ON THE STRUCTURE OF MODULES OF VECTOR VALUED MODULAR FORMS
CAMERON FRANC AND GEOFFREY MASON

ABSTRACT. If p denotes a finite dimensional complex representation of SLy(Z), then
it is known that the module M (p) of vector valued modular forms for p is free and of
finite rank over the ring M of scalar modular forms of level one. This paper initiates
a general study of the structure of M (p). Among our results are absolute upper and
lower bounds, depending only on the dimension of p, on the weights of generators
for M(p), as well as upper bounds on the multiplicities of weights of generators of
M (p). We provide evidence, both computational and theoretical, that a stronger three-
term multiplicity bound might hold. An important step in establishing the multiplicity
bounds is to show that there exists a free-basis for M(p) in which the matrix of the
modular derivative operator does not contain any copies of the Eisenstein series Eg of

weight six.
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1. INTRODUCTION

If p is a finite-dimensional complex representation of SLy(Z) of dimension d,
then the module M (p) of vector valued modular forms for p is known [8], [2] to be
free of rank d over the ring M of classical scalar modular forms of level one. A basic
problem about M(p) is then to determine the weights of a generating set of modular
forms in this module. These are invariants of the isomorphism class of p. In [2] it
was observed that this question is tantamount to determining the decomposition of a
certain vector bundle Vy(p) on the moduli stack of elliptic curves into line bundles. In
dimension less than six, some results on this questions have been obtained by Marks
[71, but otherwise very little has been proved about the general situation. This paper
initiates a general study of this question.

We begin in Section 2 by introducing the weight profile of p, which is the tuple
(k1,...,kq) of weights of generators for M (p), ordered so that k; < k;;; for all i. In
[9] one finds a proof that 1 — d < k; for irreducible representations p. Using a slight
generalization of this argument, combined with Serre duality, we show (Lemma 2.4)
that there is an upper bound k; < d + 10 as well. In particular, there are only finitely
many weight profiles for irreducible representations in each dimension. Section 2

explains how Proposition 2.1 and Westbury’s description of the character variety of
1
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SLo(Z) (recalled as Theorem 2.10 below) can be used to enumerate a finite list con-
taining all weight profiles of irreducible representations of SLy(Z) of fixed dimension
(and possibly some weight profiles that do not occur in practice) that is considerably
shorter than the finite list provided by the weight bounds 1 — d < k; < ky < d + 10.
Section 5 contains the results of some of these computations.

Sections 3 and 4 use the differential structure of M (p) afforded by the modu-
lar derivative to deduce further information about the weight profile of p. The most
notable new results are the no-gap Lemma (Lemma 3.3) and the weight multiplicity
bound of Theorem 4.1. The no-gap Lemma states that if p is irreducible, then no gap
larger than two occurs in its weight profile. If m., ..., m, denote the multiplicities of
the distinct weights in the weight profile of an irreducible representation p, then the
weight multiplicity bound states that

m; < E Mjt1—9 and m; < E M5 142¢
>0 >0

where m; = 0if i < 1 or ¢ > r. Since the tuple 7, = (m4,...,m,) is an ordered
partition of d, this implies in particular that m; < d/2 for all j. The proof of Theorem
4.1 seems to be new and of considerable interest. It uses the fact, proved in Theorem
3.13, that there exists a choice of basis for M(p) in which the matrix of the modular
derivative does not contain any copies of the weight 6 Eisenstein series F.

Aside from the intrinsic interest of the weight profiles of representations of
SLy(Z), there would be practical benefits to understanding them better. For example,
if p denotes the permutation representation of SLy(Z) acting on the cosets of some fi-
nite index subgroup T', then M (p) = M, (T"), where M, (T") denotes the space of scalar
modular forms for I' of weight k. If p decomposes into irreducible representations
p = €D, pi, then one obtains a corresponding decomposition M;(I') = &, M (p;).
Thus, for example,

(D dim M;(T") = Zdimpi -mq(p;),

where m; (p;) denotes the multiplicity of the weight 1 in the weight profile of p; (here
we've used the fact that the weight profile of a representation of finite image consists
of positive integers).

We explored the idea of using the decomposition (1) and the results of [2] to
study the dimensions of spaces of modular forms of weight one on I'(p) for a prime
p. We were pleased to observe that when p = 3 (mod 4), and if p; and p; denote the
irreducible representations of SL,(F,) obtained as certain constituents of reducible
principal series representations, then the Euler characteristics of the corresponding
vector bundles Vy(p;) equal (1 + h(—p)), where h(—p) denotes the class number of
Q(y/—p). Using this, it is not too hard to show that dim M (p;) > (1 + h(—p)). This
elementary argument detects the dihedral theta series of weight one without writing
them down explicitly, and is presumably well-known to experts’. Unfortunately, the
elementary arguments that [2] enables do not, by themselves, shed any new light on
the question of dimensions of spaces of modular forms of weight one. However, the
question of the module structure of M (p) seems to be a richer one, and a methodical

INevertheless, it is worth remarking that the term h(—p) in the Euler characteristic arises via the
exponents of p;(T") through Dirichlet’s analytic class number formula.
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study of M (p) for general p could conceivably lead to a better understanding of scalar
forms that have so far resisted available techniques. This is part of the impetus that
drove this work.

Let us conclude the introduction by describing our notation and conventions.

