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ABSTRACT. We study modular forms for the minimal index noncongruence subgroups
of the modular group. Our main theorem is a proof of the unbounded denominator
conjecture for these groups, and we also provide a study of the Fourier coefficients of
Eisenstein series for one of these minimal groups.
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1. INTRODUCTION

Finite index subgroups of the modular group Γ = PSL2(Z) play an important
role in the study of algebraic curves thanks to a Theorem of Belyi [4], which implies
that curves of genus at least two defined over Q can be uniformized by such groups.
The congruence subgroups correspond to the well-studied and fundamentally impor-
tant modular curves, whereas the vast majority of curves correspond to finite index
subgroups of Γ that are not defined by congruence conditions. Such noncongruence
subgroups and their corresponding modular forms are much less well-understood
than congruence groups and forms.

To date much of the work on noncongruence modular forms has focused on the
following topics: Galois representations and congruences with congruence modular
forms [3], [28], [31], [32], [12], [18], [1], [11], [20], [2], [19]; the unbounded
denominator conjecture [3], [28], [17], [15], [16], [8], [9], [10]; moduli interpre-
tations [7]; spectral results [23], [24], [25] ; algebraic properties of Eisenstein series
[13], [29], [21]; computation of scattering matrices [14], [26], [5]. Given the vast
generality inherent in the study of noncongruence modular forms, most papers in the
subject have made progress by restricting to classes of groups that are more amenable
to study than a general subgroup — for example, one could consider the kernel of a
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character of a congruence subgroup, so that some finite power of each noncongruence
form is a congruence modular form.

In the present paper our aim is to study some noncongruence subgroups that
have not yet received particular focus and, from this perspective, it is natural to focus
on subgroups of small index in Γ. The minimal index of a noncongruence subgroup
of Γ is known to be seven, and there are twenty-eight such subgroups of index seven
that fall into four conjugacy classes. Our main theorem is a proof of the unbounded
denominator conjecture for these groups:

Theorem 1. Let G be any of the noncongruence subgroups of Γ of index seven, and
let f ∈ Mk(G) \Mk(Γ) have algebraic Fourier coefficients at the cusp ∞. Then f has
unbounded denominators.

Our proof of Theorem 1 proceeds as follows:
(a) solve for a hauptmodul (or Belyi map);
(b) establish unbounded denominators at the prime p = 7 for this hauptmodul1;
(c) use this result to prove Theorem 1 in general.

This argument can be adapted to many other groups, but it does not seem suited to
generalization for at least two independent reasons: first, the diophantine problem
involved in solving for a hauptmodul can be somewhat tricky in general and, second,
it is not clear how the proof of unbounded denominators would generalize (in this
paper we are aided by the fact that the index [Γ : G] = 7 is prime).

After we complete the proof of Theorem 1 we turn to the study Eisenstein series.
As in [29], [21] we are able to establish the algebraicity of the Eisenstein series of
weight two for more or less trivial reasons, but in higher weights we are only able
to determine the complex phase of the Fourier coefficients. Knowledge of this phase
follows from the study of the outer automorphism(

a b
c d

)
7→
(
a −b
−c d

)
of Γ acting on the subgroups of index seven. We end the paper with some numerical
computations that indicate that there is more that one might be able to say about
these Fourier coefficients in general, although we make no precise conjectures along
these lines.

1.1. Acknowledgments. The authors thank Jenna Rajchgot for some help in using
Macaulay 2 to solve the j-equations in Sections 4 and 5. We also thank WestGrid and
Compute Canada for some computational support.

1.2. Notation. Throughout the paper we use the following notation:
— Γ = PSL2(Z), the modular group;
— T = ( 1 1

0 1 ), S = ( 0 −1
1 0 ) and R = ST ;

— if G ⊆ Γ is of finite index, then M(G) =
⊕

k≥0Mk(G) denotes the graded
module of modular forms for G;

— ζn = e2πi/n and qn = e2πiτ/n;
— Ek ∈ Mk(Γ) denotes the Eisenstein series of weight k with constant term

normalized to equal 1;
— E2 denotes the normalized quasi-modular Eisenstein series of weight 2;
— j is the usual j-function, with constant term 744.

1In two cases, called U1 and U6 below, we must use a prime over 7 in a quadratic extension of Q.
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φ1 φ2

φ3 φ4

FIGURE 1. Cycle types for the homomorphisms Γ → S7 with transitive
image. The squiggly lines correspond to the image of S and the arrows
correspond to the image of R. The graphs are unlabeled since we are
interested in homomorphisms up to conjugation in S7. The last row
corresponds to congruence subgroups.

φ1 φ2 φ3 φ4

S 7→ (12)(34)(56) (12)(34)(56) (12)(34)(67) (12)(34)(67)

R 7→ (235)(467) (235)(764) (235)(467) (253)(467)

T 7→ (1245)(367) (12475)(36) (124735) (125473)

|imφj| 7! 7! 42 42

TABLE 1. Data for the noncongruence homomorphisms Γ → S7 with
transitive image.

2. NONCONGRUENCE SUBGROUPS OF INDEX 7

If G ⊆ Γ is of index 7, then the action of G on the cosets defines a homomor-
phism Γ → S7 with transitive image. Since Γ = SL2(Z)/{±1} is freely generated by
order 2 and 3 elements S and R, respectively, there are six such homomorphisms up
to conjugation. They are depicted in Figure 1, where the squiggly lines describe the
image of S, and the arcs describe the image of R. The last row in Figure 1 corresponds
to congruence subgroups of level 7, and so we shall only focus on the first two rows.
Call the corresponding (conjugacy classes) of homomorphisms φj as in Figure 1. To
be more precise, we pick the representatives for the conjugacy classes as in Table 1.

