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Abstract

We study the question of when the coefficients of a hypergeometric
series are p-adically unbounded for a given rational prime p. Our first result
is a necessary and sufficient criterion, applicable to all but finitely many
primes, for determining when the coefficients of a hypergeometric series
with rational parameters are p-adically unbounded (equivalent but different
conditions were found earlier by Dwork in [11]] and Christol in [9]). We
then show that the set of unbounded primes for a given series is, up to a
finite discrepancy, a finite union of the set of primes in certain arithmetic
progressions and we explain how this set can be computed. We characterize
when the density of the set of unbounded primes is 0 (a similar result is found
in [9])), and when it is 1. Finally, we discuss the connection between this
work and the unbounded denominators conjecture for Fourier coefficients
of modular forms.
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1 Introduction

Hypergeometric series are objects of considerable interest. From a num-
ber theoretic perspective, hypergeometric differential equations provide a
convenient and explicit launching point for subjects such as p-adic differ-
ential equations [[14]], [13], rigid differential equations and Grothendieck’s
p-curvature conjecture [[22]], as well as the study of periods and motives.
Recent attention has focused on the relationships between quotient singu-
larities, integer ratios of factorials, and the Riemann hypothesis [[7]], [28],
[6]. It is the Beukers-Heckman [5] classification of generalised hypergeo-
metric differential equations with finite monodromy that underlies these
connections.

If F(z) is a solution of an ordinary differential equation (Fuchsian on
P!, say) with a finite monodromy group, then it is an algebraic function.
Moreover if F(z) has rational Taylor coefficients, then an old theorem of
Eisenstein states that for some integer N, the series F(Nz) has integer
coeflicients, save for possibly the constant term (see [15] for an interesting
discussion of this result). This says two things:

1. F(z) has p-adically bounded coefficients for almost all primes p;

2. for those primes for which F(z) has p-adically unbounded coefficients,
the coefficients cannot grow too quickly in p-adic absolute value.

(We say that F(z) has p-adically unbounded coefficients when arbitrarily
high powers of p appear in the denominators of the coefficients.) In the
present paper, given a hypergeometric series with rational coefficients, we
study the set of all primes for which the series has p-adically unbounded
coefficients. We do not assume that the monodromy is finite, although we
do impose some mild restrictions, such as irreducibility of the monodromy
representation. The discussion at the start of Section 3| gives a precise de-
scription of the conditions that we impose. See [12], [11]], [9] and [10] for
earlier work on this subject. The work [[10] and the references contained
therein describe how the subject of p-integrality of hypergeometric series
plays a role in the study of so-called mirror maps arising in mathematical
physics. See also [[]] for a discussion of p-integrality of A-hypergeometric
series, and [21]] for a related discussion of hypergeometric series with pa-
rameters taken in a quadratic extension of the rational numbers.

The basic tool that we use to study hypergeometric series is an old result
of Kummer (cf. Theorem 2.5), characterizing the p-adic valuation of binomial



coefficients in terms of counting p-adic carries in certain p-adic additions.
In Theorem [3.4) we employ Kummer’s result to deduce a formula for the
p-adic valuation of the coefficients of a generalized hypergeometric series
nFn—1 with rational parametersﬂ Our approach differs from that of [[11]]
and [9]] in that we use binomial coefficients to study hypergeometric series,
rather than studying arithmetic properties of the Pochhammer symbols
defining ,F,_; directly, as in [11] and [9]. As a result our proofs are more
combinatorial than the elegant p-adic analytic arguments of [11]] and [9].

In Section [4| we specialize to the classical case of ;F;. The key result
there is Theorem [4.2] which uses our valuation formula to give a convenient
necessary and sufficient condition for »F;(a, b; ¢; z) (for generic rational
parameters a, b and c) to have p-adically unbounded coefﬁcients Here,
generic means the fractional parts of a, b, ¢ are admissible in the sense of
Definition[3.1} In the remainder of the section we study the set S(a, b; ¢) of all
primes for which a given hypergeometric series 2 F;(a, b; c; z) has p-adically
unbounded coefficients. It turns out (Proposition and the following
discussion) that, up to a finite discrepancy, the set S(a, b; c) of unbounded
primes is a union of all primes in a number of arithmetic progressions. Our
results on the set S(a, b; ¢) appear to be the primary new contribution of this
work. The Dirichlet density of this set is an explicitly computable quantity.
We characterize exactly when this density is zero (Theorem [4.12} compare
with Proposition 1 of [9]), and also when the density is one (Theorem [4.14).
It turns out that the density is zero (for generic parameters) precisely when
the monodromy is finite. This result can be interpreted as a converse to
Eisenstein’s theorem, as it implies the existence of an infinite number of
unbounded primes whenever the monodromy is inﬁniteﬂ Note that the
converse to Eisenstein’s theorem only holds for hypergeometric series with
generic parameters, as the famous example of 2F1(%, %; 1; z) illustrates. At
the other end of the spectrum, we show that S(a, b; ¢) contains all but finitely
many primes precisely when c has the smallest fractional part of the three
(generic) parameters. Said differently, one third of all basic hypergeometric
series with rational parameters are as bad, from an arithmetic perspective,
as possible.

As was pointed out above, several of our results offer new proofs of old

ISee Lemma 1 and (6) of [9] for a similar formula.

“Compare with Lemma 2.2 of [[11] and Proposition 2 of [9], which give different but equivalent
necessary and sufficient conditions for p-integrality.

3The infinitude of the number of unbounded primes in the case of infinite monodromy was
known by Proposition 1 of [9], but we believe that this positive density result for the set of
unbounded primes is a new observation.



results from [[11] and [9]]. We feel that our perspective, which traces back to
Kummer [23], one of the founding fathers of the study of hypergeometric
series, is not without independent interest. Further, the study of the struc-
ture of the set of all unbounded primes for a given rational solution of a
differential equation appears to be a new and interesting question. Given
that the p-adic nature of the coefficients of hypergeometric series are gov-
erned by congruence conditions (cf. Proposition [4.10|below), which is an
apparently abelian phenomenon, it is natural to ask if there are nonabelian
analogues of these density results. More precisely, can one give an example
of a rational solution f(z) of a regular differential equation, along with a
corresponding nonabelian Galois number field K/Q, such that the Taylor
expansion of f(z) around some singular point is p-adically bounded (or
unbounded) according to whether the corresponding Frobenius conjugacy
class at p lies in some fixed subset of conjugacy classes in Gal(K/Q)? At
the moment we do not have any such examples.

Our interest in these questions comes from an old paper of Atkin-
Swinnerton-Dyer [2], which raised the question of whether nonzero non-
congruence scalar modular forms can have integer Fourier coefficients. The
conjecture is that there will always be some unbounded primeg’} Some of the
most interesting work on this unbounded denominators conjecture (UBD) is
due to Anthony Scholl [29] and Winnie Li and Ling Long together with their
collaborators and students [30], [24]. In [16] and [19], the authors showed
explicitly how to describe vector-valued modular forms of rank two for
SL,(Z) in terms of hypergeometric series 2 Fj, and in [16]] these series were
then used to verify the extension of the UBD conjecture to vector-valued
modular forms of rank two for SL,(Z). Shortly after, a similar result was
proved [17] for some vector-valued modular forms of rank three, using
generalized hypergeometric series 3F,. An overview of the methods used to
prove these results is given in [18]. In these papers, only a very conservative
use of hypergeometric series was made. For example, in the case of series
with infinite monodromy, unbounded denominators were established in [16]
by showing that there exists an arithmetic progression of primes p that occur
at least to power p~! in the coefficients of the given series. But it was unclear
whether the coefficients were in fact p-adically unbounded for such primes.
The present paper gives rather complete answers to the questions raised
in the final sections of [16] and [26]. In particular, we prove (for generic

4Since every scalar valued modular form on a finite index subgroup of SL;(Z) can be expressed
as a power of the Dedekind n-function times an algebraic function of the classical j-invariant,
Eisenstein’s theorem implies there can only be finitely many such unbounded primes if the
noncongruence subgroup is of finite index in SL,(Z).



parameters) that if the SL,(Z) representation has infinite image, then there
is a positive density of unbounded primes (if the image is finite, the kernel is
congruence and all primes will be p-adically bounded). In Section|[5|we recall
some of these facts relating modular forms and hypergeometric series, and
we combine the results of [25] and [16] to enumerate a modular analogue
at level one of the famous Schwarz list classifying hypergeometric series
with finite monodromy groups. Applying our results to these examples
yields an independent (and completely elementary) verification that the
corresponding modular forms have bounded denominators.