In this note p will always denote a finite-dimensional complex representation of
SLy(Z), usually irreducible. It will often be convenient to assume that p(S5?) is a scalar.
Then necessarily p(S5?) = +1. If p(S) = I then p is said to be even, while if p(S) = —1
then p is said to be odd. If p is even or odd, then the weights of nonzero vector
valued modular forms for p must have the same parity as p. Note that all irreducible
representations of SLy(Z) are either even or odd. The notation p¥ denotes the dual
representation of p. Let

11 0 -1 0 -1
r=(y 1) s=(1 %) mest=(V )

Let x denote the character of 72, so that x(T) = e?™/12, Write ¢ = ¢?™/6, If L is a ma-
trix such that p(T') = ¢*™L, then we call L a choice of exponents for p. Recall that since
det eM = ™M) the quantity 12 Tr(L) is an integer for any choice of exponents L for
p. Let V;a 1(p) denote the vector bundle introduced in [2]. If L has eigenvalues with
real part in [0, 1) then we write simply V}(p) for V; 1.(p). Similarly, if the eigenvalues
have real part in (0, 1] then we write Sy (p) for V;, 1(p). The global sections of Vi (p)
and S;,(p) are the spaces of weight k vector valued holomorphic modular forms M;(p)
and cusp forms S (p), respectively, for p. Note that if L. and L, denote choices of ex-
ponents for p(7') adapted to [0,1) and (1, 0], respectively, then Tr(Ly) = Tr(L) +m
where m is the multiplicity of one as an eigenvalue of p(T).

2. WEIGHT PROFILES

In [2], the Euler characterstic of the bundles V;(p) was computed. When F is
large enough, depending on p, the Euler characteristic agrees with the dimension of
My (p). The following proposition makes this precise.

Proposition 2.1. Let p denote an irreducible representation of dimension d, let L denote
a standard choice of exponents for p(T), and let L, denote a cuspidal choice of exponents
for p(T'). Then one has

0 k<2Tr(L)+1—d,
dim My (p) = X@(p)) +dim Sy (p¥) ZTr(L)+1-d<k<ETr(L)+d-11,
x(Vi(p)) k>3 Te(L)+d—11,
and
0 k< 2Tr(Ly)+1—d,
dim Sk(p) = § X(Sk(p)) + dim My (p*) 3 Tr(Lo) +1—d < k < FTr(Lo) +d — 11,
X(Sk(p)) k> 2Tr(Ly) +d—11.

Proof. Recall (Proposition 3.14 of [2]) that if p is irreducible of di@ension d, Lis a
choice of exponents for p, and k is the minimal integer such that A°(Vy 1.(p)) # 0, then

k;z%zTr(L)Jrl—d.
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Let m be the multiplicity of one as an eigenvalue for p(7'), let k& be the minimal weight
for p, and let ¢ be the minimal integer such that Sy(p) # 0. Then if L is a standard
choice of exponents for p,

‘> 12Tr(L) + 12m

d
However, to apply Serre duality to the computation of dimensions of spaces of mod-
ular forms, one wishes to know when S, ;(p") is nonzero. Note that the multiplicity
of one as an eigenvalue of p"(T) is also m. If L is a standard choice of exponents for

p, and if LY is a standard choice of exponents for p¥, then Tr(LY) = d — Tr(L) — m.
We thus see that if Sy_(p") # 0 then

+1—d.

k< %Tr(L)—l—d— 11
This proves the claim about M (p). The proof of the claim for Si(p) is similar. O]

The middle cases of Proposition 2.1 comprise at most 2d — 11 weights. Half
of these can be eliminated using parity considerations, but in general the other half
might be difficult to compute. When d < 5, however, Proposition 2.1 gives explicit
formulae for dim M (p) and dim Sk (p) in all weights. For general d one can use Propo-
sition 2.1 and positivity to narrow down the possibilities for dim My (p) and dim Sy (p)
in low weights to a finite number of possibilities — see Theorem 2.9 below.

The free module theorem for vector valued modular forms states that the mod-
ule M(p) of vector valued modular forms for p is free of rank d = dim p over the
ring M of scalar modular forms of level one. This result follows, for example, from
the complete decomposability of vector bundles on the moduli stack of elliptic curves
[2]. The free-module theorem also holds for the module S(p) of cusp forms for p, and
more generally for the module M, (p) of modular forms for p relative to any given
choice of exponents L for p.

Let us write
d d
Vi(p) = @ O(k — ki), Si(p) = @ O(k — ;)
j=1 j=1

for integers k;, ¢; with k; < k;; and ¢; < {,;, for all j. The integers —k; are the roots
of p. The tuples (ki,...,kq) and (¢4,...,¢;) are called the weight profile and cuspidal
weight profile of p, respectively. More generally, if V. 1(p) = EBj:l O(k — k;) then
we call (K, ..., k,) the L-adapted weight profile of p. If (k;) denotes a weight profile,
then the type profile, or more simply, the type of p is the tuple (0, ko — k1, ..., ks — k7).
Obviously one can recover the weight profile from the knowledge of the type and the
minimal weight. Conversely,

Lemma 2.2. Let p denote a representation with weight profile (ki, ..., k,) and standard
choice of exponents L. Then Z?Zl k; = 12Tr(L). In particular, the minimal weight of p
is determined by the type of p and Tr(L) for a standard choice of exponents L for p.