Note that φ1 and φ2 are surjective onto S7, while φ3 and φ4 have images of order
42. Let

Gj = φ−11 (Stabimφ1(j)), Hj = φ−12 (Stabimφ2(j)),

Uj = φ−13 (Stabimφ3(j)), Vj = φ−14 (Stabimφ4(j)).



4 ANDREW FIORI AND CAMERON FRANC

FIGURE 2. A fundamental domain for G1. The colours of the edges
describe the edge pairing.

The following result is known to experts, but we did not find a suitable reference in
the literature.

Theorem 2. The groups Gj, Hj, Uj and Vj for j = 1, . . . , 7 are the noncongruence
subgroups of Γ of smallest index.

Proof. Theorem 5 of [35] shows that all subgroups of Γ of index ≤ 6 are congruence.
That these groups are noncongruence will follow by our proof of unbounded denom-
inators, but this can also be proved by more elementary means: for example, for the
Gj and Hj it follows easily by the simplicity of A7. For the Uj, note that T has order 6
in the quotient Γ/ kerφ3. Hence by Theorem 2 in §3.1 of [27], if Uj were congruence
it would have to contain Γ(6). But by elementary group theory one sees that there
are no congruence subgroups of index 7 and level 6. Therefore the Uj (and similarly
the Vj) are noncongruence. By considering the image of T , it is clear that all of these
subgroups are distinct except possibly for some identity Ui = Vj, and without loss
of generality we may assume U1 = Vj for some j. Since R ∈ U1, and the only Vj
that contains R is V1, we thus would have U1 = V1. But one can easily check that U1

contains SRSR2S, while V1 does not. Therefore U1 6= V1 and hence Ui 6= Vj for all i
and j.

The only other subgroups of index 7 come from the last line in Figure 1, but
those homomorphisms yield the congruence subgroups of level 7 and index 7. �

Remark 3. In general, the number of subgroups of index n in Γ can be counted using
Exercise 5.13 of [34].

In the remainder of this section we shall describe some group theoretic data for
G1, H1, U1 and V1 that will be useful for what follows. The analogous data for the
other groups can be obtained by conjugation.

2.1. Data for G1. A fundamental domain for G1 is given in Figure 2 on page 4. The
elliptic points are represented by ζ3 and 1

2
(3 + i). The edge pairing is defined by the
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FIGURE 3. A fundamental domain for H1. The colours of the edges
describe the edge pairing.

following matrices:

T 4 =

(
1 4
0 1

)
, C2 =

(
−3 1
−1 0

)
,

C1 =

(
4 −3
3 −2

)
, E1 =

(
3 −5
2 −3

)
.

Here T 4 identifies the vertical blue sides, C1 identifies the pink edges, C2 identifies
the green and black edges with their pairs, and E1 identifies the red edge with itself.
Note that R = C−12 C1, so that if we use R as a generator, we can dispense with C2.
Similarly, C1 = E−11 CR−1, so that we can also dispense with C1. By standard results
on Fuchsian groups, one obtains the following presentation for G1:

G1 = 〈T 4, E1, R | E2
1 = R3 = 1〉.

2.2. Data for H1. A fundamental domain for H1 is given in Figure 3 on page 5. The
elliptic points are represented by ζ3 and 2 + i. The edge pairing is defined by the
following matrices:

T 5 =

(
1 5
0 1

)
, D2 =

(
−4 1
−1 0

)
,

D1 =

(
1 −2
2 −3

)
, E2 =

(
2 −5
1 −2

)
.

Here T 5 identifies the vertical blue sides, D1 identifies the pink edges, D2 identifies
the green and black edges with their pairs, and E2 identifies the red edge with itself.
Similarly to above we obtain a presentation

H1 = 〈T 5, E2, R | E2
2 = R3 = 1〉.

In particular G1
∼= H1 but this will play no role in what follows.

2.3. Data for U1. A fundamental domain for U1 is given in Figure 4 on page 6. The
elliptic points are represented by ζ3 and 1 + i. The edge pairing is defined by the
following matrices:

T 6 =

(
1 6
0 1

)
, A2 =

(
−5 1
−1 0

)
,

A1 =

(
−2 9
−1 4

)
, E3 =

(
1 −2
1 −1

)
.
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FIGURE 4. A fundamental domain for U1. The colours of the edges
describe the edge pairing.

FIGURE 5. A fundamental domain for V1. The colours of the edges
describe the edge pairing.

Here T 6 identifies the vertical blue sides, A1 identifies the pink and green edges with
their pairs, A2 identifies the black edges, and E3 identifies the red edge with itself.
Similarly to above we obtain a presentation

U1 = 〈T 6, E3, R | E2
3 = R3 = 1〉.

2.4. Data for V1. A fundamental domain for V1 is given in Figure 5 on page 6. The
elliptic points are represented by ζ3 and 4 + i. The edge pairing is defined by the
following matrices:

T 6 =

(
1 6
0 1

)
, B2 =

(
−5 1
−1 0

)
,

B1 =

(
−1 4
−1 3

)
, E4 =

(
4 −17
1 −4

)
.

Here T 6 identifies the vertical blue sides, B1 identifies the pink and green edges with
their pairs, B2 identifies the black edges, and E4 identifies the red edge with itself.
Similarly to above we obtain a presentation

V1 = 〈T 6, E4, R | E2
4 = R3 = 1〉.

3. OUTLINE OF PROOF OF THEOREM 1

We begin the proof of Theorem 1 with an elementary reduction.
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k dimMk(G)
0 1
2 1
4 3
6 4
8 5
10 6

k ≥ 12 dimMk−12(G) + 7
TABLE 2. Dimension of Mk(G) for the noncongruence subgroups G of
index 7.

Lemma 4. To prove Theorem 1 it suffices to treat the cases G = G1, G3, H1, H3, U1, U6,
V1 and V6.