More interesting is the application of our results to the UBD conjecture
for vector-valued modular forms of rank two for I'(2). This will be a more
serious test of the UBD conjecture: there are three parameters worth of
2-dimensional I'(2)-representations (SLy(Z) requires only one parameter),
and almost every finite image 2-dimensional I'(2)-representation is non-
congruence, whereas all such 2-dimensional SL,(Z) representations are
congruence. Richard Gottesman treats this question in his upcoming PhD
thesis [20]].

Finally, we end this introduction by extending our thanks to Alan Adolph-
son for helping us to navigate the literature on p-integrality of hypergeo-
metric series and related topics.

2 Basic notions and notations

Throughout p denotes a rational prime, and Z,) denotes the ring of rational
numbers 7 where p does not divide b. Hence ZZ( ) denotes the set of rational
numbers 7 such that p is coprime to both a and b. Let Z,, denote the ring
of p-adic integers, which is the completion of Z,) for the p-adic valuation
v, normalized so that v,(p) = 1. Thus, for rational r, v,(r) denotes the
exact power of p occurring in the prime decomposition of r. Let Q, denote
the field of p-adic numbers. We recall the following basic facts concerning
p-adic expansions.

Lemma 2.1. With notation as above:
1. Anelementx € Z(XP) has a purely periodic p-adic expansion if and only
ifx € [-1,0).
2. Let7 € ZE)) have a purely periodic p-adic expansion, of minimal period

M. Assume that gcd(n,d) = 1. Then M is the multiplicative order of p
in (Z/dZ)*.



Proof. First let x = cocy - - - car—1¢ocy - - - be the periodic p-adic expansion of
x. If y denotes the integer whose expanion in base p is y = coc1 - - - car-1,
then x = 1_—?),” Since 0 < y < pM — 1, it follows that x € [~1,0). Observe
that if x = % with ged(n, d) = 1, then this shows that d divides pM -1, s0
that the period M is at least as large as the order of p in (Z/dZ)*.
Conversely, suppose d € Z(p [-1,0), with gcd(n,d) = 1, and let M be
the order of p in (Z/dZ)*. Assume n > 0 and d < 0. Then 1 —p™ du fora
positive integer u, and thus § = p,\, Observe that 0 < nu < pM — 1, so
that the positive integer nu has a finite p-adic expansion of at most M digits.
But then 5 p ot visibly has a periodic p-adic expansion of period dividing M.

Since the order M of p modulo d was seen above to be a lower bound for
the minimal possible period, it follows that M is indeed the minimal period
of the p-adic expansion of 7. ]

If x is a real number, then let | x] denote the unique integer satisfying
[x] < x < |x] + 1. Similarly define the fractional part of x by {x} = x — [ x].

Definition 2.2. If a € Z,, is a p-adic integer, then for each j > 0 let 7;(a)
denote the unique integer satisfying 0 < 7;(a) < p’ such that 7;(a) = a
(mod p’). The maps 7;: Z, — Z are called truncation operators.

Lemma 2.3. Letx = 7 denote a rational number with ged(n, d) = 1 satisfying
0 < x <1, and let p denote a prime such that x — 1 € Z. Let M denote the
order of p mod d, and let x — 1 = Xox7 . . . xp1—1 denote the p-adic expansion of
x — 1. Then for each index 0 < j < M,

| M1
5= [{""xp).
Proof. Our hypotheses on x ensure that both —x and x — 1 have periodic
p-adic expansions. Let —-pM~'"/n = ad + r where 0 < r < d. The p-adic
expansion of —pM 1 x = + 1+ (5 - 1) is
M-1—j terms
M1 o e 1 1 1
y2 x= 000 (p—1-x)(p—1—x1) - (p—1—2xp1-1)
Now, a + 1 is uniquely determined as that integer such that when you

subtract it from this expansion, you get a purely periodic expansion. Hence
—a-1={p-1-x1)(p-1-xjs2) - (p—1-xpm-1) and

r
E—l:(p—1—xj+1)---(p—1—xM_l)(p—1—x0)---(p—l—xj).
Observe that 7p(5 — 1) = (pM ) and hence
r )
OS(I—E)(pM—l)—(p x)pMt < pMT -

6



M

0=< pM—l

< <1

r
—— < —p-x; <
pl\/f -1 dp J

Since {—pM_l_j x} = 4, the proof is complete unless there is equality on the
right above. But equality can only occur if x; = p — 1 and Zp — x; = 1, that
is, 5 = 1. Since 5 < 1, this concludes the proof. O

For x = 5 satisfying 0 < x < 1, and given a prime p, let x;(p) denote the
jth p-adic digit of x — 1. Observe that Lemma 2.3]implies that if p varies over

primes in a fixed residue class p = r (mod d), then the ratio £ ¢)

converges
to the quantity {—r™~1"/x}, which depends on the residue class r (mod d),
but not on p. This fact will explain why if a hypergeometric series has
p-adically bounded or unbounded coefficients for large enough primes, then
it will be similarly p-adically bounded or unbounded for all large enough
primes in a corresponding congruence class.

Lemma 2.4. Let x and y denote rational numbers satisfying 0 < x <y < 1,
and such that x—1,y—1 € Z for a rational primep. Letx—1= 3 ;59 x;(p)p’
denote the p-adic expansion of x — 1, and define the digits y;(p) similarly. Let
D denote the least common multiple of the denominators of x andy. Then if
p > D, one has xj(p) # y;(p) forall j > 0.

Proof. Observe that if p > D then both x and y satisfy the hypotheses of
Lemma 2.3 Thus, the condition x;(p) = y;(p) is equivalent with

="} o] = ="} o] ®

Let 5 and % denote the fractional parts above, and without loss of generality
take @ < f. Then (1) is equivalent with 0 < (f — a) < %. Hence ifp > D
then (1) is equivalent with the simpler identity {—pM_l_j x} = {—pM_l_j y}.
But this forces pM~17/(x — y) to be an integer, contradicting the fact that p
is coprime to D. Thus, if p > D then x;(p) # y;(p). o

If a and b are p-adic numbers, then let c,(a, b) denote the number of
p-adic carries that are required to evaluate the sum a + b. Hence c,, defines
amap cp: le) — N U {oo}. Recall that the binomial polynomials

(x+n) (x+1)(x+2)--(x+n)

n n!

define continuous functions on Z, that vanish only at —n,-n+1,...,-1.



Theorem 2.5 (Kummer). Letx € Z, andn € Zo. Then v, (x;") = cp(x,n).

Proof. This was proved by Kummer in [23] when x € Z5. A uniform proof
that handles all p-adic integers can be given, but we will show that the result
for integral x extends to p-adic integers by continuity.