Proof. Proposition 3.6 of [2] observes that det V. (p) = O(dk — 12 Tr(L)), and the first
claim follows from this. Thus k; = (12 Tr(L) — 2%, (k; — k1))/d, and this proves the

j=1
second claim. m
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Remark 2.3. Recall from Proposition 3.13 of [2] that Vi (p)" = Si5_x(p"). It follows
that if (kq, ..., kq) is the weight profile of p, then (12 — kg4, ..., 12 — k) is the cuspidal
weight profile of pY. Hence if p is such that 1 is not an eigenvalue of p(T'), so that
S12-1(pY) = V1ia_r(p"), the dual weight profile of pis (12—kg, ..., 12—k;). If moreover
p is self dual, this implies that k;+k4.,_; = 12 for all j. Hence Lemma 2.2 implies that
Tr(L) = d/2 for such representations p. The problem of relating the weight profile
of a representation with that of its dual is an interesting and likely tractable open
problem.

Lemma 2.4. Let p be an irreducible representation, and let (ki,...,kq) be its weight
profile. Then

12 12

In particular, for all irreducible representations of dimension d, the weight profiles lie
in the range [1 — d,d + 10]. There are thus finitely many weight profiles for irreducible
representations in each dimension.

Proof. The lower bound on &, is well-known (see e.g. Proposition 3.14 of [2]). By
Remark 2.3, the cuspidal weight profile of p¥ is (12 — kg,...,12 — k). Let LY be a
choice of exponents for p¥ adapted to the interval (0, 1], so that Si(p") = Vizv(p").
Then by the slight generalization of the Wronskian argument given in Proposition
3.14 of [2],

12
ETe(LY) 41— d <12 — kg,

d
and thus k4 < 11+ d — 2 Tr(L"). Note that Tr(L") = d — Tr(L) since L" denotes the
cuspidal exponents for p¥. Thus ks < 2 Tr(L) +d — 1. O

Remark 2.5. One can show that the bounds of Lemma 2.4 are sharp.

Tuba and Wenzl [10] have described all irreducible representations of SL,(Z)
in dimension less than six. One can use this and Proposition 2.1 to compute all
types and minimal weights in dimension less than six. The results are below. These
computations are consistent with, and add precision to, the computations in [7].

Example 2.6. We list the possible types of irreducible representations in dimension
< 4, along with the minimal weight.

Dimension | Type kq
1 (0) 12 Tr(L)
2 (0,2) 6Tr(L) —1
3 (0,2,4) 4Tr(L) —2
4 (0,2,4,6) | 3Tr(L) — 3
4 (0,2,2,4) | 3Tr(L) — 2

Remark 2.7. In [10] is it shown that up to a choice of square root of det(7’), the eigen-
values of p(7") determine four dimensional irreducible representations of SLy(Z). The
two possibilities for the type in dimension 4 correspond to the two choices of square
root.

Example 2.8. The case of five dimensional irreducible representations is more inter-
esting. In this case it need not be true that 5 | Tr(L). Using [10], one can compute
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the minimal weights and types. To express the result it is best to write Tr(L) = %
where 0 < a < 59. One finds the following possibilities:

a (mod 5) Type ky
0 (0,2.4,6,8) | (a —20) /5
1 (0,2,4,4,6) | (a — 16) /5
2 (0,2,2,4,4) | (a—12) /5
3 (0,0,2,2,4) | (a—8)/5
4 (0,2,2,4,6) | (a — 14) /5

Our next goal is to describe an algorithm for enumerating a list that contains all
possible types of irreducible representations in a given dimension.

Theorem 2.9. There exists an algorithm that takes as input an integer d > 1 and the
resulting output is a finite list of d-tuples of positive integers that contains all possible
types of irreducible representations of SLy(Z) of dimension d.

Proof. By the no-gap lemma (Lemma 3.3 below), one could simply enumerate all
possible sequences of integers (x1, ..., z;) where z; = 0 and such that 0 < z;,; — z; <
1fori=1,...,d — 1. There are 2¢~! such sequences. O

A large number of the 29! possible types given by the no-gap lemma do not
occur in practice. A number of additional restrictions on the types, arising from the
differential structure on M (p), are described in Sections 3 and 4 below. Proposition
2.1 and Westbury’s description [11] of the irreducible components of the character
variety of semistable representations of SLy(Z) can also be used to cut down the
possibilities dramatically. We describe this next.

Theorem 2.10. The character variety X, classifying d-dimensional semistable repre-
sentations of PSLy(Z) is an affine algebraic variety that decomposes into a disjoint
union of irreducible components X, = 11,X, indexed by tuples of nonnegative integers
a = (a,b;z,y, z) satisfying a+ b = .+ y+ z = d. A given irreducible representation p of
PSLy(Z) of dimension d lies on the component X, indexed by a = (a,b; x,y, z) where a
and b are the multiplicities of 1 and —1, respectively, as eigenvalues of p(S), and where

z, y and z denote the multiplicities of 1, ¢ = ¢35 and (2, respectively, as eigenvalues of
p(R).

Proof. This result was originally proved by Bruce Westbury [11], but it remains un-
published. See Section 2 of [1] for more information on the character variety of the
modular group. O

Remark 2.11. If p is an odd irreducible representation of SLy(Z), then p ® x is an
irreducible representation of PSLy(Z). Thus, Theorem 2.10 allows one to give a
similar description for the character variety of SLy(Z).

