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Abstract. This article lays the foundations for the study of modular forms trans-
forming with respect to representations of Fuchsian groups of genus zero. More pre-
cisely, we define geometrically weighted graded modules of such modular forms, where
the graded structure comes from twisting with all isomorphism classes of line bundles
on the corresponding compactified modular curve, and we study their structure by
relating it to the structure of vector bundles over orbifold curves of genus zero. We
prove that these modules are free whenever the Fuchsian group has at most two elliptic
points. For three or more elliptic points, we give explicit constructions of indecom-
posable vector bundles of rank two over modular orbifold curves, which give rise to
non-free modules of geometrically weighted modular forms.
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1. Introduction

The history of vector valued modular forms dates back to Poincaré’s work on
Fuchsian functions and linear differential equations [Poi82], [Poi84]. In recent years,
vector valued modular forms have played a main role in the mathematics spawned by
the proof of the monstrous moonshine conjecture [Bor92]. Indeed, these modular forms
arise as generating series for characters of rational vertex operator algebras, and thus
form an important part of their representation theory — see [Gan06] for a survey. Most
of the work in this context has so far focused on the case of level one, that is, vector
valued modular forms for SL2(Z). The aim of this article is to extend the basic structure
theory of vector valued modular forms from the case of level one to a general genus
zero Fuchsian group. This more general theory turns out to be much richer, and it is
closely related to the classification of vector bundles over orbifold curves of genus zero
[GL87], [CB10].

A key result in the theory of vector valued modular forms for SL2(Z) is the free
module theorem, which asserts that the module of modular forms associated to a rank r
representation of SL2(Z) is free of rank r over the ring of scalar valued modular forms of
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level one. When the representation is a Weil representation of a rank one quadratic form,
this result is due to Eichler and Zagier, where freeness is deduced from an analogous
result on freeness of spaces of Jacobi forms – see Theorem 8.4 and the remark on the
following page in [EZ85]. For a general representation the free module theorem is due
to Marks and Mason [MM10]. In [CF16], we deduced the free module theorem for any
SL2(Z)-representation from a splitting principle for vector bundles over the modular
orbifold of level one, thus establishing the first geometric link between the study of
vector bundles over modular curves and the structure theory of vector valued modular
forms. Even for subgroups of SL2(Z) of small index the picture quickly becomes more
complicated. For example, during the summer of 2016 Geoff Mason observed (private
correspondence with the authors) that the free module theorem fails when SL2(Z) is
replaced by its subgroup Γ2 of index two. Mason and Gannon then established similar
negative results for a number of other subgroups of small index (unpublished note). On
the geometric side, we were able to show that the splitting principle for vector bundles
holds for Γ2 and other subgroups of small index, thus raising the question of whether the
structure of vector bundles over modular orbifolds of higher level has any connection
at all with that of vector valued modular forms of the corresponding level. One of
the key insights of the present paper is the following: if one is willing to work over a
ring of geometrically weighted modular forms, which is slightly larger than the classical
ring of scalar valued modular forms, then the corresponding modules of geometrically
weighted modular forms possess useful commutative algebraic properties. For example,
we prove a free module theorem for geometrically weighted modular forms over certain
Fuchsian groups, including Γ2 — see Corollary 4.8 and the discussion at the end of
Subsection 6.2. Around the same time that we established these results, Terry Gannon
used a different argument to prove a similarly modified free module theorem for Γ2 and
a number of other Fuchsian groups (unpublished note). Also around this time, Richard
Gottesman established, as part of his forthcoming PhD thesis, a free module theorem
for Γ0(2) using the argument pioneered in [MM10]. Over Γ0(2) the ring of geometrically
weighted modular forms is equal to that of classical modular forms, so this case can
also be treated using the geometric approach of the present paper.

These results point to a need for a general study of vector valued modular forms
on arbitrary Fuchsian groups. To simplify matters we restrict in this paper to Fuchsian
subgroups Γ ⊆ PSL2(R) of the first kind, with finite covolume and finitely many cusps.
This restriction also implies that the weights of modular forms on Γ must be even.
Further, we restrict to subgroups with the property that the corresponding Riemann
surface they define is of genus zero when the cusps are included. Such groups are said
to be of genus zero, and the corresponding compact orbifolds are called orbifold lines, or
orbilines. Orbifold lines are sufficienly rigid to allow us to reach some nontrivial general
conclusions, but not so rigid that they are uninteresting — for example, orbifold lines
are some of the main protagonists in monstrous moonshine [CN79], [Bor92], and the
study of vector bundles on orbifold lines has been connected with the representation
theory of certain Kac-Moody algebras [Len86], [GL87], [Mel04], [CB10]. Our results
can be extended to Fuchsian subgroups of SL2(R), and thus to modular forms of odd
weight and half-integral weight by replacing orbifold lines with µ2-gerbes over them, as
shown in [CF16] and [CFK17] for the case of SL2(Z). We leave this slight generalization
open to further exploration.

Note that due to our restriction to subgroups of genus zero, the elliptic stabilizers
will play an important role in this paper, as they generate the fundamental group of
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the compactified orbifold. Unlike in the more familiar case of smooth manifolds, the
genus zero case for orbifolds still allows for an interesting, although finite, fundamental
group. Sometimes the topology becomes complicated enough that the analogue of
Grothendieck’s theorem on the splitting of vector bundles fails.

We will end this introduction by summarizing the contents of the paper. In Section
2 we define orbifold lines and recall some standard facts about them. In Section 3 we
study the structure of vector bundles over orbifold lines. As is well-known, every vector
bundle over P1 splits into a sum of line bundles [Gro57]. We establish a similar splitting
principle for orbifold lines with at most two orbifold points using a proof modeled after
the standard cohomological argument for the usual projective line (note that this case
includes the compactification of the orbifold quotient [PSL2(Z)\ h] studied in detail in
[CF16]). We then recall a general result of Crawley-Boevey ([CB10], Theorem 3.3)
classifying indecomposable vector bundles over orbifold lines in terms of an associated
Kac-Moody algebra. In the remainder of the section we focus on an orbifold line with
three orbifold points with stabilizers of size (2, 2, n), and we give an explicit description
of an indecomposable vector bundle of rank 2 on such an orbifold line (Theorem 3.6)
that is independent of Crawley-Boevey’s existence result. Later in Section 6 we write
down the transition functions of such indecomposable bundles explicitly using modular
forms.

In Section 4 we study the structure of coherent sheaves over an orbifold line.
The key idea is to embed an orbifold line into weighted projective space and then to
identify it with a weighted projective line. The theory of coherent sheaves over weighted
projective lines is due to Geigle-Lenzing [GL87], and it follows the usual theory for
algebraic curves [Ser55]. More precisely, if X denotes an orbifold line with n + 1
orbifold points, and if W = Pic(X) denotes the Picard group of isomorphism classes
of line bundles on X, then we describe a natural projective embedding of X inside a
weighted projective space P(W ) associated to W (Theorem 4.3). This embedding is
used in Proposition 4.5 to give a concrete realization of the category of coherent sheaves
on X in terms of a category of sheaves of W -graded modules. For any coherent sheaf
F on X there is a Serre-type functor [GL87]

GM∗(F) ..=
⊕
x∈W

H0(X,F(x))

to the category of W -graded modules over the W -graded projective coordinate ring
S(X) of the embedding X ↪→ P(W ). This functor can be used to link the structure of
vector bundles over X to that of W -graded modules over S(X). For example, Geigle-
Lenzing proved ([GL87], 5.1) that if V is a vector bundle on X, then GM∗(V) is always
maximal Cohen-Macaulay over S(X). We also deduce from Theorem 3.1 that GM∗(V)
is free over S(X) whenever X has at most two orbifold points (see Corollary 4.8). In
general, the module GM∗(V) decomposes into a direct sum of indecomposable maximal
Cohen-Macauley modules, each indexed by a certain Kac-Moody algebra constructed
from X.

When X is obtained by adding the cusps to a quotient [Γ\ h] for some Fuchsian
group Γ ⊆ PSL2(R), the W -graded modules GM∗(V) seem to be better substitutes for
the usual Z-graded modules of modular forms associated to a representation of Γ. In
Section 5 we apply this observation to the study of modular forms for Γ. We begin
by explaining briefly how the constructions of [CF16] generalize to arbitrary Fuchsian
groups. If V(ρ) denotes the canonical extension to X of the local system on [Γ\ h]
associated to a representation ρ of Γ, then we introduce the module of geometrically
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weighted ρ-valued modular forms GM(ρ) = GM∗(V(ρ)). Following the above definition,
this is obtained by twisting V(ρ) with all line bundles on X and putting the global
sections together into a single module, rather than twisting only with the standard line
bundles Lk of weight k modular forms. In general this module GM(ρ) is strictly larger
than the usual module M(ρ) of modular forms associated to ρ, but it has the advantage
that the preceding results on GM∗(V(ρ)) apply to it. It is a module over the coordinate
ring S(Γ) = S(X) of the projective embedding X ↪→ P (W ) discussed above, which
likewise is typically larger than the usual ring of scalar valued modular forms for Γ.
Using this construction, the classification of vector bundles over orbifold lines directly
gives a classification of the modules GM(ρ). In particular, we deduce that when Γ has
at most 2 elliptic points, the free module theorem holds for GM(ρ) (Theorem 5.6).

The constructions of the ring S(Γ) and the modules GM(ρ) are geometric in origin,
and one would like an automorphic description for them. In certain cases one can use
the exact sequence

0→ Pic0(X)→ Pic(X)
deg→ 1

m
Z→ 0,

where m is the least common multiple of the orders of the stabilzers of the elliptic points
for Γ, to give a convenient automorphic description for S(Γ) and GM(ρ). One interpets
Pic0(X) as those bundles arising from characters of Γ that are trivial on the stabilizers
of the cusps, the so-called cuspidal characters. This reduces finding an automorphic
description for all bundles in Pic(X) — thereby giving an automorphic description for
S(Γ) and GM(ρ) — to giving an automorphic description of any single bundle on X of
degree 1

m
. In certain lucky cases the weight shifting bundle L2 is of appropriate degree,

and one finds that S(Γ) is the ring generated by the modular forms associated to all the
cuspidal characters in all weights, and similarly for GM(ρ). But in general L2 will have
too large a degree, and S(Γ) and GM(ρ) contain slightly more than the forms generated
by the cuspidal characters. Nevertheless, if L denotes a line bundle on X of degree 1

m
,

then it pulls back to a trivializable bundle on the Stein space h, and this pullback can
be described by some automorphy factor. It is an open problem to describe a choice of
automorphy factor that works for any given Fuchsian group.