Since each polynomial (x;") for n € Z is continuous on Z,, and v,
is continuous on Q;, the left side of the claimed equality is continuous on
Zp\{-n,-n+1,...,-1}.

We claim that c,(x,n) = coif and only if x € {-n,-n+1,...,—1}. First,
ifx € {-n,—n+1,...,—1} then the p-adic expansion of x contains infinitely
many nonzero digits. On the other hand, x + n is an integer such that
x +n > 0, so that it has a finite p-adic expansion (similarly for n). This
implies that an infinite number of carries had to occur to evaluate x + n,
meaning c,(x, n) = oo as claimed.

On the other hand, suppose that ¢, (x,n) = co. Since n has a finite p-adic
expansion, the only way this can occur is if eventually the p-adic expansion
of x is p — 1 repeated infinitely often. That is, x = y — p" for some integer
0 <y < pN and N > 1. In particular, x is a strictly negative integer. Now
the condition that c,(x, n) = oo is equivalent to y + n > p", hence x > —n.

This verifies that ¢, (x, n) takes finite values on Z, \ {-n,-n+1,...,-1}.
It is easily seen to be continuous there, since if ¢, (x,n) < oo, then the
evaluation of x + n will not involve carries beyond a digit corresponding
to some large power p™. But then c,(x + ap™*!,n) = ¢, (x,n) for « € Z,
shows that c,(x, n) is p-adically continuous (in fact locally constant) on
Zp \ {—=n,—n+1...,-1}. Hence Kummer’s theorem extends to x € Z, by
continuity. O

Remark 2.6. Kummer’s Theorem does not extend to x € Q,. For ex-
1

ample, if n € Z5( then cp(%,n) = 0, while vp(ﬁ;r") = —n—uvy(n!) < 0.

This observation is what prevents us from handling primes that divide the

denominators of hypergeometric parameters in a uniform manner with all

other primes.

3 Hypergeometric series

Recall that for integers n > 1, the generalized hypergeometric series ,Fy,_; is
defined by the formula

nl?:l(aj)m z™m
nFn—l(a1,~-wan;ﬁla---vﬁn—ﬁz): Z ]

LT (B !



Here (a), denotes the Pochhammer symbol defined by

(a)m:{l m=0

a(a+1)---(a+m—-1) m=1.

Let A, denote the mth coefficient of ,F,_1(e;; f; z). Observe that each A,,
is a rational number provided that the hypergeometric parameters «; and
B are rational. In this note we only consider rational parameters.
Hypergeometric series are solutions of Fuchsian differential equations.
We restrict here to series with rational coefficients, so we require the param-
eters a;, B to be rational. If a; — fi € Z for some indices j and k, then the
corresponding monodromy representation is reducible (Proposition 2.7 of
[5]]). If some a; lies in Z, then ,F,_1(e;; Bx; z) is a polynomial. Obviously
no P can lie in Z for ,F,_1 to be well-defined, and if ;. € Z5( then the
monodromy around 0 will have repeated eigenvalues. Finally, provided none
of aj, Bx, aj — Pi are integers, it can be shown that the series , F,,_1(e;; Bi; 2)
is p-adically bounded iff ,F,,_1(a; + mj; B + ni;z) is, for any mj,ny € Z
(the proof for ,F; is given in Lemma the proof for general ,F,_; is
given in [4]). Moreover, if the monodromy is irreducible, then shifting the
hypergeometric parameters by integers also does not affect the monodromy
(Corollary 2.6 of [5]). Thus we arrive at the following definition:

Definition 3.1. Rational hypergeometric parameters (¢, . . ., &n; f15 - - - » Pr-1)
are said to be admissible provided that the following two conditions are
satisfied:

1. 0 < aj, fr < 1forall jand k;
2. aj # Py for all j and k.

Definition 3.2. Let (a1, - .., &pn; P, - - -, Pn—1) denote rational hypergeometric
parameters. A rational prime p is good for these parameters provided that
vp(aj — 1) = vp(Pfr — 1) = 0 for all j and k.

Note that for fixed parameters, all but finitely many primes are good.
For almost all choices of rationals «;, B, the fractional parts ({«;}, {fx}) are
admissible and have the identical list of bounded primes as («;, S ).

Definition 3.3. Let (a1, - . ., &n; P, - - -, Pn—1) denote rational hypergeometric
parameters, and assume that p is a good prime. The associated period is the
least common multiple of the multiplicative order of p modulo the various
(reduced) denominators of the quantities a; — 1 and f — 1.

Good primes associated with admissible parameters are precisely the
primes such that the quantities a; — 1 and B — 1 have purely periodic p-adic



expansions. The corresponding period is then nothing but the least common
multiple of the various periods of these expansions.

Theorem 3.4. Let (a1, . ..,an; P1,- - ., Pn-1) denote rational hypergeometric
parameters, and let p denote a prime such thatv,(aj—1) > 0 and v, (fr—1) >
0 for all j and k. Then if Ay, denotes the mth coefficient of ,F,_1(aj; Pi; 2),

n n—1
0p(Am) = Z cpaj—1,m) - Z cp(Be = 1,m). (2)
=1 k=1
Further, assume that the parameters (a1, . . ., &n; 1, - - -, Pn—1) are admissible,

assume that p is a good prime for this data, and let M denote the corresponding
period. Then

Up(Amp“) = Up(Am) (3)
forallm € Zs,.
Proof. First observe that
_Iaem 1 T (7,™)
TS Bm TRk (P

Thus (2) follows immediately from Theorem[2.5]

For the next claim, observe that since we have assumed that p is good,
each of #j—1 and i —1 has a periodic p-adic expansions of period dividing M,
by Lemma Hence ¢, (aj -1, mpM) = cp(aj—1,m) and ¢, (B — 1, mp™M)
¢p(Bx — 1,m), and thus (3) follows from ().

oo

Remark 3.5. A formula equivalent to (2) can be found in [9] (see particu-
larly Lemma 1 and lined equation (6) of loc cit). The proof in [9] analyzes
Pochhammer symbols directly, as opposed to our use of binomial coefficients
and Kummer’s classical Theorem We believe that equation (3), which
we think of as a sort of periodicity result for the valuations, is a new result.

Remark 3.6. It follows immediately from Theorem [3.4] that under the hy-
potheses of that theorem,

—-(n-1) logp(m) < vp(Am) < nlog,(m).

Example 3.7. Consider the hypergeometric series 5 F; ( %, %; 1; z) that arises in
the study of the monodromy of the Legendre family of elliptic curves. Theo-
remimmediately implies the well-known fact that v, (Ap,) = 2¢,( —%, m) >
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0 for all odd primes p. This is an example of a solution of a differential equa-
tion with an infinite monodromy group, but for which there is a a unique
prime such that the coefficients of zFl(%, %; 1; z) are p-adically unbounded
(obviously p = 2 is the bad prime). This does not contradict Theorem[4.12]
below, as the parameters (%, %; 1) are not admissible.

Proposition 3.8. Let (a1,...,n; P1,. .., Pn-1) denote admissible parame-
ters, and let p denote a corresponding good prime. Then

sup vp(Apm) = oo.

In particular, for any given set of admissible hypergeometric parameters, we
have sup,, v,(A;) = oo for all but finitely many primes p.