Fix an irreducible representation p of dimension d, let L denote a standard
choice of exponents for p(7), so that Tr(L) € [0,d), and write s = Tr(p(95)), 11 =
Tr(p(R)) and ry = Tr(p(R?)). The quantities s, r; and r, are constant on each ir-
reducible component of the character variety by Theorem 2.10 and Remark 2.11.
Similarly, det p is constant on components of the character variety, so that Tr(L) takes
on at most d values across each component of the character variety. Thus, if we per-
form the following computation for fixed s, r;, 7, and for the d possible values of
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Tr(L) for representations on the component of the character variety that contains p,
then the result is a finite computation that gives all possible types of representations
on the irreducible component that contains p. Thus, we need only describe how to
narrow down the possibilities for the type of our fixed p to a finite list.

In order to describe the computation, let /1, . .. /,, denote the increasing sequence
of integers in the interval between (12/d) Tr(L)+1—d and (12/d) Tr(L) + d — 11 with
the same parity as p, and set a; = dim S,_, (p") for each j. Then by Proposition 2.1,

(2) z] 1 Tk V Tk: - Tfj
(1—T%)(1 — T9) ZX w(p +Zaj :
k>0, 7j=1

By Corollary 6.2 of [2],

— bd—12Tr(L) 1 s % 1 ¢h
k __ il _
D XWulp)TH =T < 2 1-72 1147 30-01-(T% "

T2 C[l d fl - (fl - 2)T2
B1-¢)1-CT? 12 (1-T?) )

where ¢ = ¢>/6 and ¢ = ¢2. It follows that equation (2) yields an explicit and
computable equation of the form

d
(3) > T =THP(T) + Z a;T%(1 —T*)(1 - T9)
j=1

where P(T') is a polynomial of degree at most 8 with integer coefficients. Note that
P(T) only depends on d, s = Tr(p(9)), r1 = Tr(p(R)), 2 = Tr(p(R?)) and Tr(L) (since
¢, was defined in terms of Tr(L) and d via Proposition 2.1).

Lemma 2.12. There are only finitely many solutions to equation (3) in nonnegative
integers a;.

Proof. By comparison with the left side of the equation, the coefficients of the right
hand side of equation (3) must be nonnegative integers that are no larger than d.
Write P(T) = ijo b;T7. The coefficient of 7** in (3) is of the form py + a;. Thus 0 <
a; < d—py, so that there are finitely many possibilities for ;. Similarly, the coefficient
of T is of the form p; + a; + Q(ay, . .., a;_1) for some polynomial Q(ay,...,a;_1). By
induction, this polynomial takes on finitely many values, and so if M is the maximal
such value, we find that 0 < a; < d — p, — M, for some index k. This proves the
lemma. O

By Lemma 2.12 it is thus possible to enumerate the finitely many solutions to
equation (3) in nonnegative integers, and thereby find all types of irreducible repre-
sentations p of dimension d and with fixed values of Tr(p(S)), Tr(p(R)), Tr(p(R?)),
and Tr(L). By Theorem 2.10, this allows one to describe a finite list of all types of ir-
reducible representations in dimension d. We have implemented these computations
using Sage, and we were able to run the algorithm in dimensions up to and including
twelve before the computations began to run into memory limitations. Some of these
results are listed in Section 5. The number of types that are output by this algorithm
tends to be exponential in d, but it is a much smaller number than the 2¢-! given by
the no-gap lemma. Nevertheless, there are many types that arise in this way that do
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not actually occur. Some of these possibilities can be eliminated using the results of
Section 3 below, but in general it seems to be an open problem to determine exactly
what type profiles do occur in each dimension.

We end this section by explaining how to extend this finiteness result to all
representations.

Proposition 2.13. Fix a positive integer d. There are only finitely many possible weight
profiles for representations of SLy(Z) of dimension d.

Proof. We have explained the proof of Proposition 2.13 for irreducible representa-
tions. Suppose that

0—=p1r—=>p—p2—0
is a short exact sequence of representations of SLy(Z). After applying the functor M,
there is an exact sequence

0— M(p1) = M(p) = M(p/p1)

(cf. [8] for more details). This shows that at the level of multisets, the set of weights
for p is contained in the union of the corresponding multisets for p; and p,. Taking a
composition series for p, this shows that the number of weight profiles in dimension
d is no more than d times the maximum of the number of weight profiles for an
irreducible of dimension no greater than d. So finiteness in general follows from the
irreducible case. O

3. EXPLOITING THE DIFFERENTIAL STRUCTURE

Let R := M(D) be the algebra of modular differential operators, where D acts
on modular forms of weight & via the usual operator

d k
Dy :=qg— — —E,.
4) k q dq 12 2
Since we have normalized the Eisenstein series F, and Eg of weights 4 and 6 to have
constant term equal to 1, one has D(E;) = —3E; and D(Es) = —4Ej. Formally,

elements of R are polynomials ), f;D* in D with coefficients f; € M, however R
is noncommutative (although associative). Multiplication is implemented using the
identity Df = fD + D(f) (f € M). If we give D degree 2 then R is an N-graded
algebra.

One knows ([9], [8]) that M(p) is a Z-graded left R-module. Elements of M
act by multiplication and D acts via the obvious extension of (4) to vvmfs of weight
k. It is the exploitation of this fact that underlies the results in the present Section.
Actually, the structure of M (p) as R-module is an interesting topic in its own right,
but we will resist the temptation to axiomatize the situation, and simply record some
of the relevant features.