Proof. We first consider the case of G1, which is conjugate with G2, G4 and G5 via
powers of T . Therefore, if f ∈ Mk(G1) has Fourier expansion f =

∑
n≥0 anq

n
4 where

q4 = e2πiτ/4, then the forms f(τ + m) =
∑

n≥0 ani
mnqn4 are forms on the various

conjugate groups, and vice versa. Hence Theorem 1 holds for G1 if and only if it
holds for any one of G1, G2, G4 or G5. An identical arguments applies to the other
cases. �

While not strictly necessary, we can describe the structure of M(G) as an M(Γ)-
module, which then immediately gives the dimensions of the graded pieces of M(G)
(see Table 2).

Lemma 5. Let G be any of the noncongruence subgroups of Γ of index 7. Then there
exists a free-basis for M(G) as an M(Γ)-module with generators in weights 0, 2, 4, 4, 6,
6 and 8 such that the generators have algebraic Fourier coefficients.

Proof. Let ρ be the representation of Γ obtained from the permutation representation
of G on its cosets in Γ, so that if M(ρ) is the corresponding space of vector-valued
modular forms, then there is an isomorphism M(G) ∼= M(ρ). Since ρ decomposes as
the trivial representation plus an even 6-dimensional irreducible representation for
each of these G, which at the level of scalar forms corresponds to the decomposition
M(G) = M(Γ) ⊕ ker Tr where Tr: M(G) → M(Γ) is the congruence trace, one can
use Riemann-Roch to find the weights of a free-basis for M(ρ) of the desired form
— see Example 7.4 of [6] where φ1 and φ2 are treated explicitly. Both φ3 and φ4 are
analogous to that case, as the local monodromies around elliptic points are conjugate
in all cases, and the sum of the exponents of ρ(T ) is 5/2 in each of these four cases,
as can be easily read off from the cycle type of ψj(T ) (not that this does not hold for
the congruence subgroups of index 7 where T acts as a seven-cycle).

To obtain a free-basis with algebraic Fourier coefficients, one could for example
diagonalize ρ(T ) and use the Frobenius method (in fact, in the course of the proof
of Theorem 1 we will write down an explicit free-basis with algebraic Fourier coef-
ficients). Since ρ(T ) can diagonalized over a finite extension of Q, algebraicity of
Fourier coefficients will be preserved under this operation. �

Remark 6. One can easily use the hauptmoduls described below to compute explicit
free-bases for M(G) as in Lemma 5, through taking derivatives and products of forms,
but we have no need for such a free-basis in this paper.
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In light of Lemmas 4 and 5, we can now proceed as follows:

(1) describe a hauptmodul for each of the genus 0 groups G1, G3, H1, H3, U1, U6,
V1 and V6;

(2) establish unbounded denominators for each hauptmodul;
(3) express modular forms in M(G) as forms of level one times rational functions

in the hauptmodul, and deduce unbouded denominators as a result.

We shall give all of the details for the group G1 in Section 4, and then in Section 5 we
shall summarize the key facts that allow one to carry out the same argument for the
other groups.

4. DETAILS FOR THE GROUP G1

Following Atkin–Swinnerton-Dyer [3], we compute a hauptmodul for the genus
0 group G1. Note that this hauptmodul is an example of a uniformizing Belyi map,
and there exists an extensive literature on computing Belyi maps – see [22], [33] and
the references contained therein for more information.

Recall that j = 1
q

+ 744 + 196884q + · · · . In the setting of G1, ASD solve for a
hauptmodul z = q−14 + 0 + O(q4) (so that q4 = ξ in the ASD notation) by introducing
polynomials:

a1 = z + c1,

f3 = z2 + c2z + c3,

e3 = z + c4,

f2 = z3 + c5z
2 + c6z + c7,

e2 = z + c8,

and then solving for the unknown cj ’s via the j-equations:

ja31 = f 3
3 e3,

(j − 1728)a31 = f 2
2 e2.

Eliminating j from these two equations gives the system of nonlinear equations:

0 = −c33c4 + 1728c31 + c27c8,

0 = −3c2c
2
3c4 − c33 + 2c6c7c8 + 5184c21 + c27,

0 = −3c22c3c4 − 3c2c
2
3 − 3c23c4 + c26c8 + 2c5c7c8 + 2c6c7 + 5184c1,

0 = −c32c4 − 3c22c3 − 6c2c3c4 + 2c5c6c8 − 3c23 + c26 + 2c5c7 + 2c7c8 + 1728,

0 = −c32 − 3c22c4 + c25c8 − 6c2c3 − 3c3c4 + 2c5c6 + 2c6c8 + 2c7,

0 = −3c22 − 3c2c4 + c25 + 2c5c8 − 3c3 + 2c6,

0 = −3c2 − c4 + 2c5 + c8.

Furthermore, if we expand the j-equations in z and compare constant terms, we get
an additional linear equation 3c1−3c2−c4 = 0. Finally, we must insist that a1, f3, e3, f2
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n an/u
n+1

−1 1
0 0
1 22 · 3 · 7 · 173
2 211 · 7 · 43
3 −1 · 2 · 3 · 7 · 173 · 199
4 −1 · 214 · 39 · 7
5 −1 · 23 · 7 · 17 · 89 · 1969543
6 −1 · 213 · 3 · ·5273 · 47339
7 32 · 7 · 11 · 19 · 26353729
8 217 · 310 · 7 · 31 · 67 · 131
9 22 · 3 · 7 · 11869625271733553
10 212 · 3 · 7 · 17 · 1579 · 36677 · 385321
11 2 · 3 · 72 · 7204271 · 2154711443

TABLE 3. Normalized Fourier coefficients of the hauptmodul for G1.

and e2 have distinct roots as polynomials in z. This means we have the nonequalities:

(c1 − c4)(c1 − c8)(c4 − c8) 6= 0,

c2j + c2cj + c3 6= 0 (j = 1, 4, 8),

c3j + c5c
2
j + c6cj + c7 6= 0 (j = 1, 4, 8),

c22 − 4c3 6= 0,

c25c
2
6 − 4c36 − 4c35c7 − 27c27 + 18c5c6c7 6= 0.