Proof. Let a be any nonzero p-adic integer with a purely periodic expansion
of period M, and let N, = pM" — pM=1) _..._ pM _ 1 be the integer whose
p-adic expansion is M copies of (p — 1), and then this is followed by r — 1
segments of the form (p — 2)(p — 1) - - - (p — 1). Some digit in each segment
of size M of the coefficients of a is nonzero. In fact, the first such digit is
indexed by v, (a). Since there are no carries before this digit, the number of
carries from computing a+ N, in the first segment of size M is M—v,(a), and
similarly for every other segment. Thus c,(a, N;) = (M — v, (a))r. Taking a
to be each of @; — 1 and fi — 1, it follows by Theorem [3.4]that

n n-1
Up(AN,) = (M= > vp(a; = 1) + D vp(Bi = 1) |r = Mr,
j=1 k=1

where the last equality uses the assumption that p is a good prime. Thus
v, (AN, ) is unbounded, which proves the Proposition. ]

Remark 3.9. The proof of Proposition[3.8|shows that under those hypotheses,
the sequence v, (Ap,) has a subsequence that diverges like log,(m).

4 The case of ,F;

We are more interested in characterising when inf , v, (A;;) = —oo, that is,
when , F,,_; has p-adically unbounded coefficients. It will be convenient to
specialize to the case n = 2. First we show, using an argument that goes
back to Gauss, that there is no loss in generality when considering only
admissible parameters.

11



Lemma 4.1. Let (a, b;c) and (r, s;t) denote two sets of rational hypergeomet-
ric parameters, and assume that

(i) noneofa, b,c,a—corb—cisan integer;

(ii) a—r,b—s andc —t are all integers.
Then for each prime p, the series yFi(a, b;c;z) has p-adically unbounded
coefficients if and only if the same is true for ,F;(r, s; t; z).

Proof. Let 0 = z%. Then one easily verifies the following identities, which
go back to Gauss (see section 1.1 of [27]):

1
2Fi(a+1,b;c;2) = (1 + 50) 2Fi(a, b;c; 2),

b- 1-
(a+ c)z+

oFi(a—1,b;c;2) = ((1 -z) - Z9) 2Fi(a, b;c; z),
a

c—a c—
. L (a+b-c) (1-2)c i o
2Fi(a,b;c+ 1;2) = ((c—a)(c—b) + c—ac-b) dz)gFl(a,b,c,z),

1

Cc —

oFi(a,b;c—1;2) = (1+ 10) 2Fi(a, b;c; 2).

From this one sees that the claim holds if (r,s;t) = (a = 1, b;¢) or (r,s;t) =
(a,b;c £ 1). The general case then follows by symmetry and repeated
application of the cases already treated. O

Next we establish a necesary and sufficient condition for a hypergeo-
metric series to have p-adically unbounded coefficients for all good primes
p- Recall that if x is a p-adic integer, then 7;(x) denotes the truncation of x
mod p’.

Theorem 4.2. Let (a, b; ¢) denote admissible hypergeometric parameters, and
let p denote a good prime. Then the following are equivalent:
(i) for some index j, we have tj(c —1) > 7j(a—1) and tj(c — 1) > 7;(b—1);
(ii) 2F1(a, b;c; z) has p-adically unbounded coefficients.
For good primes p, if the coefficients of 2Fy(a, b; c; z) are p-adically bounded,
then they are in fact p-adic integers.

Proof. Let a;, b; and c; denote the digits in the p-adic expansions of a — 1,
b — 1 and ¢ — 1, respectively. First assume that (i) holds, and let j denote the
smallest index such that 7;(c — 1) > 7j(a — 1), 7;(b — 1). By minimality of j
we can’t have ¢j_; = aj_; = bj_;. Without loss of generality we may assume
that one of the following two conditions holds:

12



(@) cj—1 > aj_1and cj_1 > bj_q;
(b) Cj—1 = aj-1 but Cj-1 > bj—l~

We will define two different subsequences m,., one for each case, such that
Vp(Am,) diverges to —co.

In case (a), let m, = 3.7_(p — ¢j—1)p™**/~! where M is the period of the
data (a, b; c) and p. Observe that c;_; is nonzero, since it is strictly larger
than a;_,, say. Hence the expression defining m, is its p-adic expansion. We
have c,(c — 1,m,) > r + 1 while ¢, (a — 1,m;,) = ¢,(b — 1,m,) = 0. Thus by
Theoremwe have v,(Ap,) < —r — 1, which shows that the coefficients
A, are p-adically unbounded in case (a).

In case (b), since ¢j_; = aj_; while 7j(c — 1) > 7j(a — 1), there exists a
string of digits where c¢;_; = a;_; for i in some range k < i < j, but then
Ck_1 > ar_1. Let

r j-1
me= ((p —ce )P D p—ci - 1)pi)pMS-
s=0 i=k
Again, in this case cx_; > ag_; > 0, which shows that ci_; is nonzero and
the expression defining m, is its p-adic expansion. Clearly c,(c — 1,n,) >
(r +1)(j — k) and cy(a — 1,m,) = 0. Similarly, since ¢;-; > bj_, there
can be no carry at the jth digit when evaluating b — 1 + m,, and thus
cp(b—1,m,) < (r +1)(j — k — 1). Hence by Theoremwe have

Up(Am,) S (r+1)(—k-1) = (r+1)(—k) =-r—1.

This shows that in case (b), the coefficients A,, are p-adically unbounded.
Conversely, assume that (i) does not hold. That is, assume that for every
index j, we have

7j(c — 1) < max(zrj(a—1),7;(b - 1)).

We will show that if 7;(c — 1) < 7j(a— 1), and if there is a p-adic carry at the
jth digit when evaluating (¢ — 1) + m, then there is also a carry at the jth
digit when evaluating (a — 1) + m. If 7;(c — 1) = 7;(a — 1), this is obvious.

We may thus assume that 7;(c — 1) < 7j(a — 1). It follows that there is
anindex 0 < s < j—1suchthat ¢s < a5 but ¢ = ai fors < k < j—1 (ifany
such indices k exist). Let m = mom, - - - . Since there is a carry at digit j in
(¢ — 1) + m, there are two possibilities:

(@) mj_1 > (p — cj-1) and the carry did not rely on an earlier carry;

(b) mj_1 = (p — ¢j—1 — 1) and the carry only occured because it was
preceded by an earlier carry.
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If mj_1 > (p —cj-1), then there is clearly also a carry at digit j in (a —1) + m.
So it remain to treat case (b).

Suppose that mj_; = (p—cj_1—1), so that the j carry in (c—1) + m implies
that there is an earlier carry. If the earlier carries do not extend back past
digit s, there is some my, in that range such that ¢x # 0 and mg > (p — cx).
But then in this range a; > ci and there must alo be a sequence of carries
in (a — 1) + m from the kth digit up to the jth, forcing a carry at digit j as
claimed. If the earlier carries in (¢ — 1) + m go even further to the left, past
digit s, then we still win since a5 > c;. Hence even if mg = (p —cs — 1), there
is a carry at digit s in (a — 1) + m, and this will then force a sequence of
carries up to the jth digit.

This verifies the claim that if 7j(c — 1) < 7j(a — 1) and there is a carry at
digit j in (¢ — 1) + m, then there is also a carry at digit j in (a — 1) + m. By
symmetry we see that necessarily c,(c—1,m) < cp(a—1,m)+c,(b—1,m) for
all integers m > 0. Hence v, (A,,) > 0 by Theorem and this concludes
the proof of the Theorem. O

Remark 4.3. In Lemma 2.2 of [11]] and Proposition 2 of [9] one finds different
necessary and sufficient conditions for a hypergeometric series to be p-
adically unbounded.

Remark 4.4. The proof of Theorem[4.2]shows that under those hypotheses, if
the coefficients of ;F; are p-adically unbounded, then the sequence v, (An,)
has a subsequence that diverges to —co at least as quickly as ﬁ log,(m).