In Section 6 we end the paper by describing these constructions in detail for several
Fuchsian groups: PSL2(Z) and its unique normal subgroups of index two and three,
as well as a nonnormal subgroup of index 4. One of the most surprising findings in
these explorations arose from the explicit automorphic construction of indecomposable
bundles of rank two on the subgroups of index 3 and 4 considered here. The modular
construction of these bundles involves certain indecomposable representations that are
not unitarizable, and so the corresponding modular forms fall outside the scope of
the classical theory of scalar valued modular forms. These vector valued forms are
essentially antiderivatives of classical scalar valued modular forms, and in this way the
ratios of period integrals of classical scalar valued modular forms between elliptic points
arise naturally in the construction of indecomposable vector bundles. This suggests
that the CM values of vector valued modular forms associated with certain nonunitary
representations may hold some arithmetic interest, although we do not make any general
claims in this direction.

As mentioned above, some of our results have been obtained independently by
Mason and Gannon. The authors thank them for several useful discussions about the
contents of this paper, and for sharing some of their private notes with us.

We end this introduction with a brief discussion about notation regarding Fuchsian
groups. In this note Fuchsian groups are subgroups of PSL2(R), rather than SL2(R),
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although we will commit the standard abuse of writing elements of PSL2(R) as matrices.
We retain the notation

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, R = ST,

of our previous papers, but here χ : PSL2(Z) → C× denotes the unique character of

PSL2(Z) determined by χ(T ) = e2πi 1
6 . In [CF16] we used χ to denote the generating

character of SL2(Z); in this paper, χ is the square of that character. That is, χ denotes

the character of η4 and it satisfies χ(S) = −1 and χ(R) = ζ2, where ζ = e2πi 1
3 .

2. Orbifold lines

An orbifold curve X is a compact, connected, complex orbifold of dimension one
with finitely many orbifold points (P0, . . . , Pn) with non-trivial cyclic stabilizers of or-
ders (p0, . . . , pn), respectively. The genus of X is the genus of its underlying Riemann
surface. An orbifold line is an orbifold curve of genus 0. Since the only compact,
connected Riemann surface of genus 0 is P1, the sequence (p0, . . . , pn) determines the
orbifold line X uniquely up to re-labeling of the orbifold points Pi (see e.g. [VZB]
Lemma 5.3.10). We call (p0, . . . , pn) the signature of X.

Let L be a line bundle over X. The restriction L|P to an orbifold point P ∈
{P0, . . . , Pn} is a 1-dimensional vector space together with a one-dimensional represen-
tation

µ(L, P ) : Z/pZ −→ C×,

where p is the order of the stabilizer of P . This representation is completely determined

by the element ι(L, P ) ∈ {0, . . . , p− 1} given by µ(L, P )(1) = e
2πi
p
ι(L,P ).

Definition 2.1. The integer ι(L, P ) ∈ {0, . . . , p− 1} is called the isotropy of L at P .

Let now Pic(X) be the group under⊗ of all line bundles overX up to isomorphism.
There is an isomorphism Pic(X) ∼= Cl(X) with the class group, i.e. all divisors modulo
principal divisors. A divisor for an orbifold curve X is a formal linear combination

D =
∑
P∈X

aP
|StabX(P)|

P, aP ∈ Z,

and a principal divisor is a divisor of a rational function on X, where the zeroes and
poles of the function are appropriately rescaled by the order of the stabilizers. The
degree of a divisor D is

deg(D) =
∑
P∈X

aP
|StabX(P)|

∈ 1

m
Z,

where m = lcm(p0, . . . , pn). We thus obtain the familiar degree homomorphism

deg : Pic(X) −→ 1

m
Z

by associating to a line bundle L the degree of the divisor of a rational section of L.

Proposition 2.2. Let X be an orbifold line of signature (p0, . . . , pn). Then

(a) Pic(X) is a rank one abelian group generated by n+ 1 elements x0, . . . , xn with
relations

p0x0 = p1x1 = . . . = pnxn.
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(b) Let m = lcm(p0, . . . , pn). Then the degree homomorphism induces an exact
sequence

0→ Pic0(X) −→ Pic(X)
deg−→ 1

m
Z→ 0,

that identifies Pic0(X) with the torsion subgroup of Pic(X).
(c) There is an isomorphism

Pic0(X) ∼=
∏n

j=0 Z/pjZ

〈(1, 1, . . . , 1)〉
.

Proof. Given L ∈ Pic(X), mapping L to each isotropy ι(L, P ), P ∈ {P0, . . . , Pn} gives
a group homomorphism

(1) Pic(X)→
n∏
i=0

Z/piZ.

The kernel of this isomorphism is the Picard group of the underlying Riemann surface,
which is isomorphic to Z for an orbifold line. Therefore (1) gives an exact sequence

0→ Z→ Pic(X)→
n∏
i=0

Z/piZ→ 0,

which proves the claim about the rank of Pic(X). To get the more precise statement
about the relations, let xi be the class in Pic(X) corresponding to the line bundle
OX(Pi). Then each OX(Pi)

⊗pi descends to a line bundle over the underlying Riemann
surface P1 of degree one. But line bundles over P1 of the same degree must necessarily
be isomorphic, so part (a) follows. For part (b), note that OX(Pi) has degree 1/pi, thus
the degree map is surjective, of kernel equal to Pic0(X) since 1

m
Z has characteristic zero.

Now Pic0(X) consists of elements of finite order, so each L ∈ Pic0(X) can be given the
structure of an N -torsor (i.e. a principal Z/NZ-bundle), for some positive integer N .
These correspond to homomorphisms π1(X) → Aut(Z/NZ) = Z/NZ, where π1(X)
is the orbifold fundamental group of X. Since X is of genus zero, this group has the
presentation

π1(X) = 〈γ0, . . . , γn | γ
pj
j = 1, γ0γ1 · · · γn = 1〉,

thus it is generated by elements of finite order. In particular, one has

Pic0(X) = Hom(π1(X),C×) ∼=
∏n

j=0 Z/pjZ

〈(1, 1, . . . , 1)〉
,

which proves part (c). �

Remark 2.3. The identification Pic0(X) ∼= Hom(π1(X),C×) established above is well-
known and part of a bigger picture. Narasimhan-Seshadri showed [NS64] that stable
holomorphic vector bundles of degree zero on a compact Riemann surface are in one-to-
one correspondence with irreducible unitary representations of the fundamental group.
The case of line bundles and unitary characters of the fundamental group, where the
stability condition becomes empty, is even more classical. These results have been
extended considerably in the direction of nonabelian Hodge theory, due initially to
Hitchin, Donaldson and Simpson – see [Sim91] and the references therein. In particular,
the Narasimhan-Seshadri result has been generalized [BH16], [Sim11] to the setting of
compact orbifolds discussed in Proposition 2.2. For line bundles on a compact orbifold
of genus zero, where all representations of rank one have finite image, one does not need
the full strength of these results, as shown in the proof of Proposition 2.2.
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By a slight abuse of notation (which is standard for the case X = P1), for any
x ∈ Pic(X) we denote by O(x) the corresponding line bundle. For the distinguished
element (of degree one)

c ..= p0x0 = . . . = pnxn ∈ Pic(X)

we call O(c) the distinguished line bundle, and for the dualizing element

ω ..= (n− 1)c−
n∑
i=0

xi ∈ Pic(X)

(of degree n− 1−
∑n

i=0 1/pi) we call O(ω) the dualizing line bundle. This line bundle
is isomorphic to the canonical bundle Ω1

X , the relative dualizing sheaf of the orbifold
line X.

For any orbifold line X, the abelian group Pic(X) carries a partial ordering.
In particular, since Pic(X)/Zc ∼=

∏n
i=0 Z/piZ, we may write any element of Pic(X)

uniquely as

x =
n∑
i=0

ai(x)xi + a(x)c, ai(x) ∈ {0, . . . , pi − 1}, a(x) ∈ Z.

We then say that x ≤ y if ai(x) ≤ ai(y) for all i = 0, . . . , n and a(x) ≤ a(y). Note
that under this partial ordering the degree homomorphism Pic(X)→ 1

m
Z is thus order-

preserving.
Let V be a vector bundle of rank r over an orbifold line X. Restriction to each

non-trivial orbifold point Pi gives an r-dimensional representation

µ(V , Pi) : Z/piZ −→ GLr(C)

which is entirely determined by the linear transformation µ(V , Pi)(1). This is of finite

order, hence diagonalizable, with eigenvalues of the form e
2πi
pi
νij , νij ∈ {0, . . . , pi − 1},

j = 1, . . . , r.

Definition 2.4. The integers νij ∈ {0, . . . , pi−1}, j = 1, . . . , r are called the isotropies
of V at Pi. The integer

ι(V , Pi) ..=
r∑
i=1

νij ∈ Z≥0

is called the isotropy trace of V at Pi.

Let now L be a line bundle over an orbifold line X. Denote by

χ(X,L) ..= dimH0(X,L)− dimH1(X,L)

its Euler characteristic. Then the Riemann-Roch theorem for orbifold lines says that

χ(X,L) = degL+ 1−

(
n∑
i=0

ι(L, Pi)
pi

)
.