The free module theorem ([8], [2]) says that M(p) is a free M-module of rank
dim p. On the other hand, M(p) is a torsion R-module: every element in M (p) has a
nonzero annihilator in R. We will use the following more precise version of this fact
in the case that p is irreducible.

Lemma 3.1. Assume that p is irreducible of dimension d, and let F' € My(p) be nonzero.
Then the following hold:
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(a) F,DF,..., DY 'F are linearly independent over M,

(b) F,DF,...,DF are linearly dependent over M (that is, some polynomial of
degree d annihilates F’, but none of degree less than d),

(c) If0 £ N C M(p) is a graded R-submodule that is free of rank r as an M-module,
then r = d.

Proof. To say that a nonzero polynomial of degree n in R annihilates F' just means
(taking the grading into account) that there is a relation

5) S ADF =0
1=0

where each f; € My,__o; for some fixed £’ and f,, # 0.

Relation (5) tells us that F satisfies a modular linear differential equation, or
MLDE (cf. [9], [3]), of order n. If there are no such relations with n = d then F', DF,
..., DF are linearly independent over M, whence they span a free M-submodule
of M(p) of rank d + 1. Since M (p) is free of rank d this is not possible, and this
contradiction establishes part (b).

On the other hand, suppose (5) holds with n < d — 1. As an order n MLDE, the
solution space of (5) is n-dimensional, and therefore the span F of the components of
F' (a subspace of the solution space) has dimension less than d. However, because p is
irreducible, the components of F' span an SLy(Z)-module that affords a representation
equivalent to p. In particular, the span of these components has dimension d. This
contradiction proves (a).

As for (c), choose a nonzero form F' € N N My(p) for some k. By part (a),
F,...,D%'F generate a free M-submodule of N of rank d, so that » > d. On the
other hand, » < d because M (p) is free of rank d. Thus r = d, and the proof of the
lemma is complete. O

Lemma 3.1 implies the no-gap lemma (Lemma 3.3), Lemma 3.8 and Proposition
3.12 below.

Definition 3.2. Let p denote an even or odd representation of SLy(Z), so that all
weights in the weight profile of p have the same parity. A gap in the weight profile of
p is an integer k with the following properties: %k has the same parity as the weights
of p; there are weights of p which are less than k& and weights which are greater than
k, but no weights equal to k.

Lemma 3.3 (No-gap lemma). Suppose that p is an irreducible representation of SLy(Z).
Then the weight profile of p has no gaps.

Proof. Suppose that k is a gap in the weight profile of p. Then we can divide a set X
of (homogeneous) generators of M (p) into two nonempty subsets X = X; U X, such
that all weights of generators in X; are < k — 2, and all weights of generators in X,
are > k + 2. Note that | X;| + | X3| = dim p.

Let I' € X;. Then wt(D(F)) = wt(F) + 2 < k, so if we write D(F') as an M-
linear combination of generators in X, all of those generators have weight < k, and
hence they lie in X;. This shows that the M-submodule M; C M (p) spanned by the
generators in X, is in fact an R-submodule. Since X, is nonempty, M; has M-rank
| X1|. But | X;| < dim p, and this contradicts Lemma 3.1(c). O
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Definition 3.4. Fix a representation p of SL;y(Z) of dimension d. We denote by 7,
the ordered partition consisting of the multiplicities of the weights that occur in the
weight profile of p. Thus 7, = (my, ..., m,) means that the distinct weights that occur
are k} < --- < k.. and the weight profile is

= (K, KL RS, k).

~~ v~
mi ma2

Similarly, we have the cuspidal analog wf which records the multiplicities of the gen-
erating weights in the cuspidal weight profile of p.

Remark 3.5. If p is irreducible with weight profile (k4, . . ., k;) and weight multiplicities
(myq,...,m,), then the following identities hold:

(D ifj>1and1<i<mjthenky +.qm, ,1i =k +25 -2,
(2) d= 22‘:1 mg,
(3) r=1+kh

Lemma 3.6. If p is an irreducible unitary representation of SLy(Z) distinct from the
1-dimensional trivial representation, then the weights kq, ..., ky in the weight profile of
p lie in the range [1, 11].

Proof. This is proved in Section 6 of [2]. We give a second proof: it is proved in
Section 3 of [4] (with further details in Section 7 of [5]) that the classical Hecke
estimate O(n*) continues to hold for the n'* Fourier coefficient of any component
of a holomorphic vvmf of weight & associated to a unitary representation p. Then
a standard argument shows that if p is irreducible and nontrivial, the weight of a
nonzero holomorphic vvmf is necessarily positive. Hence, k; > 1.

On the other hand, because p is unitary then so is p*. By Remark 2.3, the lowest
weight in the cuspidal weight profile for p¥ is 12 — k;, and by the argument of the
previous paragraph we have 12 — k; > 1. O

Definition 3.7. Let p be a representation of SL,(Z). We say that M (p) is cyclic if it is
a cyclic R-module, i.e. there is some weight & vvmf F' such that M(p) = R.F. In this
situation, we also say that p itself is cyclic.

Lemma 3.8. Suppose that p is irreducible and that 7, = (1,...,1,...), Le. there is
t > 1 such that the first t weight multiplicities are 1. Let F' be a nonzero vvmf of minimal
weight k. Then either {F, DF, ..., D'"'F} is a complete set of generators, or there is a
generating set that contains {F, DF, ..., D'F'}.