Remark 4.5. If p is larger than the least common multiple of the denominators
of a, b and c, then it suffices, by Lemma[2.3] to compare the p-adic digits of
a—1,b—1andc - 1in Theorem [4.2] rather than their truncations.

Remark 4.6. Theorem[4.2]omits consideration of the finite number of primes
that are not good for a given set of parameters. Recall that this means that
for at least one of the parameters x, either v, (x —1) > 0 or v,(x —1) < 0. In
the first case, we can write x — 1 = p"e for some other rational number e in
(-1, 0) that is coprime to p, and which thus has a periodic p-adic expansion.
In this case x — 1 has an expansion beginning with r zeros, and then it
becomes periodic. Theorem 2.5/ can still be used to analyze such primes as
in our proof of Theorem The case where v, (x — 1) < 0 is even easier,
as then one can write x = p™" 7 for some r > 1 and n,d € Z coprime to p.
Thus

X)m=p ""d "n(n+p"d)(n+2p"d)---(n+ (m—1)p"d),

and vy ((x)n) = —rm. However, since there are three parameters to consider,
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and it becomes cumbersome to formulate a definitive result for all cases
that arise, we opted to state Theorem [4.2 only for good primes.

Example 4.7. Consider the admissible parameters a = 1/6, b = 5/6 and
¢ = 1/5. They correspond to a hypergeometric equation with a finite
monodromy group, and hence there should be only finitely many primes p
such that ,F; (%, %; %; z) has p-adically unbounded coefficients.

Let p > 7 be a prime. Then by Lemma|2.3]

eo1=5 - (%)H p=1 (mods),
(22) (%) p=5 (mods),
- ]
b_1=_l= (277—1) - p=1 (mod 6),
¢ (B (&) p=5 (modo),
& p=1 (mod>5),
co1=_X_ (55°) (%) p=4 (mod 5),
S (%) (57) (%) (52) p=2 (mods),
() (52) (1) (%2) p=3 (mod5).

There are thus eight cases to consider, and it is straightforward to use
Theoremto check that zFl(%, %; %; z) is p-integral in each of them. For
example, suppose that p = 7 (mod 30). We see that a — 1 and b — 1 are both
1-periodic and max{7rj(a—1),7j(b—1)} = 7j(a—1) forall j. Aslongasp > 7,
then 5”6—_5 is larger than each p-adic digit of ¢ — 1, and hence 2F1(%, %; %; )
is p-integral for such primes. If p = 7 then we have

a—1= 5555, b-1=1111, ¢c—1=2145.

In this case we still have 7-integrality since, in terms of 7-adic expansions,
2 < 5,21 < 55,214 < 555 and 2145 < 5555. Hence if p = 7 (mod 30),
then zFl(%, g; %; z) is p-integral, as was claimed. The other seven cases are
similar.

and ¢ = % As above, there are

Example 4.8. Next consider a = %, b= %
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eight cases. If p > 7 is prime then

(ﬁ) p=1 (mod5),
1) (41 _
a—1:—§: (2;—4)(;7—2) 3p—1 4p—3 p_4 (mOd 5)’
(%) (59) (57) (%52) p=2 (mod5),
(22) (22) (22) (&%) p=3 (mod5s),

S

|

—_

Il

|
[SSH N )

Il
—_—N—

It is straightforward to check that for prime p > 7, the coeflicients of
(3,3 %; z) are p-adically unbounded if and only if p = 2,8 or 14 (mod 15).
For the remaining primes p > 7, the coefficients are in fact p-integral.
Thus, the set of primes such that zFl(%, %; %; z) has p-adically unbounded

coefficients has a Dirichlet density of %.

Definition 4.9. Let (a, b; ¢) denote rational hypergeometric parameters such
that c is not a negative integer. Then let S(a, b; ¢) denote the set of primes p
such that ,F; (a, b; c; z) has p-adically unbounded coeflicients.

As an application of Theorem we show that the set S(a, b;c) of
unbounded primes for some admissible 5 F; always has a Dirichlet density.

Proposition 4.10. Let (a, b; c) denote admissible hypergeometric parameters,
and let D denote the least common multiple of the denominators of a, b and c.
Ifp > D is a good prime that satisfies p € S(a, b; c), then for all primes q > p
such that ¢ = p (mod D), necessarily q € S(a, b; c) too. Thus S(a, b; c) has a
Dirichlet density of the form ﬁ for an integer a satisfying 0 < a < ¢(D),
where ¢(D) denotes Euler’s ¢-function.

Proof. Let a;j(p) denote the jth p-adic digit of a — 1, and define b;(p) and
¢j(p) similarly. Then by Lemma 2.4 if p > D we have a;(p) # ¢;(p) and
bj(p) # cj(p) for all j. Hence by Theorem to determine whether such
a prime lies in S(a, b; ¢), we need only determine whether there exists an
index j such that c;(p) > a;(p) and c;(p) > b;(p). If M is the period of this
data, then by periodicity of the p-adic expansions, we can concentrate on
those j in the range 0 < j < M.

Let p > D be a good prime such that c¢;j(p) > a;(p) for some index
0 < j < M. By Lemma(2.3] this is equivalent with

[0} o] > L{-+" )] g
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Let ¢ = p + tD denote another prime, where ¢ is a positive integer. Then the
condition that cj(q) > a;j(q) is equivalent with

I_{—pM_l_jc}pJ + {—pM_l_jc} tD > [{—pM_l_ja}pJ + {—pM_l_ja} tD.

But this inequality is implied by (4). Hence if ¢;(p) > a;(p), then c;(q) >
a;j(q) for all primes q > p such that g = p (mod D). Since the same argu-
ment holds with a replaced by b, this concludes the proof of the Proposi-
tion. O

Remark 4.11. There exists a simple algorithm for computing the Dirichlet
density of S(a, b;c) for any admissible parameters. One can simply use
Theorem [4.2]to check primes p > D lying in the ¢(D) possible congruence
classes mod D. Once a prime is found such that ;F; (a, b; c; z) has unbounded
p-adic coefficients, then the rest of the primes g > p in the arithmetic
progression g = p (mod D) are contained in S(a, b; c) by Proposition
Lemma can be used to provide a stopping criterion to determine if
a congruence class has finite intersection with S(a, b;c). For example, if
x € (0,1) is rational,and x — 1 € Z;j, then by Lemma the jth p-adic digit
xj(p) of x — 1 satisfies

L 1 x;(p) Melei
{(—pM 1 x) - = < 22 < (—pMTTx),
p <7 p

Observe that the fractional part above only depends on p modulo the de-
nominator of x. By the proof of Lemma [2.4]and since p > D, if we consider
the corresponding fractional parts with x = a, b, ¢, then they are distinct.
By periodicity of the p-adic expanions of a — 1, b — 1 and ¢ — 1 for admissi-
ble parameters, we need only check a finite number of coefficients using
Theorem[4.2] Hence if p is large enough to ensure that

1 . .

— < min min

p 0<j<M| x,ye{a,b,c}
X#Y

(=p™ " x) = {=p™ )|

then it suffices to test whether p € S(a, b, ¢) for such a prime. If p € S(a, b, ¢),
then all primes g > p satisfying g = p (mod D) will be contained in S(a, b; ¢).
Otherwise, S(a, b; ¢) has finite intersection with this congruence class.

Theorem 4.12. Let (a, b; c) denote admissible hypergeometric parameters.
Let D denote the least common multiple of the denominators of a, b and c.
Then the following are equivalent:
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(i) the monodromy group of the corresponding hypergeometric differential
equation is finite;

(ii) the set S(a, b;c) is finite;

(iii) for every integer u coprime to D, the fractional parts {ua}, {ub} and {uc}
are such that {uc} lies between {ua} and {ub}.