As with algebraic curves ([Ati57], Lemma 1 and [GL87], Prop. 2.6), any vector bundle
V of rank r over X has a filtration by sub-bundles

(2) 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr = V
such that each quotient Vi/Vi−1

∼= Li is a line bundle. Among all filtrations as in (2), it
is possible to choose a maximal filtration by requiring V1 = L1 to be a line sub-bundle
of V of maximal degree, then L2 to be a line sub-bundle of V/L1 of maximal degree, etc.
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By choosing any such filtration, the Riemann-Roch theorem extends to vector bundles
over X by the formula

χ(X,V) ..= dimH0(X,V)− dimH1(X,V) = deg(V ) + rk(V)−

(
n∑
i=0

ι(V , Pi)
pi

)
where deg(V ) ..= deg(det(V)). Moreover, the Serre duality theorem for orbifold lines
gives a canonical isomorphism H1(X,V) ∼= H0(X,V∗(ω))∗ and thus

dimH1(X,V) = dimH0(X,V∗(ω)).

3. Vector bundles over orbifold lines

When X = P1 the Grothendieck-Birkhoff Theorem [Gro57] says that any vector
bundle over X decomposes into a sum of line bundles, that is, an indecomposable vector
bundle over P1 is necessarily of rank one. The following Theorem 3.1 shows that an
analogous result holds for orbifold lines with at most two orbifold points. This result
was established by Martens and Thaddeus in [MT12], where a number of other cases
are also considered. To keep the discussion simple and accessible to nonexperts, we
provide a simple proof which is different from that given in [MT12].

Theorem 3.1 (Martens-Thaddeus, [MT12]). Suppose that X is an orbifold line with
at most two orbifold points. Then any vector bundle V of rank r on X decomposes as
a direct sum of line bundles

V ∼=
r⊕
i=1

O(ai),

where deg ar ≥ · · · ≥ deg a1.

Proof. The proof proceeds by induction and is similar to that for P1. Suppose the
theorem is true for all vector bundles of rank r − 1. Let L1 ⊆ V be the first step in a
maximal filtration for V , and write L1 = O(−xmin), for some xmin ∈ Pic(X). Twisting
by O(xmin) we obtain an exact sequence

0→ OX → V(xmin)→ F → 0,

for some vector bundle F of rank r − 1. By induction, we may write

F ∼=
r−1⊕
i=1

O(bi), bi ∈ Pic(X).

We now want to show that

Ext1(F ,O) = H1(X,Hom(F ,O)) = H1(X,
r−1⊕
i=1

O(−bi))

vanishes, so that the above sequence is split and the theorem follows. Note that by
Serre duality we have

H1(X,
r−1⊕
i=1

O(−bi)) = H0(X,
r−1⊕
i=1

O(bi + ω))

where ω ∈ Pic(X) is the dualizing element. Suppose first that there are two orbifold
points P1, P2 of orders (p0, p1). We have

Pic(X) = {x0, x1 : p0x0 = p1x1},
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so that ω = −x0 − x1. Consider then the twisted sequence

0→ O(−x0)
s→ V(xmin − x0)→ F(−x0)→ 0,

to which there is associated a long exact sequence in sheaf cohomology

0→ H0(X,O(−x0))
s→ H0(X,V(xmin−x0))→ H0(X,F(−x0))→ H1(X,O(−x0))→ . . . .

Now

dimH1(X,O(−x0)) = dimH0(X,O(x0 + ω)) = dimH0(X,O(−x0)) = 0,

and H0(X,V(xmin − x0)) = 0 by minimality of xmin. Therefore

H0(X,F(−x0)) = H0(X,
r−1⊕
i=1

O(bi − x0)) = 0

for all i = 1, . . . , r − 1. But

O(bi + ω) = O(b1 − x0 − x1) ⊆ O(bi − x0),

and therefore H0(X,O(bi + ω)) = 0 as well. If X has only one orbifold point of order
p0 > 1, the Picard group is isomorphic to Zx0, ω = −c − x0 and the same argument
applies. �

Remark 3.2. The decomposition in Theorem 3.1 is unique whenever Pic0(X) = 0. In
this case the degree map gives an isomorphism Pic(X) ∼= Z and the usual argument
showing uniqueness of the decomposition for P1 applies. Note that by Proposition 2.2
Pic0(X) = 0 precisely when X has at most one orbifold point, or two orbifold points of
orders p0, p1 with gcd(p0, p1) = 1.

When X has three or more orbifold points, there exist vector bundles of rank two
or higher that are indecomposable. According to [CB10], the enumeration of indecom-
posable vector bundles over an orbifold line X of arbitrary signature can be done as
follows. Suppose X is an orbiline of signature (p0, . . . , pn) and consider the graph

(3)

01 02 · · · 0, (p0 − 1)

11 12 · · · 1, (p1 − 1)

0
...

...
...

...

n1 n2 · · · n, (pn − 1)

which is entirely determined by the signature of X. Let Σ be the Z-module freely
generated by the vertices of this graph, so that an element in Σ can be written as a
linear combination a0 0 +

∑n
i=0

∑pi−1
j=1 aij ij. Let V be a vector bundle over X. Then at

each orbifold point Pi the vector space Vi ..= V|Pi has a filtration

Vi ⊇ Vi1 ⊇ · · · ⊇ Vi,pi−1
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given by the eigenspace filtration of the isotropy representation µ(V , Pi)(1). The di-
mension vector of V is the vector

dim(V) ..= rk(V) 0 +
n∑
i=0

pi−1∑
j=1

dim(Vij) ij ∈ Σ.

Let g be the Kac-Moody algebra [Kac90] uniquely determined by the root system (3).

Theorem 3.3 (Crawley-Boevey, [CB10]). For each fixed degree, there is an indecom-
posable vector bundle V over X of degree d if and only if dim(V) is a strict root for
g. There is a unique such indecomposable vector bundle if dim(V) is a real root, and
infinitely many if dim(V) is imaginary.

Remark 3.4. For the notion of a strict root, see the discussion following Theorem 1 of
[CB10]. In terms of our notation above, strict roots are elements a0 0+

∑n
i=0

∑pi−1
j=1 aij ij ∈

Σ satisfying
a0 ≥ ai1 ≥ ai2 ≥ · · · ≥ ai,pi−1 ≥ 0

for all i.

When the diagram (3) is a Dynkin diagram for a finite simple Lie algebra, the
classification of indecomposable vector bundles was already given in [GL87], 5.4.1. In
this case there are finitely many strict positive roots and thus bounds can be ob-
tained on the rank of indecomposable vector bundles, by looking at the 0-component
of a maximal root. The only signatures for which g is a simple Lie algebra are (p0),
(p0, p1), (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5), corresponding to the Lie algebras Ap0 ,
Ap0+p1−1, Dn+2, E6, E7 and E8, respectively. We have already seen (Theorem 3.1) di-
rectly that for signatures (p0) and (p0, p1) the maximal rank of an indecomposable
vector bundle is one. We treat the case (2, 2, n) in detail below, where the bound on
the maximal rank is 2. For E6, E7 and E8 the maximal ranks for indecomposable vector
bundles are 3, 4 and 6, respectively, by [Len86].

Remark 3.5. Define the virtual genus of an orbifold curve to be

gv(X) ..=
1

2
deg(ω) + 1,

in analogy with the usual relation between the genus and the degree of the canonical
bundle for Riemann surfaces. The orbifold curves X with 0 < gv(X) < 1 are precisely
those whose root system (3) is a Dynkin diagram, i.e. for which the rank of an in-
decomposable vector bundle is bounded. These orbifold curves seem to fit in between
the two cases of Riemann surfaces of genus zero (i.e. P1), where the maximal rank of
indecomposable vector bundles is one, and of genus one (i.e. elliptic curves ), where
there are indecomposable vector bundles of arbitrary rank [Ati57].

3.1. The case of signature (2, 2, n). If X has signature (2, 2, n) the Lie algebra g of
Theorem 3.3 is the simple Lie algebra Dn+2 and the highest 0-component of a strict
root is 2. Thus for X of signature (2, 2, n) there are indecomposable vector bundles of
rank two, but of no higher rank. Moreover for a fixed degree d there is a unique such
rank two indecomposable vector bundle, by Theorem 3.3. We are able to describe this
vector bundle explicitly:

Theorem 3.6. Let X be the orbifold line of signature (2, 2, n). There is a unique (up
to isomorphism) indecomposable vector bundle of rank two and degree − 1

n
over X. This

vector bundle is the unique non-trivial extension

0→ Ω1
X →W → OX → 0.
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Proof. The extensions of the form

(4) 0→ Ω1
X →W → OX → 0

are classified by the cohomology group

Ext1(OX ,Ω1
X) ∼= H1(X,Hom(OX ,Ω1

X)) ∼= H1(X,Ω1
X).

Explicitly, recall that the element in H1(X,Hom(OX ,Ω1
X)) classifyingW is given by the

connecting homomorphism δ in the long exact sequence of cohomology corresponding
to the short exact sequence obtained by applying the functor Hom(OX ,−) to the exact
sequence defining W . Since Hom(OX ,V) ∼= V for any vector bundle V , the connecting
homomorphism δ lies in the space

δ ∈ Hom(H0(X,OX), H1(X,Ω1
X)).

This vector space is 1-dimensional, thus there is a unique (up to isomorphism) extension
W giving δ 6= 0 (i.e δ is an isomorphism). We claim that such W is indecomposable.
Indeed, tensoring by W∗ we get an exact sequence

0→W∗ ⊗ Ω1
X →W∗ ⊗W →W∗ → 0,

and thus a long exact sequence in cohomology

0→ H0(X,W∗ ⊗ Ω1
X)→ H0(X,W∗ ⊗W)→ H0(X,W∗)→ . . . ,

Now dimH0(X,W∗ ⊗ Ω1
X) = dimH1(X,W) = 0 since the long exact sequence coming

from (4) gives

. . .→ H0(X,OX)
δ→ H1(X,Ω1

X)→ H1(X,W)→ H1(X,OX) = 0→ 0

and δ is an isomorphism by hypothesis. So we have an injection

H0(X,W∗ ⊗W) = H0(X,End(W)) ↪→ H0(X,W∗).