We put these into Macaulay 2 and performed a Grobner basis computation to find the
following substitutions:

c1 = 2
3
c5 + 1

3
c8,

c3 = 2c22 − 2c2c5 + 1
3
c25 − c2c8 + 2

3
c5c8 + 2

3
c6,

c4 = −3c2 + 2c5 + c8,

c7 = −3
7
(c32 + 3

2
c2c

2
5 − 119

81
c35 + 2

3
c22c8 + c2c5c8 − 70

27
c25c8 + 7

6
c2c

2
8 − 52

81
c38

− 11
3
c2c6 + 3c5c6 + 32

9
c6c8).

This leaves a system of 5 equations in the unknowns c2, c5, c6 and c8. With some effort
involving saturating with respect to the last nonequality condition, we managed to
find the following solution: if u = 4

√
−7/72 then

c1 = 168u, c2 = 256u,

c3 = 10869u2, c4 = −264u,

c5 = 160u, c6 = −28968u2,

c7 = −5900544u3, c8 = 184u.

Given this, one can recursively solve for the q4-expansion coefficients of z using the
j-equations. In Table 3 on page 9 we list the rational part of the Fourier coefficients
of the hauptmodul z.

Lemma 7. The hauptmodul has unbounded denominators.
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Proof. We note the minimal polynomial for the hauptmodul, z, as it defines a finite
extension of Q(j) is

(z2 + c2z + c3)
3(z + c4)− j(z + c1)

3.

We now perform the changes of variables

z = uẑ

where u = 4
√
−7/72, as above. We see that ẑ satisfies

ẑ7 + 504ẑ6+26544ẑ5 − 27020672ẑ4 − 6349147392ẑ3

− 568400910336ẑ2 − 22777684586496ẑ − 341511404027904

− 77j(ẑ3 + 504ẑ2 + 84672ẑ + 4741632).

To better understand the denominators in the Laurent expansion we shall formally
substitute

q4 = u−1q̂

and study ẑ as a Laurent series in q̂. Additionally, we renormalize j = −ĵ/77 so that
ĵ = 1

q̂4
(mod 7). We then have

ẑ7 + 504ẑ6+26544ẑ5 − 27020672ẑ4 − 6349147392ẑ3

− 568400910336ẑ2 − 22777684586496ẑ − 341511404027904

+ ĵ(ẑ3 + 504ẑ2 + 84672ẑ + 4741632).

By an application of Hensel’s lemma we can conclude that the coefficients of ẑ, as a
Laurent series in q̂, are integers.

We may thus reduce the series ẑ modulo 7 and notice that the result satisfies the
minimal polynomial

x7 + ĵx3 + 2 (mod 7)

over the function field F7(ĵ). Solutions to this equation in Laurent series F7((q̂)) must
have infinitely many non-zero coefficients. Indeed, a non-constant polynomial cannot
satisfy a polynomial equation of degree greater than 0.

This implies that ẑ, and hence z, has unbounded denominators as a Laurent
series when expressed in the variable q4. �

Corollary 8. Any element of Q(z) not in Q(j) has unbounded denominators.

Proof. If f ∈ Q(z) \Q(j) then the field extension it generates satisfies

Q(f)/Q(j) = Q(z)/Q(j)

and hence it follows that z can be expressed as P (f) where P is a polynomial in Q(j).
By clearing denominators from the coefficients of P we can write

zR1(j) = P2(f)

where now R1 ∈ Q[j] and P2 has coefficients in Q[j]. As the left hand side, zR1(j),
has unbounded denominators, so too must f . �

Completion of proof of Theorem 1 for G1. Every form f ∈ Mk(G) \Mk(Γ) of weight at
least 4 with algebraic Fourier coefficients can be expressed as f = EkP (z) for P (z) ∈
Q(z) \Q(j). By Corollary 8 P (z) has unbounded denominators, and hence so does f .
If f ∈M2(G) \M2(Γ) then instead write f = (E6/E4)P (z) for P (z) ∈ Q(z) \Q(j) and
then the same argument applies. �
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5. SOME DETAILS FOR THE OTHER GROUPS

Since the data about elliptic points for all the index 7 subgroups agree, the
degrees of a1, f3, e3, f2 and e2 are the same as for the group G1. Therefore in each
case below we retain our notation from Section 4 for these polynomials in terms of
unknowns c1 through c8. For all but H1 we were able to solve the equations through
a mixture of saturating with respect to the ASD nonequalities for the j-equations, as
well as using Grobner bases. Unfortunately H1 does not meet the locus defined by
the nonequalities and this strategy did not help there. For H1 we instead performed
a sequence of projections all the way down to the variable c8 and then we were able
to decompose the ideal. This yielded two additional spurious components, as well as
the unique correct solution below.

Let ψ : Γ → Γ be the outer automorphism given by conjugation with ( −1 0
0 1 ),

so that ψ ( a bc d ) =
(
a −b
−c d

)
. Notice that ψ(T ) = T−1 and ψ(S) = S−1, and that ψ

maps congruence subgroups to congruence subgroups. Since the j-equations do not
distinguish between complex conjugate subgroups, we shall describe how complex
conjugation acts on our groups.

Lemma 9. The outer automorphism ψ permutes the Gj among themselves, and likewise
for the Hj. In both cases the action is given by the permutation (12)(36)(45). On the
other hand, ψ maps the Uj groups to the Vj groups as follows:

ψ(U1) = V2, ψ(U2) = V1, ψ(U3) = V4, ψ(U4) = V3,

ψ(U5) = V5, ψ(U6) = V6, ψ(U7) = V7.