Proof. For the equivalence of (i) and (iii), see Theorem 4.8 in [5]. It is well-
known that (i) implies (ii), say by Eisenstein’s theorem (see [15] for an
interesting discussion of this result). To complete the proof we will show
that (ii) implies (iii).

Thus assume that (ii) holds. Let a;(p) denote the p-adic digits of a — 1,
and definte b;(p) and c;(p) similarly. By Theorem [4.2]and Lemma 2.4 there
exists a finite set of primes S with the property that for each prime p ¢ S, and
for every index j, one has either c;(p) < a;(p) or cj(p) < bj(p). By Lemma
We have either [{—pM_l_jc}pJ < [{—pM_l_ja}pJ or [{—pM_l_jc}pJ <
[{—pM_l_jb}pJ for each index j.

Since {ua} only takes values of the form £, and similarly with a replaced
by b and ¢, we see that for all but finitely many primes, in fact for each j either
{=pM=1¢e} < {(—pM~1Ta} or {—pM~1Tc} < {—pM~17/b}. By varying p and
Jj we obtain that for every u coprime to D, where D is the least common
multiple of the denominators of a, b and c, that either {uc} < {ua} or
{uc} < {ub} (here we have used Dirichlet’s theorem on primes in arithmetic
progressions).

Suppose that {uc} < {ua} and {uc} < {ub} for some integer u coprime
to D. Write Duc = x.D + r¢, Dub = x3,D + rp and Dua = x,D + r,, where

4}

the remainders r satisfy 0 < r < D. Then % < 7 and % < . But then

observe that
—Duc=-xD-r.=(1—-x:)D+(D-r),

and similarly for —Dua and —Dub. Then it follows that {—uc} > {—ua} and
{—uc} > {—ub}, a contradiction. Hence it must be the case that for every
integer u coprime to the denominators, {uc} lies between {ua} and {ub}, as
claimed. O

Remark 4.13. Proposition 1 of [9] also gives a characterization of when
S(a, b; c) is a finite set that is applicable to , F,_;. What appears to be new
above is that if S(a, b; ¢) is not finite, then it has a Dirichlet density of at
least 1/D, where D is the least common multiple of the denominators of a,

b and c.
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Theorem 4.14. Let (a, b; c) denote admissible hypergeometric parameters,
and let D denote the least common multiple of the denominators of a, b and c.
Then the following are equivalent:

(i) c is the smallest of the three parameters;
(ii) S(a, b; c) contains all but finitely many primes;
(iii) S(a, b;c) contains infinitely many primes p such thatp = 1 (mod D).

In particular, one third of all hypergeometric series with admissible parameters
have the property that their coefficients are p-adically unbounded for one-
hundred percent of all primes.

Proof. First suppose that ¢ < a and ¢ < b. Let M denote the period of this
data, and let a;(p), bj(p) and c;(p) denote the p-adic digits of a — 1, b — 1
and ¢ — 1, respectively. Then by Lemma 2.3 we have ay—1(p) = p + | —pa],
by—1(p) = p + |—pb| and cp—1(p) = p + |—pc]. Since ¢ < aand ¢ < b, if
p > max(-=, ﬁ) we have —a + + < —cand —b + 1 < —c. But this implies
that ay—1(p) < ca—1(p) and bar—1(p) < car—1(p), and hence p € S(a, b; p) by
Theorem[4.2] Thus, if ¢ is the smallest of the three parameters, then S(a, b; )
contains every prime p satisfying p > max( ﬁ, ﬁ) That is, (i) implies (ii).
That (ii) implies (iii) is obvious.

Finally suppose that S(a, b; ¢) contains infinitely many primes p of the
form p =1 (mod D). For such primes we have M = 1 by Lemma[2.1] and
thus by Theorem [4.2] and Lemma [2.3| there exists a prime p = 1 (mod D)
such that {—c} > {—a} and {-c} > {-b}. Hence ¢ < a and ¢ < b, which
shows that (iii) implies (i). O

Remark 4.15. We have focused on the set S(a, b; ¢) of unbounded primes
for a given hypergeometric series due to our interest in the question of
unbounded denominators of noncongruence modular forms. However it
seems that the set of bounded primes has more structure than the set of
unbounded primes. To explain, let D denote the least common multiple
of the denominators of a, b and ¢, and let B C (Z/DZ)* denote the subset
of congruence classes that each contain infinitely many bounded primes
for 3F1(a, b; c). Then using the proof of Proposition [4.10] Theorem [4.2]and
especially Lemma 2.3 it is easy to see that B is a possibly empty union of
cyclic subgroups of (Z/DZ)*. Simple examples show that B need not be a
subgroup. Nevertheless, it is a relatively well-structured set, and since the
class of 1 mod D is contained in every cyclic subgroup, this observation
gives a more conceptual explanation for condition (iii) of Theorem [4.14]
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5 Hypergeometric series and modular forms

LetI' C SLy(R) denote a Fuchsian group, let Y denote the curve I'\'H, and let
Y’ denote Y with all elliptic points removed. If the image of T in PSL,(R) can
be generated by two elements, then Y’ can be identified with P! \ {0, 1, co}.
Let u(r): H’ — Y’ denote a uniformizing map realizing this isomorphism,
where H’ denotes H deprived of its elliptic points for I'. This uniformization
identifies the image of I' in PSLy(R) with the orbifold fundamental group
of Y. This group is in general a quotient of the fundamental group of
the Riemann surface Y’. Solutions to Fuchsian differential equations on
Y’ can be pulled back via u(r) to vector-valued modular forms (of weight
0) of T on H that transform according to the monodromy representation
p of the fundamental group of Y’, provided that p factors through the
orbifold fundamental group of Y. That is, they are vector-valued functions
F: H — C9, meromorphic at the cusps and elliptic points and holomorphic
elsewhere, that satisfy a transformation law

F(yt)=p(y)F(r)

for all 7eH and yeI. This relation of vector-valued modular forms and
Fuchsian differential equations on P! goes back at least to [3].

A natural case to consider is the group I'(2), whose image in PSL,(R)
is free on two generators. Vector-valued modular forms for I'(2) thus de-
scribe all solutions of Fuchsian equations on P! \ {0, 1, co}. If A(7) denotes
a uniformizing map taking the cusps 0, 1 and co of T'(2) to 0, 1 and oo in
P!, respectively, then for each hypergeometric series ,F,_1(a;; f;; z) that
we’ve been considering, the function ,F,_1(a;; fj; A(7)) is a component of
a vector-valued modular form for some n-dimensional representation p of
I'(2). Conversely, all (weakly-holomorphic) vector-valued modular forms
for T'(2) of weight 0 can be expressed in the form F(A(r)) where F(z) is a
vector whose entries form a basis of solutions of a Fuchsian differential equa-
tion on P!. In general the function F(z) need not arise from a generalized
hypergeometric differential equation.

These observations connect the question of unbounded denominators
of Taylor coefficients of solutions of differential equations with the question
of unbounded denominators of Fourier coefficients of modular forms. Note,
though, that F(z) and F(A(r)) need not have the exact same set of primes p
such that their coeflicients are p-adically bounded. The difference between
these two sets of primes is a finite set. For example, a common occurrence
is for the modular form F(A(r)) to have integer coefficients, say due to it
being a congruence modular form, whereas F(z) could have a finite number
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of unbounded primes occurring in its coeflicients that are cancelled upon
substituting in the uniformizing map A(r). Richard Gottesman treats the
question of unbounded denominators for vector-valued modular forms of
rank 2 on I'(2) in his upcoming PhD thesis [20], using the ideas discussed
above.