Proof. By assumption there is a unique generator of weight k; (up to scalars), so we
can always include F in a set of free generators. Suppose that ', DF, ..., D'F are in
a free generating set, and that i < ¢ — 1. By hypothesis, the only free generators with
weight between k; and k; +2i —2 are the D'F (0 < ¢ < t) (up to scalars). If we cannot
include F,..., D'F, D' F in a generating set, there must be an expression of the form
D™'F = 7. f;G; where f; € M; is a classical modular form of positive weight and
each G| is a free generator. Then wt(G;) < k; + 2¢ — 2, whence each G, is equal to
some D/ F (j < i) (up to scalars). Now it follows that the M-span of F,..., D'F is an
R-module, and by Lemma 3.1 it follows thati+1 = d. Thust¢ > i+1 = d > t, whence
d=t=1+1.
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This shows that if i < ¢t — 1 then we can always adjoin D' F to a set of free

generators {F,..., D'F'} to obtain a larger such set of free generators. Similarly, if
i =t — 1 then either we can similarly adjoin D'F, orelse t = d and {F,..., D" 1F} is
already a complete set of free generators. The Lemma follows. O

Lemma 3.9. Let p be an irreducible representation of SLs(Z) of dimension d. The fol-
lowing are equivalent:

(@) M(p) is cyclic,
(b) Thereis F € My, (p) such that {F, DF,... D4~ 1F} freely generates of M(p),
© m=(1,1,...,1).

Proof. If (a) holds, there is a vvmf F' of weight k& such that M (p) = R.F. Then M (p) =
> iso MD'F D Zf;ol MD'F, and by Lemma 3.8 the last containment is an equality.
Now (b) is a consequence of Lemma 3.1(a), and this shows that (a)<(b). Clearly
(b)=-(c), while the converse also follows from Lemma 3.8. So (b)<>(c), and the proof
of the Lemma is complete. O

Remark 3.10. For further discussion of the case of cyclic p, see Theorem 1.3 and
Section 4 of [8].

Example 3.11. (a) For all n > 0, the n'* symmetric power S"(p) of the defining 2-
dimensional representation p of SLy(Z) is irreducible and cyclic. These examples are
discussed at length in [6].

(b) Every irreducible p of dimension < 3 is cyclic. See [3] for an extensive discussion
of these cases.

In spite of these examples, it appears that there are not too many classes of
irreducible p which are cyclic, and it is an interesting problem to try and classify all
examples. The unitary case seems particularly tractable, because of the next result.

Lemma 3.12. Let p be an irreducible, cyclic, unitary representation of SLy(Z). Then
dim p < 6.

Proof. We know from Lemma 3.9 that all weight multiplicities are equal to 1 because p
is cyclic. On the other hand, by Lemma 3.6 there are no more than 5 distinct weights
thanks to unitarity. The only way to reconcile these statements is if the dimension
dim p < 6. U

This section concludes with a result (Theorem 3.13) that will be used to prove
upper bounds on weight multiplicities for irreducible representations (Theorem 4.1).
We begin with some preparations.

Let Fy, ..., F, denote a free basis for M(p), chosen so that each F; has integer
weight. Let A = (a;;) denote the matrix of D in this basis, so that DF; = Y>>0 a;; F}.
If F denotes the d x d matrix whose columns are the Fj, then A is defined by the
matrix equation DF = F A. If F is replaced by F'P for some invertible matrix P with
entries in M = C[E4, Fg|, and if A’ is the matrix of D with respect to this new basis,
then

FPA"= D(FP)=D(F)P+ FD(P)=FAP+ FD(P)
and thus A’ = P7'AP + P~'D(P).
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Suppose that P corresponds to replacing a basis vector F; by F;, — gF; where
i < jand g € M. We call this an elementary replacement operation. The matrix of D
changes under such an elementary replacement operation as follows:

(1) add g times the jth row of A to the ith row of A and
(2) subtract g times the ith column of A from the jth column of A and
(3) subtract D(g) from the (i, j)-entry of the result.

We will use elementary replacement operations to find a basis in which the matrix
of D has a particularly simple form. The idea will be to methodically winnow away
copies of Es. To this end, if f € M, then let d(f) denote the Fs-degree of f when it is
regarded as an element of the polynomial ring C[FE}, Eg]. For each integer ¢t > 0, let

My ={f € My | d(f) < t}.

Theorem 3.13. Let p denote an irreducible representation of SLy(Z) and let L denote
a choice of exponents for p(T). Then there exists a basis for My (p) consisting of integer
weight vector valued modular forms such that the matrix of D in this basis contains only
entries that are multiples of pure monomials of the form Ef.

Proof. Let (ki,...,kq) be the L-adapted weight profile of p and let r = 1 + @
Let my, ..., m, denote the weight multiplicities. Choose free generators F; for M (p)
ordered by increasing weight. Hence F, ..., F,,, are of weight k1, Fi,, 11, -, Fonytms
are of weight ky, = k; + 2, and so on. Define the matrix A = (a;;) of D in this basis by

writing D(F;) = 3%, a;;F, for all j. Then A has the following block shape:

My | Mo | M3 | My | My | Mg | M7 | = mMy—1 my
my * | 416 |8 ]10]12 | 14 2r 2r 4+ 2
mso O |4 ]6 |8 ]10]|12 2r — 2 2r
ms * | 0| x| 4|6 ]| 8]10 2r —4 | 2r —2
My * | | 0| % | 4|68 2r—6 | 2r—4
ms * | x| x| 0| x| 4] 6 2r—8 | 2r—=6
Mg * | x| x| x| 0] x| 4 2r — 10| 2r —8
my | x| x| x| x| x| 0] % 2r — 12 | 2r — 10
Mp_1 | * | * | * | x | * | % * 4
m, * | k| k| k| x| x| % 0 *

The x entries indicate zeros, the integer entries indicate weights of the entries, and
the row and column labels m; indicate the size of the blocks in the block matrix
decomposition.