Proof. This can be proved using the presentations for each of these groups. Conjugate
the generators of each subgroup and test what group contains the result. This is a
finite computation that is easily performed on a computer. �

What this lemma means in practical terms is that we only need to solve the
j-equations for U1 and U6, as the Galois orbits of these solutions will contain the
hauptmoduls for all of the Uj and Vj.

The details in establishing unbounded denominators are the same as for G1,
save that certain constants change, and so we shall omit them.

5.1. The conjugates of G3. In this case the j-equations read

ja41 = f 3
3 e3,

(j − 1728)a41 = f 2
2 e2.

If u = 3
√
−2/7/72, then the solution to the j-equations is:

c1 = −462u, c2 = −444u,

c3 = −148284u2, c4 = −516u,

c5 = −1422u, c6 = 822204u2,

c7 = −185029704u3, c8 = 996u.

The first few terms of the Fourier expansion of the hauptmodul are given in Tables 4.

Remark 10. Note that the apparent powers of 2 in the denominators are not necessary
in most of the terms displayed. Though if the table were extended with the same
pattern there would be infinitely many terms where the numerator is odd. However,
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n an/u
n+1

-1 1
0 0
1 148932
2 −71333864/2
3 14784602112/2
4 −2720037481056/2
5 926140535244764/22

6 −147594381291749376/22

7 22341564325891713168/22

8 −6482694981105850075968/23

9 907550467150406926565376/23

10 −123344662799290912907945472/23

11 32655462531659638680360877638/24

TABLE 4. Normalized Fourier coefficients of the hauptmodul for G3

these powers of 2 cancel with those from the power of u and are not unbounded
denominators in the actual q-expansion.

5.2. The conjugates of H1. In this case the j-equations read

ja21 = f 3
3 e3,

(j − 1728)a21 = f 2
2 e2.

If u = 5
√
−73/72, then the solution to the j-equations is:

c1 = 28u, c2 = 51u,

c3 = −636u2, c4 = −97u,

c5 = −18u, c6 = −2979u2,

c7 = −111348u3, c8 = 92u.

The first few terms of the Fourier expansion of the hauptmodul are given in Table 5.

n an/u
n+1

-1 1
0 0
1 1946
2 17780
3 813295
4 −20472508
5 −194969600
6 −21590535732
7 −86533770365
8 −5540827925500
9 121544077700080

10 954435095756800
11 97227702559110739

TABLE 5. Normalized Fourier coefficients of the hauptmodul for H1
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n an/u
n+1

-1 1
0 0
1 7583156
2 −8915200000
3 25855539541090
4 −38753899878400000
5 59853295754680171800
6 −107814623754600729600000
7 130691527974826975392903135
8 −229196454200112641389772800000
9 294346563065808045129145192319236

10 −427644716636763893188085418688000000
11 606586125578466006634487839969153168734

TABLE 6. Normalized Fourier coefficients of the hauptmodul for H3

5.3. The conjugates of H3. In this case the j-equations read

ja51 = f 3
3 e3,

(j − 1728)a51 = f 2
2 e2.

If u =
√
−7/74, then the solution to the j-equations is:

c1 = −952u, c2 = 96u,

c3 = −205797696u2, c4 = −5048u,

c5 = −5904u, c6 = 426314304u2,

c7 = −2498515200000u3, c8 = 7048u.

The first few terms of the Fourier expansion of the hauptmodul are given in Table 6.

5.4. The conjugates of U1. In this case the j-equations read

ja1 = f 3
3 e3,

(j − 1728)a1 = f 2
2 e2.

Let ζ3 denote a third root of unity and set

u =
(
(1763ζ3 + 1255)223/77

)(1/6)
.

Note that the minimal polynomial of u over Q is 823543X12 − 8964X6 + 432. The
solution to the j-equations is then:

c1 = (−8ζ3 − 10)u, c2 = (−6ζ3 − 6)u,

c3 = (−28ζ3 − 20)u2, c4 = (10ζ3 + 8)u,

c5 = (−4ζ3 − 8)u, c6 = (−60ζ3 + 12)u2,

c7 = (60ζ3 − 276)u3, c8 = 6u.

The first few terms of the Fourier expansion of the hauptmodul are given in Table 7.

Remark 11. In Q(
√
−3) the element (1763ζ3 + 1255)223/77 has a non-trivial valuation

at 2 of 2, at 3 of 3 and at one of the two primes dividing 7 of −7. The valuation is 0 at
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n an/u
n+1

-1 1
0 0
1 20ζ3 + 4
2 60ζ3 + 12
3 −96ζ3 + 48
4 432ζ3 + 288
5 −(3893/9)ζ3 − 1060/9
6 576ζ3 − 576
7 (13952/3)ζ3 + 7372
8 7168ζ3 + 18312
9 −45200ζ3 − 33568
10 −4160ζ3 + 93248
11 −(3412747/72)ζ3 − 22548985/216

TABLE 7. Normalized Fourier coefficients of the hauptmodul for U1

all other primes of Q(
√
−3). Consequently, the denominators of u are at exactly one

of the two primes over 7.
The 2’s and 3’s appearing in the denominators are cancelled by those appearing

in the numerator in the power of u.

5.5. The conjugates of U6. In this case the j-equations read

ja61 = f 3
3 e3,

(j − 1728)a61 = f 2
2 e2.

As above let ζ3 denote a third root of unity and set

u = ((3ζ3 + 1)/7)7 .

The solution to the j-equations is:

c1 = (−1368ζ3 − 4944)u, c2 = (59472ζ3 + 238944)u,

c3 = (738742464ζ3 + 1457337024)u2, c4 = (−1368ζ3 + 1968)u,

c5 = (−128520ζ3 − 512496)u, c6 = (−5453272512ζ3 − 13411016640)u2,

c7 = (−8345692154880ζ3 − 38174900673024)u3, c8 = (3816ζ3 + 5424)u.