In [[1€], Franc-Mason studied the somewhat simpler case of SLy(Z).
Although SL;(Z) has two generators, it is not free on two generators, and so
not all solutions of Fuchsian equations can be described in terms of vector-
valued modular forms for SL,(Z). Conversely, [16]],[[19] observed that all
holomorphic modular forms for SL;(Z) of rank two can be described in terms
of solutions of hypergeometric differential equations. That is, one need not
consider more general Fuchsian equations on P! \ {0, 1, o} of rank tw
The case of SL,(Z) is simplified further by the work of Mason in [25], which
shows that all finite image representations p of SL;(Z) are such that ker p
is a congruence subgroup. Thus, the question of unbounded denominators
amounts to proving in this case that when the image of p is not finite, then
the corresponding modular forms have unbounded denominators in a strong
sense: if p has infinite image, then there should be infinitely many primes
appearing in the denominators of modular forms for p. The paper [16] made
very modest use of hypergeometric series to prove this assertion. Essentially
[16]] showed that for such a representation p, there exists a modular form
for p and an arithmetic progression of primes p such that p appears at least
to power p~! in the coefficients of the modular form. Using this, unbounded
denominators were then established for all modular forms associated with
p. By Theorem above, we now know that in the infinite image case,
not only does p appear at least once in some denominator, but in fact there
must exist a positive density of primes p such that a given modular form for
p has p-adically unbounded Fourier coefficients.

In the remainder of this section we collect data and facts from [25] and
[16] to describe a modular Schwartz list for SL;(Z). That is, we describe
all finite-image irreducible representations of SL;(Z) of rank two, as well
as the corresponding modular forms and hypegeometric series. Note that
unlike the classical Schwartz list, which is infinite due to a proliferation of
dihedral representations, this modular Schwarz list at level one is in fact
finite, and it includes only congruence representations.

Let p : SLy(Z) — GL2(C) be an irreducible, 2-dimensional represen-
tation of SLy(Z) with finite image and let F(r) be a nonzero holomor-
phic vector-valued modular form of least integral weight ky for p. Thus

>Of course, the study of such equations can be reduced to the study of hypergeometric
equations, as was known to Riemann.
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F : H — C? is holomorphic and satisfies

F(yr) = (et + d)kop(y)F(T) forall y= (Z Z) € SL,(Z).

Unless ky=0, this modular form is a section of a projectively flat holomorphic
vector bundle that is not flat. Since the square n* of Dedekind’s n-function
transforms under SL;(Z) via a character y, and since it is nonvanishing
in H, we can set F(r) = F(t)/n%*o to shift F to weight zero, but at the
expense of changing the representation p to p = p ® y 5. This adjusted
function is naturally a global section of a holomorphic connection with
a regular singularity at the cusp of SL;(Z), and so it thus satisfies an or-
dinary differential equation. More precisely, the paper [16] showed that
the component functions of F(r) are a pair of fundamental solutions of a
hypergeometric differential equation which has p as its monodromy repre-
sentation. In particular, the components of F(r) may be expressed in terms
of hypergeometric series evaluated at a certain level one hauptmodul as
follows:

fi(@)=n?*(2)j7(1)sF: (@, 1+a—c; 1+a—b; J 1) (5)
fo(z):=n? ()70 () Fy (b, 1+b—c; 14b—a; 1)

for certain constants a, b, ¢ (see below), and where q::ez”” and
E3(1)-EX(r) j(r) 2T
PSS = = 1-— n .
(1) O J(7) 728" n(r):=q L:!( q")

Note that these expressions depend on a choice of basis for p. In particular,
since p is of finite image and irreducible, the matrix p(T) (where T = ({ 1))
has distinct roots of unity as eigenvalues, and so we diagonalize it as

eZniml 0
p(T) = ( O eZm'mz )

for rational numbers my, m, € [0, 1) which determine p up to equivalence.
(Incidentally, p (9 ') is computed for all 2-dimensional examples, in this
basis (5), in Section 4.2 of [19].) With this notation, one finds (as in [16])
that

1 m; —my 1 m; —my

a=—+—, b=— -
12 2

2
, c=-.
12 2 3

Note that in certain places in [25]] and [16]] it was convenient to assume that
my < my, but it is not necessary to do so for these formulae to hold, and so
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we make no such hypothesis here. Note also that the formulae in (5) arise
from solving a hypergeometric equation at the singular point co, and this is
why the quantities a, 1 + a — c, etc occur, rather than g, b and c.

Since p is an irreducible representation of SL,(Z) of finite image then,
as we have explained, kerp is a congruence subgroup, say of level N ( [25]).
Therefore, the g-series expansions of the components of F(r) are classical
scalar modular forms of level N. They thus have bounded denominators,
but this does not mean that the hypergeometric series in (5) necessarily
have bounded denominators (and indeed, they do not).

Below we list the 54 isomorphism classes of irreducible and finite image
p together with relevant data pertaining to both the representation and the
corresponding hypergeometric differential equation. We will see that, in
a sense, only 18 different hypergeometric series are involved. The data is
organized so that each table corresponds to one orbit of representations
under tensoring with the one-dimensional characters of SL,(Z). There are
five distinct orbits, four containing twelve representations each, and one
containing only six representations. To see that the dihedral orbit is indeed
only of size six, one must use the fact that irreducible representations
of SL;(Z) of dimension two are determined up to isomorphism by their
p(T) eigenvalues, and that swapping the eigenvalues yields an isomorphic
representation (see [[25]]). Finally, since we have ¢ = % in all of these examples,
we omit ¢ from the data.

mi my N ko a b

0 1/2 2 2 | -1/6 1/3
/12 7/12 |12 |3 |-1/6 1/3
1/6  2/3 6 |4 |-1/6 1/3
1/4  3/4 4 |5 |-1/6 1/3
1/3 5/6 6 |6 |-1/6 1/3
5/12 11/12 | 12 | 7 | -1/6 1/3

Table 1: Dihedral orbit.
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mq mo N ko a b

0 2/3 3 3 -1/4  5/12
1/12 3/4 12 | 4 -1/4  5/12
1/6 5/6 6 5 -1/4  5/12
1/4 11/12 [ 12 | 6 -1/4  5/12
1/3 0 3 1 1/4  -1/12
5/12 1/12 12 | 2 1/4 -1/12
1/2 1/6 6 3 1/4  -1/12
7/12 1/4 12 | 4 1/4  -1/12
2/3 1/3 3 5 1/4 -1/12
3/4 5/12 12 | 6 1/4  -1/12
5/6 1/2 6 7 1/4 -1/12
11/12  7/12 12 | 8 1/4  -1/12

Table 2: Tetrahedral orbit.

mq ms N ko a b
1/24 19/24 | 24 | 4 -7/24 11/24
1/8 7/8 8 5 -7/24  11/24
5/24 23/24 | 24 | 6 -7/24 11/24
7/24 1/24 24 |1 5/24 -1/24
3/8 1/8 8 2 5/24 -1/24
11/24 5/24 24 |3 5/24 -1/24
13/24 7/24 24 | 4 5/24 -1/24
5/8 3/8 8 5 5/24 -1/24
17/24 11/24 | 24 | 6 5/24 -1/24
19/24 13/24 | 24 | 7 5/24 -1/24
7/8 5/8 8 8 5/24 -1/24
23/24 17/24 | 24 | 9 5/24 -1/24

Table 3: Octahedral orbit.
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mq mo N ko a b

