to ensure that

1
p
< min

0≤j<M

*..
,

min
x,y∈{a,b,c }

x,y

���{−p
M−1−jx } − {−pM−1−jy}���

+//
-
,

then it su�ces to test whether p ∈ S (a,b, c ) for such a prime. If p ∈ S (a,b, c ),
then all primesq ≥ p satisfyingq ≡ p (mod D) will be contained in S (a,b; c ).
Otherwise, S (a,b; c ) has �nite intersection with this congruence class.

Theorem 4.12. Let (a,b; c ) denote admissible hypergeometric parameters.
Let D denote the least common multiple of the denominators of a, b and c .
Then the following are equivalent:

17



(i) the monodromy group of the corresponding hypergeometric di�erential
equation is �nite;

(ii) the set S (a,b; c ) is �nite;

(iii) for every integer u coprime to D, the fractional parts {ua}, {ub} and {uc}
are such that {uc} lies between {ua} and {ub}.

Proof. For the equivalence of (i) and (iii), see Theorem 4.8 in [5]. It is well-
known that (i) implies (ii), say by Eisenstein’s theorem (see [15] for an
interesting discussion of this result). To complete the proof we will show
that (ii) implies (iii).

Thus assume that (ii) holds. Let aj (p) denote the p-adic digits of a − 1,
and de�nte bj (p) and c j (p) similarly. By Theorem 4.2 and Lemma 2.4 there
exists a �nite set of primes S with the property that for each prime p < S , and
for every index j, one has either c j (p) < aj (p) or c j (p) < bj (p). By Lemma
2.3 we have either

⌊
{−pM−1−jc}p

⌋
<

⌊
{−pM−1−ja}p

⌋
or

⌊
{−pM−1−jc}p

⌋
<⌊

{−pM−1−jb}p
⌋

for each index j.
Since {ua} only takes values of the form α

D , and similarly with a replaced
byb and c , we see that for all but �nitely many primes, in fact for each j either
{−pM−1−jc} < {−pM−1−ja} or {−pM−1−jc} < {−pM−1−jb}. By varying p and
j we obtain that for every u coprime to D, where D is the least common
multiple of the denominators of a, b and c , that either {uc} < {ua} or
{uc} < {ub} (here we have used Dirichlet’s theorem on primes in arithmetic
progressions).

Suppose that {uc} < {ua} and {uc} < {ub} for some integer u coprime
to D. Write Duc = xcD + rc , Dub = xbD + rb and Dua = xaD + ra , where
the remainders r satisfy 0 < r < D. Then rc

D <
ra
D and rc

D <
rb
D . But then

observe that

−Duc = −xcD − rc = (1 − xc )D + (D − rc ),

and similarly for −Dua and −Dub. Then it follows that {−uc} > {−ua} and
{−uc} > {−ub}, a contradiction. Hence it must be the case that for every
integer u coprime to the denominators, {uc} lies between {ua} and {ub}, as
claimed. �

Remark 4.13. Proposition 1 of [9] also gives a characterization of when
S (a,b; c ) is a �nite set that is applicable to nFn−1. What appears to be new
above is that if S (a,b; c ) is not �nite, then it has a Dirichlet density of at
least 1/D, where D is the least common multiple of the denominators of a,
b and c .
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Theorem 4.14. Let (a,b; c ) denote admissible hypergeometric parameters,
and let D denote the least common multiple of the denominators of a, b and c .
Then the following are equivalent:

(i) c is the smallest of the three parameters;

(ii) S (a,b; c ) contains all but �nitely many primes;

(iii) S (a,b; c ) contains in�nitely many primes p such that p ≡ 1 (mod D).

In particular, one third of all hypergeometric series with admissible parameters
have the property that their coe�cients are p-adically unbounded for one-
hundred percent of all primes.

Proof. First suppose that c < a and c < b. Let M denote the period of this
data, and let aj (p), bj (p) and c j (p) denote the p-adic digits of a − 1, b − 1
and c − 1, respectively. Then by Lemma 2.3 we have aM−1 (p) = p +

⌊
−pa

⌋
,

bM−1 (p) = p +
⌊
−pb

⌋
and cM−1 (p) = p +

⌊
−pc

⌋
. Since c < a and c < b, if

p > max( 1
a−c ,

1
b−c ) we have −a + 1

p < −c and −b + 1
p < −c . But this implies

that aM−1 (p) < cM−1 (p) and bM−1 (p) < cM−1 (p), and hence p ∈ S (a,b;p) by
Theorem 4.2. Thus, if c is the smallest of the three parameters, then S (a,b; c )
contains every prime p satisfying p > max( 1

a−c ,
1

b−c ). That is, (i) implies (ii).
That (ii) implies (iii) is obvious.