On the other hand, dualizing (4) and taking cohomology we get a long exact sequence

0→ H0(X,OX)→ H0(X,W∗)→ H0(X,TX)→ . . .

where TX = (Ω1
X)∗ is the tangent bundle of X. Now

deg TX = −1 + 1/2 + 1/2 + 1/n = 1/n > 0

thus H1(X,TX) = 0 and

χ(TX) = H0(X,TX) = 1/n+ 1− 1/2− 1/2− 1/n = 0.

Therefore dimH0(X,W∗) = dimH0(X,OX) = 1. This means that

dimH0(X,End(W)) ≤ 1.

If W = O(a1)⊕O(a2) were decomposable, then

End(W) ∼= OX ⊕OX ⊕O(a2 − a1)⊕O(a1 − a2)

and dimH0(X,End(W)) ≥ H0(X,OX ⊕ OX) = 2, a contradiction. Thus W is inde-
composable. �

Remark 3.7. It is easy to show that all the other indecomposable vector bundles on X
can be obtained from W by twisting by a line bundle.
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4. Coherent sheaves over orbifold lines

Let X be an orbifold line of signature (p0, . . . , pn), and for ease of notation let
W = Pic(X), a finitely generated abelian group of rank one (Prop. 2.2). Let C[W ] be
the group algebra of W with coefficients in C, and let

G(W ) ..= Spec(C[W ])

be the affine group scheme corresponding to it. The closed points of this group scheme
can be identified with tuples (t0, . . . , tn) ∈ (C×)n+1 such that tp0

0 = · · · = tpnn . There is
an action of G(W ) on An+1 given on closed points by

(t0, . . . , tn)(X0, . . . , Xn) = (t0X0, . . . , tnXn).

Definition 4.1. The quotient stack P(W ) = [G(W )\ (An+1 − {0})] is calledW -weighted
projective space.

For each i = 0, . . . , n consider the line bundle O(xi) = OX(Pi), where xi ∈ W are
the chosen generators of W as in Proposition 2.2. By the Riemann-Roch theorem,

χ(O(xi)) = dimH0(X,O(xi))− dimH1(X,O(xi)) = degO(xi) + 1− 1

pi
= 1,

and thus we may choose a non-zero global section si of O(xi) which vanishes only at
the orbifold point Pi and nowhere else.

Theorem 4.2. The tuple (s0, . . . , sn) gives a well-defined morphism

s : X −→ P(W )

of X into W -weighted projective space.

Proof. First note that the si’s have no common zero since each si vanishes precisely at
the orbifold point Pi and nowhere else. Therefore the collection Xi = {x ∈ X : si(x) 6=
0} is an open cover of X. Over each Xi, we may define a map

x 7→ [s0/si(x), . . . , 1, . . . , sn/si(x)]

to the standard open set Ui = {Xi 6= 0} of P(W ). This map is equivariant with respect
to the action of the stabilizers of the orbifold points, hence it is well-defined. By descent,
the local maps defined over each Xi glue to give a global map s : X → P(W ). �

Next we show that s is a closed immersion and we derive the equations defining
X as a subvariety in P(W ). Note that for each i = 0, . . . , n the function spii is a
section of O(c). Riemann-Roch gives χ(O(c)) = 2, but dimH1(X,O(c)) = 0 since the
cohomology of O(c) is the same as that of the usual twisting bundle O(1) over the
underlying Riemann surface P1. Therefore the vector space of global sections of O(c)
is 2-dimensional, spanned, say, by sp0

0 , s
p1

1 (these cannot be proportional since they have
different zeroes P0 6= P1). It follows that for i = 2, . . . , n we must have relations of the
form

spii = λis
p0

0 − µis
p1

1 , i = 2, . . . , n,

for some λi, µi ∈ C. By rescaling the si’s if necessary, we may assume that µi = 1 for all
i = 2, . . . , n. Let now C[X0, . . . , Xn] be the coordinate ring of An+1. The polynomials

(5) Xpi
i +Xp1

1 − λiX
p0

0 , i = 2, . . . , n,

cut out an affine subscheme V of An+1 together with a G(W )-action compatible with
that on An+1. We let

C(W ) ..= [G(W )\ (V − {0})] ⊆ P(W )
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be the corresponding closed quotient sub-stack.

Theorem 4.3. The morphism s is a closed immersion inducing an isomorphism

s : X
∼=−→ C(W ) ⊆ P(W )

Proof. The complex manifold underlying P(W ) is the usual projective space Pn, the
map P(W )→ Pn being given in coordinates by

[X0, . . . , Xn] 7−→ [Xp0

0 , . . . , X
pn
n ].

If we restrict this morphism to C(W ) we obtain the equations of a projective line in

Pn. The map C(W ) → C(W ) ∼= P1 to the underlying Riemann surface of C(W ) is
given in coordinates by

[z0, . . . , zn] 7−→ [zp0

0 , z
p1

1 ].

The map of underlying Riemann surfaces induced by s is thus given by

x 7−→ [sp0

0 (x), sp1

1 (x)].

Since sp0

0 , s
p1

1 generate the line bundle O(1) over P1, this map is clearly an isomorphism.
Moreover s is non-trivial at the orbifold points and it preserves the orbifold structure
therefore it must be an isomorphism at the level of orbifolds as well. �

Remark 4.4. Once a choice of embedding s : X ↪→ P(W ) as above is made, X can be
viewed as a weighted projective line [GL87]. The (weighted) projective coordinates of
the orbifold points of order p0, p1 and pi, i = 2, . . . , n, of X are precisely ∞, 0 and λi,
i = 2, . . . , n, respectively.

Consider now the polynomial ring C[X0, . . . , Xn] together with a W -grading given
by deg C = 0 and degXi = xi. Let I(X) be the ideal of C[X0, . . . , Xn] generated by
the polynomials in (5). The quotient

S(X) ..= C[X0, . . . , Xn]/I(X) ∼= C[z0, . . . , zn]

is again a W -graded ring generated by n + 1 elements zi with deg zi = xi. Let
grMod(S(X)) be the category of finitely generated graded modules over S(X) (the mor-
phisms being degree-preserving S(X)-module homomorphisms) and let grMod0(S(X))
be the full subcategory of modules that are finite dimensional vector spaces over C.

Proposition 4.5. The category coh(X) of coherent sheaves on X is equivalent to the
quotient category grMod(S(X))/grMod0(S(X)).

Proof. By Theorem 4.3X is isomorphic to the quotient stack C(W ) = [G(W )\ (V − {0})],
where V is defined by (5). Thus the category of coherent sheaves on X is equiv-
alent to that of G(W )-equivariant coherent sheaves on V − {0}. Now the category
of coherent sheaves on V − {0} is the quotient category of the category of coherent
sheaves on V modulo the coherent sheaves with support at 0, and the same is true for
G(W )-equivariant sheaves. In turn, the category of G(W )-equivariant sheaves on V is
equivalent to grMod(S(X)) via the sheafification functor

grMod(S(X)) −→ coh([G(W )\V ]), M 7→ M̃,

and the subcategory of those coherent sheaves with support on 0 is equivalent to
grMod0(S(X)), since the closed point 0 corresponds to the ideal (z0, . . . , zn) ⊆ S(X).

�
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The sheafification functor grMod(S(X)) −→ coh(X),M 7→ M̃, admits a right
adjoint GM∗ : coh(X)→ grMod(S(X)) defined by

GM∗(F) ..=
⊕
x∈W

H0(X,F(x)).

Remark 4.6. Traditionally (e.g. [Ser55], [GL87]) the functor GM∗ is denoted by Γ.
However, in what follows we would like to reserve the symbol Γ to indicate a Fuchsian
group. The letters GM are chosen to indicate that the S(X)-module obtained by
applying the functor is of geometric origin.

We say that an S(X)-module M is maximal Cohen-Macaulay if M is (finitely
generated) free over the sub-algebra C[Xp0

0 , X
p1

1 ] ↪→ S(X).

Theorem 4.7 (Geigle-Lenzing, [GL87], Thm. 5.1). Suppose V is a vector bundle on
X. Then GM∗(V) is a maximal Cohen-Macaulay S(X)-module.

When F = O(x) is a line bundle on X, the S(X)-module GM∗(O(x)) is S(X)[−x],
the module obtained from S(X) by shifting the W -grading by x. We say that a (finitely
generated) S(X)-module is free if it is a direct sum of shifts of the form S(X)[−x]. In
particular, Theorem 3.1 gives:

Corollary 4.8. Suppose X has at most two orbifold points and let V be a vector bundle
of rank r over X. Then the S(X)-module GM∗(V) is free of rank r.

Remark 4.9. Alternatively, observe that if X has at most two orbifold points then S(X)
is a polynomial ring in two variables, and any maximal Cohen-Macaulay S(X)-module
over a polynomial ring is free.

Conversely:

Proposition 4.10. Suppose V is an indecomposable vector bundle over the orbifold line
X. Then GM∗(V) is not free.

Proof. Suppose GM∗(V) ∼= ⊕ri=1S[−ai] for some ai ∈ W = Pic(X). The sheafification

functor gives G̃M∗(V) ∼= ⊕ri=1O(ai). But GM∗ is right-adjoint to F , so there is a

canonical isomorphism G̃M∗(V) ∼= V , contradicting the fact that V is indecomposable.
�

Remark 4.11. Line bundles are considered to be decomposable, so that the bundles
addressed in Proposition 4.10 are necessarily of rank at least two.

For example, let X be the orbifold line of signature (2, 2, 2) and let V be the rank
two indecomposable vector bundle W of Theorem 3.6. Then GM∗(W) is not free over
S(X).