1/30 19/30 | 30 | 3 -13/60 23/60
7/60 43/60 | 60 | 4 | -13/60 23/60
1/5 4/5 5 5 -13/60  23/60
17/60 53/60 | 24 | 6 | -13/60 23/60
11/30  29/30 | 30 | 7 -13/60  23/60
9/20 1/20 20 | 2 17/60 -7/60
8/15 2/15 1513 17/60  -7/60
37/60 13/60 | 60 | 4 17/60 -7/60
7/10 3/10 10 | 5 17/60 -7/60
47/60 23/60 | 60 | 6 17/60 -7/60
13/15 7/15 157 17/60 -7/60
19/20 11/20 | 20 | 8 17/60  -7/60

Table 4: Icosahedral orbit 1.

mq mo N k() a b

1/60 49/60 | 60 | 4 -19/60  29/60
1/10 9/10 10 | 5 -19/60 29/60
11/60 59/60 | 60 | 6 -19/60  29/60
4/15 1/15 15 | 1 11/60 -1/60
7/20 3/20 20 | 2 11/60 -1/60
13/30 7/30 30 | 3 11/60  -1/60
31/60 19/60 | 60 | 4 11/60 -1/60
3/5 2/5 5 5 11/60  -1/60
41/60 29/60 | 60 | 6 11/60 -1/60
23/30 17/30 | 30 | 7 11/60 -1/60
17/20 13/20 | 20 | 8 11/60 -1/60
14/15 11/15 |15 | 9 11/60 -1/60

For a discussion about why the parameters change when the eigenvalue
e27im; wraps around the circle, see Remark 3.12 of [8]]. We see that there
are nine essential pairs of hypergeometric series

1
o Fy (a,§+a;1+a—b;z)

that play a role in the theory of holomorphic vector-valued modular forms
for two-dimensional irreducible representations of SL,(Z) of finite image.
The results of the present paper allow one to easily check that these series
have p-adically unbounded coefficients for only finitely many primes p. A

Table 5: Icosahedral orbit 2.
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more careful analysis at the unbounded primes allows one to show that after
substituting z = J~! and multiplying by the appropriate power of ], one
obtains g-series with rational coefficients having bounded denominators, as

one knows.

References

[1]

[2]

Alan Adolphson and Steven Sperber. On the p-integrality of A-
hypergeometric series, arXiv:1311.5252v2.

A. O. L. Atkin and H. P. F. Swinnerton-Dyer. Modular forms on non-
congruence subgroups. In Combinatorics (Proc. Sympos. Pure Math.,
Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pages 1-25. Amer.
Math. Soc., Providence, R.I., 1971.

P. Bantay and T. Gannon. Vector-valued modular functions for the
modular group and the hypergeometric equation. Commun. Number
Theory Phys. 1:637-666, 2008.

Tobias Bernstein. MSc thesis (UAlberta), 2018.

F. Beukers and G. Heckman. Monodromy for the hypergeometric
function ,F,_;. Invent. Math., 95(2):325-354, 1989.

[6] Jonathan W. Bober. Factorial ratios, hypergeometric series, and a

[7]

family of step functions. J Lond. Math. Soc. (2), 79(2):422-444, 2009.

Alexander Borisov. Quotient singularities, integer ratios of factorials,
and the Riemann hypothesis. Int. Math. Res. Not. IMRN, (15):Art. ID
rnn052, 19, 2008.

Luca Candelori and Cameron Franc. Vector valued modular forms and
the modular orbifold of elliptic curves. Int. . Number Theory, 13(1):
39-64, 2017.

Gilles Christol. Fonctions hypergéométriques bornées. Groupe d’Etude
d’Analyse ultramétrique, 8: 1-16, 1986/87.

E. Delaygue, T. Rivoal and J. Roques. On Dwork’s p-adic Formal Congru-
ence Theorem and Hypergeometric Mirror Maps. Volume 246, Number
1163 of Memoirs of the AMS. 2016.

Dwork, B. On p-adic differential equations. IV. Generalized hypergeo-
metric functions as p-adic analytic functions in one variable. Ann. Sci.
Ecole Norm. Sup. (4) 6 (1973), 295-315.

26



[12]

[13]

[14]

[19]

[20]

[21]

[24]

[25]

Dwork, B. p-adic cycles. Inst. Hautes Etudes Sci. Publ. Math., No. 37
(1969), 27-115.

Bernard Dwork. Generalized hypergeometric functions. Oxford Mathe-
matical Monographs. The Clarendon Press, Oxford University Press,
New York, 1990. Oxford Science Publications.

Bernard M. Dwork. Lectures on p-adic differential equations, volume
253 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Science]. Springer-Verlag, New York-Berlin,
1982. With an appendix by Alan Adolphson.

Bernard M. Dwork and Alfred J. van der Poorten. The Eisenstein
constant. Duke Math. F., 65(1): 23-43, 1992.

Cameron Franc and Geoffrey Mason. Fourier coefficients of vector-
valued modular forms of dimension 2. Canad. Math. Bull., 57(3):485—
494, 2014.

Cameron Franc and Geoffrey Mason. Three-dimensional imprimitive
representations of the modular group and their associated modular
forms. . Number Theory, 160:186-214, 2016.

Cameron Franc and Geoffrey Mason. Hypergeometric series, mod-
ular linear differential equations and vector-valued modular forms.
Ramanujan 7., 1-3 , 233-267, 2016.

T. Gannon. The theory of vector-valued modular forms for the modular
group. In Conformal Field Theory, Automorphic Forms and Related Topics,
W Kohnen and R Weissauer (eds) (Springer, 2014) 247-286.

Richard Gottesman. Vector-valued modular forms of level 2. PhD thesis
(UCSC), 2018.

Shaofa Hong and Chunlin Wang. Criterion for the integrality of hyperge-
ometric series with parameters from quadratic fields, arXiv:1609.09319v1.

Nicholas M. Katz. Rigid local systems, Annals of Mathematics Studies,
Vol. 139, Princeton University Press, Princeton, NJ, 1996.

E. E. Kummer. Uber die Ergéinzungssitze zu den allgemeinen Reciproc-
itatsgesetzen. J. Reine Angew. Math., 44:93-146, 1852.

Chris Kurth and Ling Long, On modular forms for some noncongru-
ence subgroups of SL,(Z), J. Numb. Th. 128(7): 1989-2009, 2008.

Geoffrey Mason. 2-dimensional vector-valued modular forms Ramanu-
jan 3, 17: 405-427, 2008.

27



[26] Geoffrey Mason. On the Fourier coefficients of 2-dimensional vector-
valued modular forms. Proc. Amer. Math. Soc., 140(6): 1921-1930, 2012.

[27] Michihiko Matsuda. Lectures on Algebraic Solutions of Hypergeometric
Differential Equations, volume 15 of Lectures in Mathematics, Depart-
ment of Mathematics, Kyoto University. Kinokuniya Co., Ltd. Tokya,
Japan. 1985.

[28] F.Rodriguez-Villegas. Integral ratios of factorials and algebraic hyper-
geometric functions, Oberwolfach Rep., (8):1814-1816, 2005.

[29] Anthony Scholl. Modular forms on noncongruence subgroups, in
Seminaire de Theorie des Nombres, Paris 1985-86, Progress in Math.
Vol. 71, Birkh&user Boston (1987) 199-206.

[30] Wen-Ching Winnie Li and Ling Long. Fourier coefficients of noncon-
gruence cuspforms, Bull. Lond. Math. Soc. 44 (3), 591-598, 2012.

28



	Introduction
	Basic notions and notations
	Hypergeometric series
	The case of 2F1
	Hypergeometric series and modular forms