Finally suppose that S (a,b; c ) contains in�nitely many primes p of the
form p ≡ 1 (mod D). For such primes we have M = 1 by Lemma 2.1, and
thus by Theorem 4.2 and Lemma 2.3 there exists a prime p ≡ 1 (mod D)
such that {−c} > {−a} and {−c} > {−b}. Hence c < a and c < b, which
shows that (iii) implies (i). �

Remark 4.15. We have focused on the set S (a,b; c ) of unbounded primes
for a given hypergeometric series due to our interest in the question of
unbounded denominators of noncongruence modular forms. However it
seems that the set of bounded primes has more structure than the set of
unbounded primes. To explain, let D denote the least common multiple
of the denominators of a, b and c , and let B ⊆ (Z/DZ)× denote the subset
of congruence classes that each contain in�nitely many bounded primes
for 2F1 (a,b; c ). Then using the proof of Proposition 4.10, Theorem 4.2 and
especially Lemma 2.3, it is easy to see that B is a possibly empty union of
cyclic subgroups of (Z/DZ)×. Simple examples show that B need not be a
subgroup. Nevertheless, it is a relatively well-structured set, and since the
class of 1 mod D is contained in every cyclic subgroup, this observation
gives a more conceptual explanation for condition (iii) of Theorem 4.14.
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5 Hypergeometric series andmodular forms
Let Γ ⊆ SL2 (R) denote a Fuchsian group, letY denote the curve Γ\H , and let
Y ′ denoteY with all elliptic points removed. If the image of Γ in PSL2 (R) can
be generated by two elements, then Y ′ can be identi�ed with P1 \ {0, 1,∞}.
Let u (τ ) : H ′ → Y ′ denote a uniformizing map realizing this isomorphism,
whereH ′ denotesH deprived of its elliptic points for Γ. This uniformization
identi�es the image of Γ in PSL2 (R) with the orbifold fundamental group
of Y . This group is in general a quotient of the fundamental group of
the Riemann surface Y ′. Solutions to Fuchsian di�erential equations on
Y ′ can be pulled back via u (τ ) to vector-valued modular forms (of weight
0) of Γ onH that transform according to the monodromy representation
ρ of the fundamental group of Y ′, provided that ρ factors through the
orbifold fundamental group of Y . That is, they are vector-valued functions
F : H → Cd , meromorphic at the cusps and elliptic points and holomorphic
elsewhere, that satisfy a transformation law

F (γτ )=ρ (γ )F (τ )

for all τ∈H and γ∈Γ. This relation of vector-valued modular forms and
Fuchsian di�erential equations on P1 goes back at least to [3].

A natural case to consider is the group Γ(2), whose image in PSL2 (R)
is free on two generators. Vector-valued modular forms for Γ(2) thus de-
scribe all solutions of Fuchsian equations on P1 \ {0, 1,∞}. If λ(τ ) denotes
a uniformizing map taking the cusps 0, 1 and ∞ of Γ(2) to 0, 1 and ∞ in
P1, respectively, then for each hypergeometric series nFn−1 (αi ; βj ; z) that
we’ve been considering, the function nFn−1 (αi ; βj ; λ(τ )) is a component of
a vector-valued modular form for some n-dimensional representation ρ of
Γ(2). Conversely, all (weakly-holomorphic) vector-valued modular forms
for Γ(2) of weight 0 can be expressed in the form F (λ(τ )) where F (z) is a
vector whose entries form a basis of solutions of a Fuchsian di�erential equa-
tion on P1. In general the function F (z) need not arise from a generalized
hypergeometric di�erential equation.

These observations connect the question of unbounded denominators
of Taylor coe�cients of solutions of di�erential equations with the question
of unbounded denominators of Fourier coe�cients of modular forms. Note,
though, that F (z) and F (λ(τ )) need not have the exact same set of primes p
such that their coe�cients are p-adically bounded. The di�erence between
these two sets of primes is a �nite set. For example, a common occurrence
is for the modular form F (λ(τ )) to have integer coe�cients, say due to it
being a congruence modular form, whereas F (z) could have a �nite number
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of unbounded primes occurring in its coe�cients that are cancelled upon
substituting in the uniformizing map λ(τ ). Richard Gottesman treats the
question of unbounded denominators for vector-valued modular forms of
rank 2 on Γ(2) in his upcoming PhD thesis [20], using the ideas discussed
above.