5. Vector valued modular forms

Let Γ ⊆ PSL2(R) denote a Fuchsian group of the first kind, and assume that
Γ is of finite covolume. Let τ0, . . . , τn denote the elliptic points of Γ, each of order
p0, . . . , pn, respectively. Let s1, . . . , sm denote the cusps of Γ. The group Γ acts on h by
linear fractional transformations and the orbifold quotient [Γ\h] is a one-dimensional
complex orbifold which is a Riemann surface away from the elliptic points and it has a
Z/piZ-orbifold structure around each elliptic point τi.
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Let MΓ denote the compact modular orbifold associated to Γ, the orbifold curve
obtained by compactifiying the quotient [Γ\h] by adding the cusps of Γ (if any). This
is obtained from [Γ\h] by glueing disks around each cusp of Γ, as follows. For s a cusp,
let α ∈ PSL2(R) be such that α(s) =∞. The stabilizer Γs of the cusp s satisfies

αΓsα
−1 =

{(
1 h
0 1

)m
: m ∈ Z

}
∼= Z,

for some real number h > 0, called the width of s. There is a canonical injection
ιs : [Γs\h] ↪→ [Γ\h] and [Γs\h] maps holomorphically to the punctured unit disk D×

via the map

τ 7−→ e2πiα(τ)/h.

The punctured disk admits a canonical compactification ι : D× ↪→ D by the unit disk,
so the compactification along s is obtained via the following diagram

(6) [〈Γs〉\h]
ιs

uu

ooτ 7→e
2πiα(τ)/h

// D×

ι

''
[Γ\h] = MΓ D,

which identifies the cusp s with the origin 0 ∈ D.
The group Γ is identified with the orbifold fundamental group of [Γ\ h]. The

following result is well-known.

Proposition 5.1. Assume that the compact curve MΓ is of genus zero. Then the
Fuchsian group Γ admits a presentation of the form

Γ = 〈e0, . . . , en, σ1 . . . , σm | e
pj
j = 1 for all j, e0 · · · enσ1 · · ·σm = 1〉.

The ej may be taken to be generators of the elliptic isotropy subgroups, and the σj may
be taken to be generators of the cuspidal isotropy subgroups. In particular, if Γ has a
unique cusp, then Γ is the free product of its elliptic isotropy subgroups.

Proof. This is a classical result that goes back to Klein and Poincaré, but it is hard to
find a good reference. See the book [Sti92] for a discussion that treats the general case
of higher genus orbifolds, or the more classical [Hei64]. �

Let MΓ be the Riemann surface underlying MΓ, a compact, connected Riemann
surface equipped with a map MΓ → MΓ which is universal among all maps from the
orbifold MΓ to a Riemann surface. Assume that the genus of Γ is zero, so that MΓ is
an orbifold line and there is an isomorphism of Riemann surfaces (i.e. a hauptmodul)

j : MΓ

∼=−→ P1.

By general descent theory, a vector bundle on MΓ can be specified by giving a
vector bundle V◦ on the open quotient stack [Γ\h], together with the data of a pair
(Ws, φs), for each cusp s, of a vector bundle Ws over D and an isomorphism of vector
bundles

ι∗sV◦ ∼= ι∗Ws

lying over the isomorphism τ 7→ e2πiα(τ)/h (notation as in (6)). In particular a complex,
finite dimensional representation

ρ : Γ 7−→ GL(V ),
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gives by definition a local system V◦(ρ) on [Γ\h]. This local system may be extended
to a vector bundle over all of MΓ as follows: for each cusp s, let Ts ..= ( 1 h

0 1 ) and let
γs ..= α−1Tsα. Choose Ls ∈ End(V ) such that

e2πiLs = ρ(γs).

The extension of V◦(ρ) to MΓ at each cusp s is then given by the trivial vector bundle

O⊕ dim ρ
D over D together with the isomorphism

φs(v, τ) = (e−2πiα(τ)Ls/h v, e2πiα(τ)/h)

of ι∗sV◦(ρ) with ι∗O⊕ dim ρ
D .

Definition 5.2. Let L = {Ls}s∈cusps(Γ) be the vector of matrices chosen as above.
The extension of the vector bundle V◦(ρ) to MΓ given above is called the extension
corresponding to the choice of exponents L and it is denoted by VL(ρ). If all eigenvalues
of each Ls have real part contained in [0, 1), we say that L is the standard choice of
exponents and that VL(ρ) is the canonical extension of V◦(ρ), denoted by V(ρ).

Remark 5.3. It is natural and useful to allow choices of exponents other than the
canonical ones. For example, if all eigenvalues of each Ls have real part contained in
(0, 1], then L is the cuspidal choice of exponents and VL(ρ) is the cuspidal extension of
V◦(ρ), denoted by S(ρ). Classically this agrees with the space of cusp forms for ρ.

There is a special line bundle L2 over MΓ of modular forms of weight two, which
is the extension of the line bundle given on the open quotient [Γ\h] by the 1-cocycle(

a b
c d

)
7−→ (cτ + d)2,

and characterized by the isomorphism L2
∼= Ω1

MΓ
(log

∑
si) , so that

degL2 = degω + # cusps(Γ) = (n− 1)−
n∑
i=0

1

pi
+ # cusps(Γ).

For any k ∈ 2Z, the global sections of Lk ..= L⊗k/22 are precisely the classical
holomorphic modular forms of weight k on the group Γ, whose space is denoted by
Mk(Γ). Let

R(Γ) ..=
⊕
k∈2Z

Mk(Γ)

be the ring of modular forms over Γ. If V(ρ) is the canonical extension of a local system
given by ρ, let

Vk(ρ) ..= V0(ρ)⊗ Lk.

Definition 5.4. A holomorphic, ρ-valued modular form of weight k on Γ is a global
section of Vk(ρ) over MΓ. The space of all such sections is denoted by Mk(ρ). The
module of ρ-valued modular forms is the Z-graded R(Γ)-module

M(ρ) ..=
⊕
k∈2Z

Mk(ρ).

The rings R(Γ) are classical and well-studied objects (see [VZB] and the references
therein). The structure of the R(Γ)-modules M(ρ) are however unknown except in level
one, where it is known that M(ρ) is always free of rank dim ρ [MM10]. The goal of the
following sections is to demonstrate that the modules M(ρ) are in fact poorly behaved,
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and that a more well-behaved object GM(ρ) is given by a geometrically weighted version
of M(ρ). In order to define it, let

S(Γ) ..= S(MΓ)

denote the ring obtained by viewing MΓ as an orbifold line canonically embedded
into weighted projective space as in Section 4. This is a W (Γ)-graded ring, where
W (Γ) ..= Pic(MΓ) is a finitely generated abelian group of rank one (Proposition 2.2).
It is the ring generated by the spaces of global sections of all of the line bundles on
MΓ, not just the bundles Lk.

Definition 5.5. The module of geometrically weighted ρ-valued modular forms is the
W (Γ)-graded S(Γ)-module

GM(ρ) ..= GM∗(V(ρ)).

The modules GM(ρ) of geometrically weighted modular forms seem to be easier
to study than the modules M(ρ), since their structure mirrors that of vector bundles
over MΓ. For example, the following general result is a special case of Corollary 4.8:

Theorem 5.6. Suppose that Γ has at most two elliptic points, and let ρ : Γ 7−→ GL(V )
be any complex finite dimensional representation. Then GM(ρ) is free of rank dim ρ
over S(Γ).

One would like to have a purely automorphic description of the ring S(Γ) and
the modules GM(ρ). Since the upper half plane is a Stein manifold, all vector bundles
on curves uniformized by Fuchsian groups pull back to bundles on h described by au-
tomorphy factors. Thus, an automorphic description of these objects exists, and the
automorphy factors can be expressed as products of characters of Γ and fractional pow-
ers of the (cτ +d)-cocycle. However it seems to be a slightly delicate problem to obtain
an explicit description in generality. In certain cases one has access to a convenient
description. To state it, we first give an automorphic description of Pic0(MΓ).

Definition 5.7. A cuspidal character of a Fuchsian group Γ is a rank one representation
χ : Γ→ C× such that χ(σj) = 1 for each cuspidal isotropy generator σj in Proposition
5.1.

Since the fundamental group of MΓ is the quotient of the fundamental group
of [Γ\ h] obtained by throwing away the cuspidal generators, and since Pic0(MΓ) =
Hom(π1(MΓ),C×), we find that the group of cuspidal characters of the Fuchsian group
Γ is naturally identified with Pic0(MΓ). Thus from the exact sequence

0→ Pic0(MΓ)→ Pic(MΓ)→ 1

m
Z→ 0,

we see that to give an automorphic description of S(Γ), it suffices to give an automorphic
description of a line bundle of degree 1/m, where m = lcm(p0, . . . , pn). The most
convenient cases are when L2 is of degree 1

m
. This holds in the cases of signature (2, 3),

(3, 3) and (2, 2, 2) discussed below, but not in the last case of signature (2, 2, 3) that we
consider.

When L2 is of degree 1
m

, one finds that

S(Γ) ∼=
⊕
(χ,k)

Mk(Γ, χ), GM(ρ) ∼=
⊕
(χ,k)

Mk(Γ, ρ⊗ χ),

where the direct sums are over all of the cuspidal characters χ and integer weights
k. Crucial to this description is the fact that if L denotes a choice of exponents for a
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representation ρ, then one can use the exact same exponents for ρ⊗χ for any cuspidal
character χ. Hence one has Vk,L(ρ ⊗ χ) = V0,L(ρ) ⊗ Vk(χ), where Vk(χ) denotes the
canonical extension of the cuspidal character χ. For characters that are not cuspidal,
one need not have compatibility of extensions like this (instead one must adjust the
exponents on the left side of the identity). Note also that since this holds for an
arbitrary choice of exponents for ρ, one can define GML(ρ) using these exponents, and
one obtains an analogous description in terms of the Mk,L(Γ, ρ⊗χ). However, it is not
usually the case that L2 is of degree 1

m
, and so in most cases the ring

⊕
(χ,k) Mk(Γ, χ)

generated by the cuspidal characters is strictly smaller than S(Γ). Our final example
below illustrates this phenomenon.

6. Examples and counterexamples

This section presents several examples that illustrate the theory above.