The first few terms of the Fourier expansion of the hauptmodul are given in Table 8.

Remark 12. The only prime of Q(
√
−3) at which u has non-trivial valuation is one of

the two primes over 7. It is has valuation −7 at this prime.

6. SOME RESULTS ON EISENSTEIN SERIES

One of our original aims was to see how much one could say about the Eisenstein
series associated to these minimal noncongruence subgroups, but as pointed out by
Philips-Sarnak [23], it is difficult if not impossible to say too much about their Fourier
coefficients in general. See also [29], [30] and [21] where it is observed that even the
algebraicity of Fourier coefficients of Eisenstein series can be a thorny question. For
example, by the main theorem of [29], the holomorphic Eisenstein series of weight
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n an/u
n+1

-1 1
0 0
1 3195612ζ3 + 4653180
2 2113007616ζ3 + 7901431808
3 −5777884753902ζ3 − 11584189398816
4 3171254057975808ζ3 + 3027156411138048
5 −20391915647836108224ζ3 − 3800819906733485320
6 15478255418070783762432ζ3 − 10803276590128984571904
7 26591161128955478844327729ζ3 + 24908794926096718823786001
8 −26181911558676353382430801920ζ3 − 12727797977727574691751002112
9 26604087748477982557834447865556ζ3 − 15929436789742692451659751424160

TABLE 8. Normalized Fourier coefficients of the hauptmodul for U6

2 associated to the noncongruence subgroup discussed in [5] has infinitely many
transcendental Fourier coefficients.

Remark 13. Note that by [29], the Eisenstein series of weight 2 for the noncongruence
subgroups of index 7 have algebraic Fourier coefficients, since the Manin-Drinfeld
condition is trivially satisfied in these cases: the Picard group of degree zero divisor
classes on the compactified curve associated to each of these groups is cyclic of order
12. More simply, algebraicity follows in weight 2 because the space of forms of weight
2 is one-dimensional in each case.

We begin by recalling a standard computation for the Fourier coefficients of
Eisenstein series on any subgroup of Γ of finite index; see [13] for more details. For
simplicity in this section we focus solely on the group G1. For even integers k ≥ 4
define

gk(τ) ..= g
(∞)
k (τ) =

∑
〈±T 4〉\G1

1

(cτ + d)k
,

which converges absolutely for k ≥ 4. Observe that elements of 〈±T 4〉\G1 are in
one-to-one correspondence with the equivalence classes of elements in G1 with the
same bottom row (up to sign). Therefore we define

χ(c, d) =

{
1 ∃ ( ∗ ∗c d ) ∈ G1,

0 otherwise,

and we find that

g
(∞)
k (τ) = 1 +

∞∑
c=1

∞∑
d=−∞

χ(c, d)

(cτ + d)k
.

Remark 14. The above defines the Eisenstein series for the cusp at infinity, g(∞)
k . We

can analogously define an Eisenstein series, g(1)k , for the cusp at one. It is elementary
to verify that g(∞)

k + g
(1)
k = Ek. As such in what follows we will not typically consider

g
(1)
k and so we define gk = g

(∞)
k for k ≥ 4. For k = 2 these series are not holomorphic

modular forms and we instead consider g2 = g
(∞)
2 − 4

3
g
(1)
2 .

Proposition 15. The indicator function χ(c, d) satisfies the following properties:
(1) χ(c, d) = χ(c, d+ 4c) and χ(c, d) = χ(c+ 4d, d);
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(2) χ(c, d) = χ(−c,−d);
(3) χ(c, d) = χ(d, d− c);
(4) χ(c, d) = χ(3c+ 2d,−5c− 3d);
(5) χ(c, d) = χ(−c, d− c);
(6) χ(c, d) = χ(d, c).

Proof. The first identity in Property (1) follows from the simple observation that

( ∗ ∗c d )T 4 = ( ∗ ∗
c d+4c )

and T 4 ∈ G1. The second follows likewise using U = ( 1 0
1 1 ), where U4 ∈ G1 is the

minimal power in G1. Properties (2), (3) and (4) are equivalent with −1, R,E ∈ G1,
respectively. For (5) we can use Lemma 9 and the fact that T−1G2T = G1, so that
T−1ψT fixes G1. Since T−1ψT acts on bottom rows as (c, d) 7→ (−c, d−c), Property (5)
follows. Now we can show that Property (6) is a consequence of the other properties:

χ(c, d) = χ(−c, d− c) = χ(c, c− d) = χ(d, c). �

Remark 16. We make no use of Property (4) stated above, but we include it for com-
pleteness, as Properties (1) through (4) in Proposition 15 encode the action of the
generators of G1. Properties (5) and (6) are somewhat less trivial, as they utilize the
symmetry of the outer automorphism discussed above.

Given Proposition 15, we can simplify the expression for g(∞)
k :

g
(∞)
k (τ) = 1 +

∞∑
c=1

∞∑
d=−∞

χ(c, d)

(cτ + d)k

= 1 +
∞∑
c=1

4c∑
d=1

∞∑
t=−∞

χ(c, d+ 4ct)

(cτ + d+ 4ct)k

= 1 +
∞∑
c=1

1

(4c)k

4c∑
d=1

χ(c, d)
∞∑

t=−∞

1

( cτ+d
4c

+ t)k

= 1 +
(2πi)k

(k − 1)!

∞∑
c=1

1

(4c)k

4c∑
d=1

χ(c, d)
∞∑
n=1

nk−1e2πin(cτ+d)/4c

= 1 +
(2πi)k

(k − 1)!

∞∑
n=1

∞∑
c=1

nk−1
1

(4c)k

(
4c∑
d=1

χ(c, d)e2πind/4c

)
e2πinτ/4

Thus we obtain the Fourier expansion:

(1) g
(∞)
k (τ) = 1 +

(2πi)k

4k(k − 1)!