In [16], Franc-Mason studied the somewhat simpler case of SL2 (Z).
Although SL2 (Z) has two generators, it is not free on two generators, and so
not all solutions of Fuchsian equations can be described in terms of vector-
valued modular forms for SL2 (Z). Conversely, [16],[19] observed that all
holomorphic modular forms for SL2 (Z) of rank two can be described in terms
of solutions of hypergeometric di�erential equations. That is, one need not
consider more general Fuchsian equations on P1 \ {0, 1,∞} of rank two5.
The case of SL2 (Z) is simpli�ed further by the work of Mason in [25], which
shows that all �nite image representations ρ of SL2 (Z) are such that ker ρ
is a congruence subgroup. Thus, the question of unbounded denominators
amounts to proving in this case that when the image of ρ is not �nite, then
the corresponding modular forms have unbounded denominators in a strong
sense: if ρ has in�nite image, then there should be in�nitely many primes
appearing in the denominators of modular forms for ρ. The paper [16] made
very modest use of hypergeometric series to prove this assertion. Essentially
[16] showed that for such a representation ρ, there exists a modular form
for ρ and an arithmetic progression of primes p such that p appears at least
to power p−1 in the coe�cients of the modular form. Using this, unbounded
denominators were then established for all modular forms associated with
ρ. By Theorem 4.12 above, we now know that in the in�nite image case,
not only does p appear at least once in some denominator, but in fact there
must exist a positive density of primes p such that a given modular form for
ρ has p-adically unbounded Fourier coe�cients.

In the remainder of this section we collect data and facts from [25] and
[16] to describe a modular Schwartz list for SL2 (Z). That is, we describe
all �nite-image irreducible representations of SL2 (Z) of rank two, as well
as the corresponding modular forms and hypegeometric series. Note that
unlike the classical Schwartz list, which is in�nite due to a proliferation of
dihedral representations, this modular Schwarz list at level one is in fact
�nite, and it includes only congruence representations.

Let ρ : SL2 (Z) → GL2 (C) be an irreducible, 2-dimensional represen-
tation of SL2 (Z) with �nite image and let F (τ ) be a nonzero holomor-
phic vector-valued modular form of least integral weight k0 for ρ. Thus

5Of course, the study of such equations can be reduced to the study of hypergeometric
equations, as was known to Riemann.
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F : H → C2 is holomorphic and satis�es

F (γτ ) = (cτ + d )k0ρ (γ )F (τ ) for all γ =

(
a b
c d

)
∈ SL2 (Z).

Unless k0=0, this modular form is a section of a projectively �at holomorphic
vector bundle that is not �at. Since the square η2 of Dedekind’s η-function
transforms under SL2 (Z) via a character χ , and since it is nonvanishing
in H , we can set F̂ (τ ) = F (τ )/η2k0 to shift F to weight zero, but at the
expense of changing the representation ρ to ρ̂ = ρ ⊗ χ−k0 . This adjusted
function is naturally a global section of a holomorphic connection with
a regular singularity at the cusp of SL2 (Z), and so it thus satis�es an or-
dinary di�erential equation. More precisely, the paper [16] showed that
the component functions of F̂ (τ ) are a pair of fundamental solutions of a
hypergeometric di�erential equation which has ρ̂ as its monodromy repre-
sentation. In particular, the components of F (τ ) may be expressed in terms
of hypergeometric series evaluated at a certain level one hauptmodul as
follows:

f1 (τ ):=η2k0 (τ )j−a (τ )2F1 (a, 1+a−c; 1+a−b; J−1) (5)
f2 (τ ):=η2k0 (τ )j−b (τ )2F1 (b, 1+b−c; 1+b−a; J−1)

for certain constants a,b, c (see below), and where q:=e2πiτ and

j (τ ):=
E34 (τ )−E

2
6 (τ )

∆(τ )
, J (τ ):=

j (τ )

1728
, η(τ ):=q1/24

∞∏
n=1

(1 − qn ).

Note that these expressions depend on a choice of basis for ρ. In particular,
since ρ is of �nite image and irreducible, the matrix ρ (T ) (where T =

( 1 1
0 1

)
)

has distinct roots of unity as eigenvalues, and so we diagonalize it as

ρ (T ) =

(
e2πim1 0

0 e2πim2

)
for rational numbersm1,m2 ∈ [0, 1) which determine ρ up to equivalence.
(Incidentally, ρ

( 0 −1
1 0

)
is computed for all 2-dimensional examples, in this

basis (5), in Section 4.2 of [19].) With this notation, one �nds (as in [16])
that

a =
1
12
+
m1 −m2

2
, b =

1
12
−
m1 −m2

2
, c =

2
3
.

Note that in certain places in [25] and [16] it was convenient to assume that
m1 ≤ m2, but it is not necessary to do so for these formulae to hold, and so

22



we make no such hypothesis here. Note also that the formulae in (5) arise
from solving a hypergeometric equation at the singular point∞, and this is
why the quantities a, 1 + a − c , etc occur, rather than a, b and c .

Since ρ is an irreducible representation of SL2 (Z) of �nite image then,
as we have explained, kerρ is a congruence subgroup, say of level N ( [25]).
Therefore, the q-series expansions of the components of F (τ ) are classical
scalar modular forms of level N . They thus have bounded denominators,
but this does not mean that the hypergeometric series in (5) necessarily
have bounded denominators (and indeed, they do not).