6.1. Level one. Let Γ(1) = PSL2(Z). This group has two elliptic points τ0 = i and
τ1 = e2πi/3 of order 2 and 3, respectively. The abelian group W = Pic(MΓ(1)) is
generated by two elements x0 and x1 such that 2x0 = 3x1, and P(W ) is the weighted
projective line P(2, 3) (as in [CF16]). There is a unique order-preserving isomorphism
W ∼= Z such that x0 and x1 correspond to the elements 3 and 2, respectively. The
canonical generator for W is the class of the line bundle of weight 2 modular forms L2,
of degree 1

6
. The line bundle O(x0), of degree 1

2
, must then be isomorphic to L6 and by

Riemann-Roch it has a unique (up to rescaling) global section E6 with a simple zero at
the elliptic point of order 2. Similarly, the line bundle O(x1) is isomorphic to L4 and it
has a unique (up to rescaling) global section E4 with a simple zero at the elliptic point
of order 3. The isomorphism

s : MΓ(1)

∼=→ C(W )

in this case is given in coordinates by τ 7→ [E6(τ), E4(τ)]. The map induced by s at
the level of underlying Riemann surfaces MΓ(1) → P1 is given in coordinates by

τ 7→ [E2
6(τ), E3

4(τ)],

which sends τ0 = i to λ0 =∞ = [0, 1] and τ1 = e2πi/3 to λ1 = 0 = [1, 0]. Up to a linear
change of coordinates in P1, this map corresponds with the usual j-function. Note that
since W ∼= Z, generated by L2, we have

S(Γ(1)) = R(Γ(1)) = C[E4, E6]

and similarly M(ρ) = GM(ρ), for any representation ρ : Γ(1) → GL(V ). Thus, for
Γ(1), geometrically weighted modules of modular forms correspond to the usual Z-
graded modules of modular forms. In particular, Theorem 5.6 specializes in level one to
the well-known free module theorem for vector valued modular forms on Γ(1) ([EZ85],
[MM10], [Gan14], [CF16]).

6.2. The subgroup of index two. Let Γ2 denote the subgroup of PSL2(Z) of index
two. This group is discussed in Section 1.3 of [Ran77]. If χ denotes the generating

character of PSL2(Z) satisfying χ(T ) = e
2πi
6 , then Γ2 = kerχ3, so that T is not an

element of Γ2. Similarly S is not an element of Γ2, while R is an element of Γ2. Thus,
τ0 = ζ = e2πi/3 and τ1 = ζ + 1 are two elliptic points for Γ2 with stabilizers R0 = R and
R1 = TRT−1, respectively, and there are no other elliptic points. Since Γ2 has a unique
cusp, it follows by Proposition 5.1 that Γ2 is freely generated by R0 and R1. Since R0
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and R1 are of order three, it follows that χ3 restricts to the trivial character of Γ2, but
that χ and χ2 are nontrivial. Observe that R1R0 = T 2 in PSL2(R).

Define characters α0, α1 ∈ Hom(Γ2,C×) by setting αi(Ri) = ζ and αi(Rj) = 1
if i 6= j. Since χ(R0) = χ(R1) = ζ2, we have χ = α2

0α
2
1. The subgroup of cuspidal

characters is {1, α0α
2
1, α

2
0α1). If φ ∈ Hom(Γ2,C×), then let φT denote the conjugate

character defined by

φT (g) = φ(T−1gT ).

If ρ = Indφ, where by Ind we mean the induction up to PSL2(Z), then observe that
there exists a basis for ρ such that

ρ(T ) =

(
0 φ(T 2)
1 0

)
, ρ(S) =

(
0 φ(R)

φ(T−1RT−1) 0

)
, ρ(R) =

(
φ(R) 0

0 φT (R)

)
.

In particular, (det Indφ)(T ) = −φ(T 2). Mackey’s criterion for irreducibility implies
that Indφ is irreducible if and only if φ 6= φT . The characters fixed by conjugation are
precisely the characters χr = αr0α

r
1, and for each of these one has Indχr ∼= χr ⊕ χr+3.

To determine the pairs (φ, φT ) for the remaining characters, observe that since
R0 = ST and R1 = TS, one has αT0 = α1. Thus, the characters αu0α

u
1 have reducible

inductions, while the characters in each pair (αu0α
v
1, α

v
0α

u
1) for u 6= v yield irreducible

and isomorphic inductions. The following table lists the exponents for the induced rep-
resentations and the minimal weight, obtained via the isomorphism M(φ) ∼= M(Indφ)
and results about vector valued modular forms of rank two for SL2(Z) (cf. [FM14a] or
[FM14b]).

(φ, φT ) (α0α
2
1, α

2
0α1) (α0, α1) (α2

0, α
2
1)

φ(T 2) 1 ζ ζ2

Exponents for Indφ 0, 1
2

1
6
, 2

3
1
3
, 5

6

Minimal weight 2 4 6

Moving to the right along this table corresponds to tensoring with χ. In general,
multiplication by η4 defines an inclusion M(ρ) ↪→M(ρ⊗χ). For ρ equal to a character
φ as in the table, one sees that this map is in fact an isomorphism, since the minimal
weights increase by two with each twist.

For ease of notation set β = α0α
2
1. In the summer of 2016, Geoff Mason showed

that not all modules M(ρ) of vector valued modular forms for Γ2 are free over the ring
R of scalar valued modular forms for Γ2. Since R is not a polynomial ring, it is natural
to ask whether the modules M(ρ) are at least projective over R, in analogy with the
free module theorem in level one. We will show that M(β) is not a projective module
over the ring

R =
C[E4, E6, η

12]

(E3
4 − E2

6 − 123η24)

of scalar valued modular forms for Γ2. Here Ek denotes the Eisenstein series of weight
k for Γ(1), normalized so that its constant term is 1, and η denotes the Dedekind eta
function.

It is easy to see that M(β) is not a free R-module. This is because Ind(β) is
irreducible, and since M(β) ∼= M(Ind β), it follows that the Hilbert-Poincaré series∑

k∈Z dimMk(β)T k for the graded module M(β) is equal to T 2+T 4

(1−T 4)(1−T 6)
(cf. [FM14a]

or [FM14b]). However, a free graded R-module has a Hilbert-Poincaré series that is a
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sum of series of the form T l+T l+6

(1−T 4)(1−T 6)
for various weights l. It follows that M(β) is not

a free R-module.
The exponents of ρ = Ind β are 0 and 1/2. This corresponds to Example 21 in

[FM14b]. There exists a basis for M(β) in terms of the theta series1

θ2(q) = 2
∞∑
n=0

q
(2n+1)2

8 , θ3(q) = 1 + 2
∑
n≥1

qn
2/2, θ4(q) = 1 + 2

∑
n≥1

(−1)nqn
2/2.

Using the transformation laws of theta series, and the classical fact that θ4
3 = θ4

2 + θ4
4,

one sees that
F = (1 + e2πi 1

6 )θ4
2 − e2πi 5

6 (θ4
3 + θ4

4)

is the unique, up to rescaling, form F ∈M2(β). Further, the structure theory of vector
valued modular forms of rank two (cf. [Mas08], [FM14a] or [FM14b]) implies that F and
DF generate M(β) freely as an R(1) = C[E4, E6] module. By examining q-expansions,
one finds that

η12F = u (E6F + 6E4DF ) , η12DF = −1

6
u
(
E2

4F + 6E6DF
)
,

where u = 1
72

(2e2πi 1
6 − 1) is a square root of −12−3.

Proposition 6.1. The module M(β) of vector valued modular forms for β is not pro-
jective over the ring R = C[E4, E6, η

12] of scalar valued modular forms for Γ2.

Proof. Consider the exact sequence

(7) 0→ ker p→ R⊕R p→M(β)→ 0

of R-modules defined by p(x, y) = xF + yDF . We will show that (7) is not split, and
hence M(β) is not a projective R-module.

Let (a + bη12, c + dη12) ∈ ker p where a, b, c and d are classical scalar forms of
level one. By hypothesis

0 = aF + bη12F + cDF + dη12DF

= aF + bu(E6F + 6E4DF ) + cDF − 1

6
du
(
E2

4F + 6E6DF
)

=

(
a+ buE6 −

1

6
duE2

4

)
F + (c+ 6buE4 − duE6)DF

Thus, after relabeling variables,

ker p =
{(
u(bE2

4 − aE6) + aη12, 6u(bE6 − aE4) + 6bη12
)
| a, b ∈ R(1)

}
.

An R(1)-basis for ker p is given by

e1 = (−uE6 + η12,−6uE4), e2 = (uE2
4 , 6uE6 + 6η12).

Observe that since −123u2 = 1, then ∆ = u2(E2
6 − E3

4). It follows that the matrix of
multiplication by η12 acting on ker p in this R(1)-basis is

u ·
(
−E6 E2

4

−E4 E6

)
.

The preimages of F and DF under p must be of the form

b1 = (1, 0) + ae1 + be2, b2 = (0, 1) + ce1 + de2,

1Here q = e2πiτ rather than q = eπiτ .
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for unique scalar forms a, b, c, d ∈ R(1). In order for the exact sequence (7) to split, it
must be possible to find choices of b1 and b2 such that R(1)b1 ⊕R(1)b2 is stable under
multiplication by η12. To see that no such choice exists, observe that

η12b1 = (η12, 0) + u(bE2
4 − aE6)e1 + u(bE6 − aE4)e2,

η12b2 = (0, η12) + u(dE2
4 − cE6)e1 + u(dE6 − cE4)e2.