∞∑
n=1

nk−1

(
∞∑
c=1

(
4c∑
d=1

χ(c, d)e2πind/4c

)
1

ck

)
qn4 .

In particular, if we define

X(n, c) ..=
4c∑
d=1

χ(c, d)e2πind/4c,

D(n, s) ..=
∞∑
c=1

X(n, c)

cs
,



NONCONGRUENCE SUBGROUPS OF INDEX 7 17

then the Fourier coefficients are:

an =

(
nπi

2

)k
D(n, k)

n(k − 1)!
.

Thus, computation of Fourier coefficients is reduced to the evaluation of special values
of the Dirichlet series D(n, s). To aid in evaluating such series numerically we provide
an algorithm for computing χ(c, d):

(1) lift (c, d) to a matrix g = ( a bc d ) ∈ Γ using the extended Euclidean algorithm;
(2) test if g, Tg , T 2g or T 3g is in G1; if so, χ(c, d) = 1 and if not then χ(c, d) = 0.
(3) To test if a matrix h ∈ Γ lies in G1, write it as a word in S and T , then obtain

the analogous word in φ1(S), φ1(T ) ∈ S7, and check whether the resulting
permutation fixes 1. If so h ∈ G1, and not otherwise.

See Appendix A for a Pari code implementation.

Remark 17. To obtain a very rough estimate for D(n, k) computed using the values
c ≤ N , call this approximation SN , observe that

|D(n, k)− SN | ≤
∑
c>N

4

ck−1
< 4

∫ ∞
N

dx

xk−1
=

4

(k − 2)Nk−2 .

In particular, the number of digits of accuracy in this approximation is at least k − 2
times the number of digits in N . In practice it appears that X(n, c) << c, see Figure 6.
This results that is slightly better than this. This also leads to the apparent absolute
convergence of the series for k = 2. None the less the naive method for evaluating
the Fourier coefficients is in general quite inefficient for small k.

Remark 18. Observe that

X(n, c) =
c∑

d=1

(χ(c, d) + inχ(c, d+ c) + (−1)nχ(c, d+ 2c) + (−i)nχ(c, d+ 3c)) e
2πind
4c .

Evaluating χ(c, d) involves solving a word problem, and the solution to that word
problem can be used to solve the corresponding word problems involved in evaluating
χ(c, d + c), χ(c, d + 2c) and χ(c, d + 3c). In this way one can speed up the evaluation
of the approximation to D(n, k) by precomputing values χ(c, d) four at a time using
this optimization.

Remark 19. For each group being considered there is a unique (normalized) modular
form in weight 2. A simple computation with the divisors reveals that in every case it
will be given precisely by g2 = (E6 · e3 · f3)/(E4 · f2). In Table 9 we give the first few
Fourier coefficients as a series in respectively q4, q3, q5, and q2.

Assuming for a moment the convergence of D(n, 2) then with g(∞)
2 the function

formally defined by Equation (1) and g
(1)
2 the analogous function defined for the

cusp 1 one has that g(∞)
2 − 4

3
g
(1)
2 will define a holomorphic modular form for G1, and

consequently g2 = g
(∞)
2 − 4

3
g
(1)
2 . Noting that g(∞)

2 + g
(1)
2 = E2 this would allow us to

immediately deduce that the special value D(n, 2) is in fact algebraic. This of course
agrees with the expectations from [29] and is analogous to the Proposition on page
260 of [21].

Although it is generally nontrivial to determine the field of definition of Eisen-
stein series, or even if they are algebraic, in this case we can at least determine the
phase of the Fourier coefficients:



18 ANDREW FIORI AND CAMERON FRANC

n G1: an/u
n, u = 4

√
−7/72 G3: an/u

n, u = 3
√
−2/7/72

0 1 1
1 −168 462
2 −840 −84420
3 733152 −807828
4 −1615656 −891458736
5 1179184272 82305718992
6 −5780133408 5155138704870
7 −1097701319232 807981764899218
8 20620554819480 −57396539567144736
9 −1310614136578824 829520378016134700
10 −14959868841286320 −368800915551641445600

n H1: an/u
n, u = 5

√
−73/72 H3: an/u

n, u = 2
√
−7/74

0 1 1
1 −28 952
2 −3108 −14260008
3 88172 5950907872
4 824012 18866241755032
5 −14260008 14858201843068752
6 352362948 −29392973490650091168
7 13569079384 18769317912571342452672
8 −195382795860 26663537479505346618394392
9 −1200557668744 12713310504973377181575454552
10 18866241755032 −36194240778558471635244990599408

n U1: an/u
n, u = ((1763ζ3 + 1255)223/77)

(1/6)

0 1
1 8ζ3 + 10
2 56ζ3 + 28
3 84ζ3 − 84
4 −336
5 −1008ζ3 − 1008
6 −710/3ζ3 − 184/3
7 −9566/3ζ3 + 9088/3
8 4256ζ3 + 30016/3
9 15624ζ3 + 19404
10 139552/3ζ3 − 25984/3

n U6: an/u
n, u = ((3ζ3 + 1)/7)7

0 1
1 1368ζ3 + 4944
2 5264136ζ3 + 13265352
3 12839470272ζ3 + 16044542112
4 22545390152664ζ3 + 27018559576704
5 9748947084182352ζ3 + 9649676839772016
6 34718972026438197504ζ3 + 16480296599809346784
7 9778372812649484494272ζ3 + 9122178274543742453376
8 35207674866620513785843560ζ3 + 3599167618394097606994536
9 35212791025867821428233261296ζ3 − 1534671671263749769838754840
10 19858438209488318852697458205264ζ3 − 8424036363723923387197847067264

TABLE 9. Normalized Fourier coefficients of the forms g2.
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Proposition 20. For all c ≥ 1 we have X(n, c) ∈ (R ∩ Q̄) · ζn8 , and so an ∈ R · ζn8 .