Below we list the 54 isomorphism classes of irreducible and �nite image
ρ together with relevant data pertaining to both the representation and the
corresponding hypergeometric di�erential equation. We will see that, in
a sense, only 18 di�erent hypergeometric series are involved. The data is
organized so that each table corresponds to one orbit of representations
under tensoring with the one-dimensional characters of SL2 (Z). There are
�ve distinct orbits, four containing twelve representations each, and one
containing only six representations. To see that the dihedral orbit is indeed
only of size six, one must use the fact that irreducible representations
of SL2 (Z) of dimension two are determined up to isomorphism by their
ρ (T ) eigenvalues, and that swapping the eigenvalues yields an isomorphic
representation (see [25]). Finally, since we have c = 2

3 in all of these examples,
we omit c from the data.

m1 m2 N k0 a b

0 1/2 2 2 -1/6 1/3
1/12 7/12 12 3 -1/6 1/3
1/6 2/3 6 4 -1/6 1/3
1/4 3/4 4 5 -1/6 1/3
1/3 5/6 6 6 -1/6 1/3
5/12 11/12 12 7 -1/6 1/3

Table 1: Dihedral orbit.
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m1 m2 N k0 a b

0 2/3 3 3 -1/4 5/12
1/12 3/4 12 4 -1/4 5/12
1/6 5/6 6 5 -1/4 5/12
1/4 11/12 12 6 -1/4 5/12
1/3 0 3 1 1/4 -1/12
5/12 1/12 12 2 1/4 -1/12
1/2 1/6 6 3 1/4 -1/12
7/12 1/4 12 4 1/4 -1/12
2/3 1/3 3 5 1/4 -1/12
3/4 5/12 12 6 1/4 -1/12
5/6 1/2 6 7 1/4 -1/12
11/12 7/12 12 8 1/4 -1/12

Table 2: Tetrahedral orbit.

m1 m2 N k0 a b

1/24 19/24 24 4 -7/24 11/24
1/8 7/8 8 5 -7/24 11/24
5/24 23/24 24 6 -7/24 11/24
7/24 1/24 24 1 5/24 -1/24
3/8 1/8 8 2 5/24 -1/24
11/24 5/24 24 3 5/24 -1/24
13/24 7/24 24 4 5/24 -1/24
5/8 3/8 8 5 5/24 -1/24
17/24 11/24 24 6 5/24 -1/24
19/24 13/24 24 7 5/24 -1/24
7/8 5/8 8 8 5/24 -1/24
23/24 17/24 24 9 5/24 -1/24

Table 3: Octahedral orbit.

24



m1 m2 N k0 a b

1/30 19/30 30 3 -13/60 23/60
7/60 43/60 60 4 -13/60 23/60
1/5 4/5 5 5 -13/60 23/60
17/60 53/60 24 6 -13/60 23/60
11/30 29/30 30 7 -13/60 23/60
9/20 1/20 20 2 17/60 -7/60
8/15 2/15 15 3 17/60 -7/60
37/60 13/60 60 4 17/60 -7/60
7/10 3/10 10 5 17/60 -7/60
47/60 23/60 60 6 17/60 -7/60
13/15 7/15 15 7 17/60 -7/60
19/20 11/20 20 8 17/60 -7/60

Table 4: Icosahedral orbit 1.

m1 m2 N k0 a b

1/60 49/60 60 4 -19/60 29/60
1/10 9/10 10 5 -19/60 29/60
11/60 59/60 60 6 -19/60 29/60
4/15 1/15 15 1 11/60 -1/60
7/20 3/20 20 2 11/60 -1/60
13/30 7/30 30 3 11/60 -1/60
31/60 19/60 60 4 11/60 -1/60
3/5 2/5 5 5 11/60 -1/60
41/60 29/60 60 6 11/60 -1/60
23/30 17/30 30 7 11/60 -1/60
17/20 13/20 20 8 11/60 -1/60
14/15 11/15 15 9 11/60 -1/60

Table 5: Icosahedral orbit 2.

For a discussion about why the parameters change when the eigenvalue
e2πim2 wraps around the circle, see Remark 3.12 of [8]. We see that there
are nine essential pairs of hypergeometric series

2F1

(
a,

1
3
+ a; 1 + a − b; z

)
2F1

(
b,

1
3
+ b; 1 + b − a; z

)
that play a rôle in the theory of holomorphic vector-valued modular forms
for two-dimensional irreducible representations of SL2 (Z) of �nite image.
The results of the present paper allow one to easily check that these series
have p-adically unbounded coe�cients for only �nitely many primes p. A
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more careful analysis at the unbounded primes allows one to show that after
substituting z = J−1 and multiplying by the appropriate power of J , one
obtains q-series with rational coe�cients having bounded denominators, as
one knows.
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