Notice that the weight of diagonal entries of A is constant. We will slowly
improve A diagonal by diagonal using elementary replacement operations. Our goal
is to use a sequence of elementary replacement operations to find a basis for M(p)
such that the matrix of D in this basis has entries in M}. It will be convenient, to
phrase things in a uniform way, to regard D as a matrix with infinitely many columns
moving to the right and infinitely many rows moving down. Thus, initially the matrix
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of D has the form

my | Mg | M3 | My | My | Me | M7 | Mg | Mg | My | M1 | 12
0 T 0 T 2 T 2 3 2 3 1
my * M4 M6 M8 M10 M12 M14 M16 M18 M20 M22 M24

my | x | Mg | x [ M| Mg | My | My, | M3, | My | M7 | My | M,
my | x| ox MY x [ M| Mg | MJ | My, | M7, | My, | Mi | Miy
ms | x| x| x [ MQ| * | MJ | M| MY | M| M, | M}, | M
me | x| x|« [ x [ MJ] x [ MY M| MY | M| M, | M,
my | x| x| % | x| o« [ MO x | MJ| Mg | M| M, | M
mg | » | x| x| x| x| x | MJ| « | M| M| M| M,
mo | » | x| x| x| « [ x| » [ MJ] » | M} | M| M
M| * | * | * | % | * * * x | MO o« | MY | Mg
mi| x| x| x| % | % * * * x | MY | x| MY
Mg | * | * | * | % | % * * * * x | MY | %

where the m; labels indicate a block of rows or columns of size m;, a block with an
entry of the form M} means that the block matrix contains entries in M}, and a x
indicates that weight considerations force the entries in those blocks to be zero.

Our algorithm proceeds by using elementary replacement operations to change
block diagonals with entries in M}, to have entries in M} 2, but one must take care in
how one chooses the diagonals. The rule for choosing which block diagonal to adjust
is to start looking from the center diagonal of zeros, and move up until you encouter
a pair of adjacent diagonals containing entries in Méiék and Mj_,,. Then, adjust the
kth diagonal up from the center, which contains entries in M.T,,. Afterward it will
contain entries in M;:L%k, and then the algorithm repeats. This alogrithm will involve
some backtracking, and so we must argue that it is possible to do such backtracking
without undoing the operations that preceded it.

Let us explain the first step of the algorithm very carefully. Consider one of
the m; x m;,» block matrices, which contains entries in M} = Mg = (FEg). Since
D(E;) = —3Fs, we can replace basis vectors F' corresponding with the (i + 2)th
block column of D with basis vectors of the form F — aFE,G for o € C and G some
basis vector corresponding with the m; block of columns, and appropriate choices
of a will allow us to ensure that all entries on this block diagonal are in M = 0.
Note that these elementary replacement operations will also affect the m; x m;,; and
m;y1 X M, blocks, but it will affect them by adding multiples of F, to entries. Thus,
the result will still lie in M? = M,. These operations will also affect block diagonals
above the weight 6 diagonal, but we don’t care about that at this stage, as we haven’t
yet performed any simplifications to that part of the matrix. Thus, after all these
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replacements we reduce to a matrix for D of the form

My | Mo | Mg | Ty | My | Mg | Ty | Thg | My | My | M1 | T2
0 0 0 T 2 T 2 3 2 3 T

mo | Mg | * | My | Mg | Mg | My, | My, | My, | Mig | Mig | M5, | Mo,

my | x | Mg | x [ M| Mg | My | My, | M3, | My | M7 | My | M,
my | x| ox MY o+ [ MJ | Mg | MY | My, | M, | My, | Mis | Miy
ms | x| x| x | MQ| « | MP | M| MY | M| MZ, | M}, | M
me | x| x|« [ x [ MJ] x [ MY M| MY | M| M, | M,
my | x| x| % | x| o« [ M| x | MJ| MY | M| M, | M
mg | » | x| x| x| x| x | MJ| « | M)| M| MY | M,
mo | » | x| x| x| « [ x| » [ MJ] » | M) | M| M
mu | x | x| x| x| % | x | x | = | MY « | MY | MY
muy | * | * | x | % | % * * * x | MO | x| MY
Mg | * | * | * | % | % * * * * x | MY | %

Suppose now by induction that we’ve found a basis for M (p) such that the diag-
onals of D have entries in the following spaces:

0 0 0 1 2 t—1 t t—1 t t+1 t
M4 ) M67 tt M4t’ M4t+27 M4t+47 M) Mﬁt—Qa M6t> M6t+27 M6t+47 M6t+67 M6t+87 s

where ¢t > 1. Note that we have not put any restrictions on the Fs-degree of entries
in the weight 6¢ diagonals and higher. Write entries f € M{, uniquely in the form
f=aE{+gfora e Candg € Mi' Then h = —SEE{" € M, satisfies
f — D(h) € M{;%. Thus, if we use such forms & to perform elementary replacement
operations, we can force the weight 6t diagonal to lie in M{; 2. This will adjust the
entries in the weight 6t — 2 diagonal by the various /’s that arise, but since these all lie
in M, ",, we will not disrupt this diagonal. Similarly, these elementary replacement
operations will alter diagonals above the weight 6¢ diagonal, but since we have not
put any restrictions on those diagonals yet, such operations are inconsequential for
our goal.