Proof. Take a complex conjugate of the identity in Remark 18 and use the properties
in Proposition 15 to obtain:

c∑
d=1

(χ(c, d) + inχ(c, d+ c) + (−1)nχ(c, d+ 2c) + (−i)nχ(c, d+ 3c)) e
2πind
4c

=
c∑

d=1

(χ(c, d) + (−i)nχ(c, d+ c) + (−1)nχ(c, d+ 2c) + inχ(c, d+ 3c)) e
2πin(3c+c−d)

4c

=
c∑

d=1

(χ(c, c− d) + (−i)nχ(c, 2c− d) + (−1)nχ(c, 3c− d) + inχ(c, 4c− d)) e
2πin(3c+d)

4c

=
c∑

d=1

(χ(−c, d+ 3c) + (−i)nχ(−c, d+ 2c) + (−1)nχ(−c, d+ c) + inχ(−c, d)) (−i)ne
2πind
4c

=
c∑

d=1

(χ(c, d) + (−i)nχ(c, d+ 3c) + (−1)nχ(c, d+ 2c) + inχ(c, d+ c)) (−i)ne
2πind
4c

which shows that X(n, c) = (−i)nX(n, c). Thus,

X(n, c)(1 + i)−n = (−i)nX(n, c)(1− i)−n = X(n, c)(1 + i)−n.

Hence X(n, c) ∈ (R∩Q) · ζn8 as claimed. The second claim follows immediately from
this. �

The Dirichlet series D(n, s) are quite mysterious, as their coefficients X(n, s) lie
in increasingly large number fields, as opposed to more typical Dirichlet L-series, or
Dedekind ζ-functions, and so many standard techniques cannot be brought to bear
on D(n, s). It appears that perhaps X(n, c) = O(c5/7), and Figure 6 on page 20
shows a plot of some values that supports this. More precisely, when n = 1, we have
|X(1, c)| < c5/7 for all 32, 769 < c < 2, 000, 000 (this bound fails for 15 values below
32, 769). Likewise for n = 2, . . . , 11 with c < 300, 000 and n = 12, . . . , 50 with c <
100, 000 the only values with X(n, c) > c5/7 come from small values c. Experimentally,
see again Figure 6 but also Figures 7 and 8, it is evident that the distribution of the
values X(n, c) along the line un is broadly controlled by the congruence c (mod 12).
The exact distributions appear to depend on n: the cases for X(1, c) are illustrated in
Figures 7 and 8. We note that the exponent 2/7 on c is selected to make the graphs
appear approximately normal, we have no evidence this is the correct exponent, nor
that these distributions should be normal.

As with g2 it is an exercise to conclude that g4 = (E4/f3) · a1 · (z − Cu) for
some C ∈ R. The algebraicity of C is equivalent to that of both the divisor of g4
as well as that of its Fourier coefficients. We have included for the curious reader
our computations of the first few Fourier coefficients of g4 in Table 10 on page 20.
The computations for a1 used terms with c up to 2, 000, 000, while for a2, . . . , a10, we
used c up to 300, 000. The computations for a1 took over a month of CPU time using
resources from Compute Canada. Note that the final digits may not be accurate, as
we have provided one digit beyond the apparent precision, and the actual precision
may be less still (see Remark 17). We have not been able to identify any apparent
algebraic dependency for the higher coefficients, but this may be a simple reflection
of a lack of sufficient precision to detect dependency relations.
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FIGURE 6. X(1, c)/e(πi/4) for c ≤ 2, 000, 000. The outer black curve is
±c5/7, the inner is±(1/2)c5/7. From top to bottom the colored bands are
±2 (mod 12), 6 (mod 12), ±5 (mod 12), ±3 (mod 12), ±1 (mod 12), 0
(mod 12), and ±4 (mod 12).

n an/u
n, u = (−7)(1/4)/72

0 1
1 40 .7303189636318364926 · · ·
2 303 .7319312003984 · · ·
3 −1113445 .924994532325 · · ·
4 −101378021 .6026120116 · · ·
5 −4677356098 .49752275 · · ·
6 110516113983 .5601513 · · ·
7 10622672944963 .34244 · · ·
8 703827515349172 .972 · · ·
9 20587451911329502 .7 · · ·
10 54985771355001805 .6 · · ·

TABLE 10. Approximate values of normalized Fourier coefficients for g4
for the group G1

APPENDIX A. CODE

The following PARI/GP code computes χ(c, d)

Chi(c,d) = {

my(s=Vecsmall([2,1,4,3,6,5,7])); /* Permutation Phi(S) */

my(t=Vecsmall([2,4,6,5,1,7,3])); /* Permutation Phi(T) */

my(res=Vecsmall([1,2,3,4,5,6,7]));

my(q);

while( c != 0, /* Compute Phi(M) for M with bottom row c,d */

if( abs(d) >= abs(c) ,

q=d\c;

d=d-q*c;
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FIGURE 7. Normalized histograms for X(1, c)c2/7/(φ(c)eπi/4) for 2||c, 4|c
with c up to 2,000,000. Curve is a normal distribution with given
paramters.

FIGURE 8. Normalized histograms for X(1, c)c1/2/(φ(c)eπi/4) for (clock-
wise from top left) c = ±3 (mod 12), c = ±1 (mod 12), and c = ±5
(mod 12) with c up to 2,000,000. Curve is a normal distribution with
given paramters.
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res = (t^(q%12))*res;

,

res = s*res;

q=c;

c=d;

d=-q;

);

);

if( abs(d) != 1, return(0)); /* c,d not relatively prime */

if( res[1]==1||res[1]==t[1]||res[1]==(t*t)[1]||res[1]==(t*t*t)[i],

return(1);

);

return(0);

}
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