Solving xb1 + yb2 = η12b1 for x, y ∈ R(1) amounts to solving

η12b1 =(x, y) + (xa+ yc)e1 + (xb+ yd)e2

=(x, y)− u(xa+ yc)(E6, 6E4) + u(xb+ yd)(E2
4 , 6E6)

+ (xa+ yc)(η12, 0) + (xb+ yd)(0, 6η12)

On the other hand,

η12b1 =(1 + u(bE2
4 − aE6))(η12, 0) + u(bE2

4 − aE6)(−uE6,−6uE4)+

u(bE6 − aE4)(0, 6η12) + u(bE6 − aE4)(uE2
4 , 6uE6)

These considerations lead to the equations

xa+ yc = 1 + u(bE2
4 − aE6),

xb+ yd = u(bE6 − aE4),

x− u(xa+ yc)E6 + u(xb+ yd)E2
4 = −u2(bE2

4 − aE6)E6 + u2(bE6 − aE4)E2
4 ,

y − 6u(xa+ yc)E4 + 6u(xb+ yd)E6 = −6u2(bE2
4 − aE6)E4 + 6u2(bE6 − aE4)E6.

Substituting the first two equations above into the last two yields x = uE6 and y =
6uE4. But then the first equation is not satisfied. This shows that the exact sequence
(7) is not split as an R-module, and hence M(β) is not a projective R-module. �

In this case since 1, β and β2 are the cuspidal characters, and since L2 is of
degree 1/3 (so that β and L2 generate the Picard group of line bundles on the weighted
projective line associated to Γ2), one has

S(Γ2) = M(Γ2, 1)⊕M(Γ2, β)⊕M(Γ2, β2).

The minimal weights for β and β2 are both 2, and dimM2(Γ2, β) = dimM2(Γ2, β2) = 1.
If F and G denote generators for these spaces, then S(Γ2) = C[F,G]. If ρ is any
representation of Γ2, and if L denotes any choice of exponents for ρ(T 2), then Corollary
4.8 states that GML(ρ) = ML(ρ)⊕ML(ρ⊗β)⊕ML(ρ⊗β2) is a free module over C[F,G]
of rank dim ρ. This is the appropriate generalization of the free module theorem of
[MM10] to the subgroup of PSL2(Z) of index 2.

Remark 6.2. The free module theorem for Γ2 has been obtained independently by
Gannon using a different argument (unpublished note). Gannon has also proved similar
results for other subgroups, but it is not clear to the authors whether Gannon’s method
generalizes as easily as the geometric arguments presented here.

6.3. The normal subgroup of index three. Let Γ3 denote the unique normal sub-
group of PSL2(Z) of index 3, which is discussed in Section 1.2 of [Ran77]. Since
Γ3 = kerχ2, it follows that T 3 ∈ Γ3, S ∈ Γ3 and R 6∈ Γ3. The elliptic points are
τ0 = i, τ1 = i + 1 and τ2 = i + 2. The matrices S0 = S, S1 = TST−1, S2 = T 2ST−2

generate the isotropy subgroups, and thus by Proposition 5.1, they generate Γ3 freely.
Define characters of Γ3 by setting αi(Si) = −1 and αi(Sj) = 1 for j 6= i. Then

α0, α1 and α2 generate the character group freely. Let χ denote the restriction of the
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character of η4 for PSL2(Z) to Γ3. Then χ(Si) = −1 for all i, so that χ = α0α1α2. One
easily checks that conjugation by T permutes the generating characters by α0 7→ α1 7→
α2 7→ α0. The orbit decomposition for the characters is thus

Hom(Γ3,C×) = {1} ∪ {α0α1α2} ∪ {α0, α1, α2} ∪ {α1α2, α0α2, α0α1}.

The cuspidal characters are {1, α1α2, α0α2, α0α1}.
The following table lists the exponents and minimal weights for Indφ as φ ranges

over the two nontrivial orbits above. The exponents can be computed using the identity
S0S1S2 = T−3, since the characteristic polynomial of Indφ(T ) is X3 − φ(T 3).

Orbit Exponents Minimal weight
{α1α2, α0α2, α0α1} 0, 1/3, 2/3 2
{α0, α1, α2} 1/6, 1/2, 5/6 4

The modular forms for α1α2, α0α2 and α0α1 can be found inside the space M2(Γ(3)),
which is a three-dimensional space of modular forms spanned by Eisenstein series. If
Gα is the Eisenstein series of level 3 associated to the cusp α, then equation (4) in
Section VII of [Sch74] shows that Gα|g = Ggtα for all g ∈ SL2(Z). Using this, one finds

A = G0 +G1 −G2 −G∞ ∈M2(α0α1),

B = G0 −G1 +G2 −G∞ ∈M2(α0α2),

C = G0 −G1 −G2 +G∞ ∈M2(α1α2).

These modular forms satisfy the quadratic relation

A2 + ζB2 − (ζ + 1)C2 = 0,

which is an example of the relation (5) from Section 4. In this case L2 again has the
correct degree of 1/2 and we can give the automorphic description:

S(Γ3) ∼=
C[A,B,C]

(A2 + ζB2 − (ζ + 1)C2)
.

If ρ denotes a representation of Γ3 and L denotes a choice of exponents for ρ(T 3), then

GML(ρ) ∼= ML(ρ)⊕ML(ρ⊗ α0α1)⊕ML(ρ⊗ α0α2)⊕ML(ρ⊗ α1α2).

By Theorem 4.7, the S(Γ3)-module GML(ρ) is maximal Cohen-Macaulay, although it
no longer need be free.

Since the signature of MΓ3 is (2, 2, 2), Theorem 3.6 states that there exists an
indecomposable bundle of rank two on MΓ3 . To give a modular description of such a
bundle, consider the following family of representations ρz indexed by z ∈ P1:

ρz(S0) =

(
−1 1
0 1

)
, ρz(S1) =

(
−1 z
0 1

)
, ρz(S2) =

(
−1 0
0 1

)
,

if z 6=∞, while if z =∞ set

ρ∞(S0) =

(
−1 0
0 1

)
, ρ∞(S1) =

(
−1 1
0 1

)
, ρ∞(S2) =

(
−1 0
0 1

)
.

These are all of the extensions of the trivial character by χ, up to isomorphism as
abstract representations (not as extensions). Note that Ω1

MΓ3

∼= V(χ) so if ρ = ρz is one

of the above representations, then we get a corresponding extension of vector bundles

0→ Ω1
MΓ3
→ V(ρ)→ OMΓ3 → 0.
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As in the proof of Theorem 3.6, the vector bundle V(ρ) is indecomposable if and only
if the connecting homomorphism δ in the long exact sequence

0→ H0(MΓ3 ,Ω1
MΓ3

)→ H0(MΓ3 ,V(ρ))→ H0(MΓ3 ,OMΓ3 )
δ→ H1(MΓ3 ,Ω1

MΓ3
)→ . . .

is nontrivial. Since H0(MΓ3 ,Ω1
MΓ3

) = 0 and dimH0(MΓ3 ,OMΓ3 ) = 1, the nontriviality

of δ is equivalent to H0(MΓ3 ,V(ρ)) = M0(Γ3, ρ) = 0. One can show that there exists
a unique z0 such that M0(Γ3, ρz0) 6= 0, and hence there exists a unique z0 such that
the bundle associated to ρz0 decomposes as a direct sum of two line bundles. All other
z ∈ P1 yield indecomposable and isomorphic bundles of rank two.

To compute the value z0 ∈ P1 corresponding to a split bundle explicitly, note that
a form ( ab ) ∈M0(Γ3, ρz) satisfies b ∈M0(Γ3, 1), so that b is constant, and a′ ∈M2(Γ3, χ).
In particular, the derivative a′ is independent of z ∈ P1. To determine M2(Γ3, χ), note
first that it is not hard to see that dimM2(Γ3, χ) = 1. Hence since M2(Γ3, χ) clearly
contains η4, it is in fact spanned by this form. It follows that a′ is a scalar multiple of
η4. Hence after rescaling ( ab ), we may assume that a is an antiderivative of η4.

Using the transformation law for functions in M0(Γ3, ρz), one sees that since ρz(S2)
is diagonal, necessarily this antiderivative a must vanish at τ2 = i + 2, the fixed point
of S2. This pins a down uniquely as the integral

a(τ) =

∫ τ

i+2

η4(z)dz.

Examination of the transformation law of ( ab ) at the other two elliptic points τ0 = i

and τ1 = i+ 1 shows that z0 = a(i+1)
a(i)

. Thus,

1

z0

=

∫ i
i+2

η4dτ∫ i+1

i+2
η4dτ

= 1 +

∫ i
i+1

η4dτ∫ i+1

i+2
η4dτ

= 1 + χ(T−1) = 1 + e−2πi/6,

so that if z 6= 1
6
(3+
√

3i), then V(ρz) is indecomposable. For such z, the module GM(ρz)
is maximal Cohen-Macaulay but not free over S(Γ3), by Proposition 4.10.

6.4. A nonnormal subgroup of signature (2,2,3). The previous examples were
normal subgroups of PSL2(Z) with cyclic quotient, which simplified some of the com-
putations. Our final example concerns a nonnormal subgroup of index 4. There is a
well-known isomorphism S4

∼= PSL2(Z/4Z). Let G be the subgroup of PSL2(Z) gener-
ated by Γ(4) and the matrices S = ( 0 −1

1 0 ) and A = ( 1 1
1 2 ). Then G/Γ(4) is isomorphic

with S3 and the image of G in PSL2(Z/4Z) is equal to the following set of representative
matrices: (

1 0
0 1

)
≡ I

(
1 1
1 2

)
≡ A

(
2 3
3 1

)
≡ A2(

0 3
1 0

)
≡ S

(
1 2
3 3

)
≡ SA

(
3 1
2 1

)
≡ SA2

This describes the subgroup G of index 4 in PSL2(Z) as a congruence subgroup. The
elements 1, T , T 2 and T 3 are a full set of nontrivial coset representatives of G in
PSL2(Z). Thus, the only possible elliptic points for G are the G-orbits of i, i+ 1, i+ 2,
i + 3 and ζ, ζ + 1, ζ + 2, ζ + 3, where ζ = e2πi/3. By computing the full stabilizers
of these points in PSL2(Z) and then considering the congruence description of G, one
easily sees that the elliptic points for G are τ0 = i, τ1 = i + 3 and τ2 = ζ + 2. Thus
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G is of genus zero with a single cusp of width 4 and three elliptic points of signature
(2, 2, 3). By Proposition 5.1, G is generated freely by the matrices

S0 = S, S1 = T 3ST−3, R2 = T 2RT−2 = T 2ST−1.

Define characters of G by setting α0(S0) = −1, α0(S1) = α0(R2) = 1. Define
α1 similarly but with S0 and S1 permuted, and define α2 by setting α2(R2) = ζ,
α2(S0) = α2(S1) = 1. These characters generate the character group Hom(G,C×). If
χ is the usual character of PSL2(Z) then χ(S) = −1 and χ(R) = ζ2. Thus since G
contains elliptic elements of order 2 and 3, its restriction to G remains order 6. In fact,
we have χ = α0α1α

2
2 as characters of G. Since T 4 = S1R2S0, and a character φ for

G is cupsidal if and only if φ(T 4) = 1, the cuspidal characters are 1 and α0α1 = χ3.
Unfortunately in this case L2 has degree 2/3, so L2 does not generate the non-torsion
part of the Picard group, since m = lcm(2, 2, 3) = 6. Therefore tensoring L2 with
all the cuspidal characters of G fails to capture all of the ring S(G) of geometrically
weighted modular forms for G, and so we cannot give a simple automorphic description
of S(G) as we did in the previous examples.

In order to determine the Hilbert-Poincaré polynomials of the characters χn and
to describe the modules M(G,χn), observe that the trivial representation of G induces
to the standard representation of S4

∼= PSL2(Z)/Γ(4), and so it decomposes into a one-
dimesional trivial character and a three dimensional irreducible representation. Since
T corresponds to the cycle (1234) in this representation, the exponents for the three-
dimensional irrep are 1/4, 1/2 and 3/4. Hence Tr(L) = 3/2, and for three-dimensional
irreps the minimal weight is 4 Tr(L) − 2, which in this case is 4. Thus the Hilbert-

Poincaré polynomial for the trivial character of G is 1+T 4+T 6+T 8

(1−T 4)(1−T 6)
. This is the Hilbert-

Poincaré polynomial for the ring of classical scalar modular forms for G. More generally,
twisting by χ and using the formulae of Section 6 of [CF16] yields the following Hilbert-
Poincaré polynomials for the powers of χ:

1 :
1 + T 4 + T 6 + T 8

(1− T 4)(1− T 6)
χ :

T 2 + T 6 + T 8 + T 10

(1− T 4)(1− T 6)
χ2 :

2T 4 + T 6 + T 8

(1− T 4)(1− T 6)

χ3 :
T 2 + T 4 + 2T 6

(1− T 4)(1− T 6)
χ4 :

T 4 + T 6 + 2T 8

(1− T 4)(1− T 6)
χ5 :

T 2 + T 4 + T 6 + T 10

(1− T 4)(1− T 6)

In order to describe a rank two indecomposable bundle for G, we first classify all
indecomposable representations of rank 2. The classification of such representations
containing the trivial representation is as follows – the general case can be deduced
from this by tensoring with a character.

Proposition 6.3. Up to isomorphism of ρ, the following lists all of the nonsplit inde-
composable rank 2 representations of G containing a copy of the trivial representation:

(1) there is a single extension

0→ 1→ ρ→ χ3 → 0

given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 0
0 −1

)
ρ(R2) =

(
1 0
0 1

)
.

(2) there are two infinite families of nonisomorphic representations parameterized
by P1 which arise from extensions

0→ 1→ ρ→ χ−a → 0
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when a = 1 or 5, given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 z
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
ρ(S0) =

(
1 0
0 −1

)
ρ(S1) =

(
1 1
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
where z ∈ C.

(3) there are two extensions

0→ 1→ ρ→ α0χ
−a → 0

where a = 2 or 4, given by

ρ(S0) =

(
1 1
0 −1

)
ρ(S1) =

(
1 0
0 1

)
ρ(R2) =

(
1 0
0 ζa

)
.

(4) there are two extensions

0→ 1→ ρ→ α0χ
−a → 0

when a = 1 or 5 given by

ρ(S0) =

(
1 0
0 1

)
ρ(S1) =

(
1 1
0 −1

)
ρ(R2) =

(
1 0
0 ζa

)
.

Proof. This is a standard cohomological computation. Given an extension

0→ 1→ ρ→ φ→ 0

for some character φ of G, let κ denote the top right entry of ρ. This is a 1-cocycle
living in

Z1 = {κ : G→ C | κ(gh) = φ(h)κ(g) + κ(h)}.
The isomorphism classes of extensions of φ by 1 are parameterized by the cohomology
group H1 = Z1/B1 where

B1 = {κ ∈ Z1 | ∃z ∈ C such that κ(g) = (φ(g)− 1)z}.
Being isomorphic as extensions is stricter than being isomorphic as abstract represen-
tations. The isomorphy classes as abstract representations arising from the nontrivial
extensions are identified with the projective space P(H1). We will describe the com-
putation for the extensions of φ = χ−a by 1 and omit the details for the other six
characters.

There is an embedding f : Z1 → C3 defined by f(κ) = (κ(S0), κ(S1), κ(R2)).
Observe that

f(B1) = {(((−1)a − 1)z, ((−1)a − 1)z, (ζa − 1)z) | z ∈ C}.
In particular, B1 is zero dimensional if a = 0 and otherwise it is one dimensional. To
determine Z1, let us first examine what the cocycle conditions enforces. Of course
κ(1) = 0. Since S2

0 = S2
1 = R3

2 = 1 we deduce that

0 = ((−1)a + 1)κ(S1) = ((−1)a + 1)κ(S2) = (ζ2a + ζa + 1)κ(U)

If a = 0 then κ = 0 and Z1 is also zero dimensional. If a = 2, 4 then κ(S0) = κ(S1) = 0
and Z1 is at most one dimensional. In this case there are no nontrivial extensions. If
a = 3 then κ(R2) = 0 and κ(S0) and κ(S1) can be nonzero. Hence after modding out
by B1 we get a one dimensional space of extensions. Finally if a = 1, 5 then there are
no conditions whatsoever and Z1 is three dimensional, hence there is a two dimensional
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space of extensions. Since the nontrivial extensions break up into isomorphism classes
according to P(Z1/B1), one deduces the stated classification. �

Let ρ denote an indecomposable but not irreducible rank two representation of
the form

0→ χ5 → ρ→ 1→ 0.

As with the subgroup of index three, the corresponding bundle V(ρ) on MG is decom-
posable if and only if there exist nonzero modular forms for ρ of weight zero. To write
down such a form explicitly, note that by Proposition 6.3, up to isomorphism ρ must
be of the form ρz for z ∈ C, or ρ∞, where

ρz(S1) =

(
−1 −1
0 1

)
ρz(S2) =

(
−1 z
0 1

)
ρz(R2) =

(
ζ2 0
0 1

)
ρ∞(S1) =

(
−1 0
0 1

)
ρ∞(S2) =

(
−1 −1
0 1

)
ρ∞(R2) =

(
ζ2 0
0 1

)
.

Let F = ( ab ) be nonconstant of weight zero for one of the representations ρz. As above,
b must be a nonzero scalar and a′ ∈M2(G,χ5). Since we computed the Hilbert-Poincaré
polynomial of χ5 on G to be∑

k∈Z

dimMk(G,χ
5)T k =

T 2 + T 4 + T 6 + T 10

(1− T 4)(1− T 6)

it follows that M2(G,χ5) is one dimensional.
To describe M2(G,χ5), observe that the induction Indχ5 to PSL2(Z) is a four

dimensional representation that breaks up into a copy of χ5 regarded as a character of
PSL2(Z), and a three dimensional irreducible representation with exponents 1/12, 1/3
and 7/12. It is only the three dimensional irreducible representation that contributes
to M2(G,χ5). Using the results of [FM14b] on three dimensional representations of
PSL2(Z), one can show that M2(G,χ5) is spanned by a linear combination of forms
with Fourier coefficients:

f1 = q
1
12

(
1 + 2q − 5q2 − 10q3 + 9q4 + 14q5 − 10q6 + 14q8 + · · ·

)
,

f2 = q
1
3

(
1− 4q2 + 2q4 + 8q6 − 5q8 + · · ·

)
,

f3 = q
7
12

(
1− 2q + q2 − 2q3 + 4q5 + · · ·

)
.

One finds that

f1 =

(
η(q2)5

η(q)η(q4)2

)2

, f2 = η(q2)4, f3 =

(
η(q)η(q4)2

η(q2)

)2

.

Using the transformation law for η2, it is not hard to show that f = f1 + 4f3 spans
M2(G,χ5). Hence, after possibly rescaling ( ab ) ∈M0(G, ρz), we may assume that a′ = f .
As in the case of the group of index 3, since ρz(R2) is diagonal, we must have

a(τ) =

∫ τ

ζ+2

f(z)dz.

If a(τ0) = a(τ1) = 0 then one easily checks from the transformation law for a that it is
in fact a scalar modular form of weight zero for χ5 on G, hence it must be constant.
Since a is not constant, at least one of a(τ0) or a(τ1) is nonzero. The transformation
law for a then shows that the point z0 = (a(τ0) : a(τ1)) ∈ P1 corresponds to the unique
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representation ρz0 yielding the decomposable bundle, and all other bundles V(ρz) are
indecomposable. We used Sage to compute this value numerically:

z0 =
a(i+ 3)

a(i)
= 1.0910849089 . . .+ 0.4942818186 . . . i.

Computer experiments do not suggest that z0 is algebraic. This may be because it is
obtained by integrating a classical scalar congruence form between CM points corre-
sponding to different CM fields, in this case Q(i) and Q(ζ), and so the two different CM
periods intervene.2 Note that if a were an ordinary scalar modular form, and not an
antiderivative of such a form, then of course this ratio of CM values would be algebraic
by [Shi75]. These computations suggest that there may be some interesting arithmetic
encoded in the CM values of vector valued modular forms for some nonunitarizable
representations of congruence groups.
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