Now comes the slightly delicate part: we continue working backwards from the
weight 6t — 2 block diagonal to the weight 4¢ + 2 block diagonal, and the issue is
that we’ve adjusted diagonals from the one under consideration up to the weight 6¢
diagonal. The saving grace is that there are enough diagonals in low weights that do
not contain any copies of Fj.

More precisely, suppose that we've reduced to a matrix with diagonals of the
form

0 0 1 2 t—j+1 t—j t—j+1 t—2 t—1 t—2
M4> R M4t> M4t+27 M4t+47 R M6t—2j—2’ M6t—2j’ Mﬁt—2j+2> Tt M6t—4> MGt—Q? M6t o

When we adjust the weight 6t — 25 — 2 diagonal we must be careful not to disrupt
the diagonals of weight 6t — 2; through weight 6¢, since we have reduced the Ej
degree of each. However, we can ignore diagonals above this, as we have not put any
restrictions on them yet. The elementary replacement operations that we perform in
weight 6t — 2j — 2 will involve multiples of h = EYE} 7 € M, _j2j_4. Entries in the
weight 6t — 25 + 2r diagonals, for r = 0, ..., j, will be adjusted by forms in hMJ .
The Fs-degree of zero arises since we have already ensured that the weight 4 through
4t diagonals have Fjg-degree equal to 0, and since j < ¢, these are the diagonals



ON THE STRUCTURE OF MODULES OF VECTOR VALUED MODULAR FORMS 15

that affect the diagonals that we’re worried about when we perform the elementary
replacement operations. Since hM3,_, C Mg?,. ., € Mg?3,, , we will not undo
any of the hard work that we have done between weights 6t — 2j — 2 and 6t. As j
increases to t, we wind up with a matrix whose sequence of diagonals looks like

0 0 270 0 1 t—3  agt—2 -1 t t+1 t
My, ..., Mg, Mg o, My, gy Myy 6., Mg "o, Mgy, Mg o, Mgy g, Mg, Mgy g, - - -

And now we can repeat with the weight 6+ 6 diagonal. This proves the Theorem. [J

4. BOUNDS FOR WEIGHT MULTIPLICITIES

Theorem 4.1. Let p be an irreducible representation of SLy(Z) of dimension dim p > 2.
Let m, = (mq,...,m,) denote the weight multiplicity tuple of p, and define m; = 0 if
j<1lorifj>r. Then forall j > 1 we have

m; < g Mj1-2¢

t>0

and

m; < E Mj_142¢-
>0

In particular; m; < 3 dim p for all j.

Proof. We first explain how to establish the first inequality more generally for M (p)
for any choice of exponents L for p(7'). Choose a basis for M (p) as in Theorem
3.13, and assume to the contrary that there exists j such that m; > 3, mji1-2.
Consider the matrix A obtained from the jth block column of the matrix of D in the
chosen basis, but where we ignore the blocks that are known to be zero by weight
considerations. This is a matrix with ) ,.,m;;1-2: rows and m; columns. Thus, by
hypothesis A has a nontrivial kernel consisting of a scalar vector. If b = (b,) is such a
column vector, and if F, ..., F,,, denote the basis vectors of weight corresponding to
the multiplicity m;, then F = 3"/, b, F, is nonzero and D(F') = 0, contradicting the
irreducibility of p since dim p > 2 (Lemma 3.1).

The second inequality can be deduced from the first by duality, since V;(p)" =
S12-1(p"), and since Theorem 3.13 and Lemma 3.1 are valid for any choice of expo-
nents. B

Remark 4.2. Computational evidence suggests that the stronger three-term inequality
m; < m;+1 + m;_; might hold. This would follow if one could find a basis for M (p)
such that the matrix of D contains only constants and constant multiples of F;. We
were unable to prove this stronger result, save for under two different hypotheses:

(1) If p is irreducible and unitarizable, then it’'s known (see Section 6 of [2] or
that the weight profile consists only or Lemma 3.12 above) that there are at
most six multiplicities for p. In this case the two inequalities of Theorem 4.1
yield the three-term inequality m; < m,4; +m,_; for j =1,...,6.

(2) If p is an irreducible representation and ¢ is the standard representation of
SLo(Z), then it’s easy to relate the weight profiles of p and p ® 0. Since
o(T) has all exponents equal to zero, one has V,(p ® ¢) = Vi(p) ® Vo(o). In
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particular, since V(o) = O(1) & O(—1), if Vo(p) = B?_, O(—k,), then
d
Vo(p® o) =P O(—k +1) & O(—k, — 1)
r=1

Let my, ... m,; be the multiplicities for p. Then the multiplicities for p ® o are
my, my +ma, ..., my_1 +my, my. Thus the three-term inequality for p ® o boils
down to 0 < mjiq + m;_o, which is trivially satisfied. This is true regardless
of whether the three-term inequality was satisfied by the weight multiplicities
of p.

Remark 4.3. It is worth remarking that in the case of the standard representation o of
SLs(Z), one has

(6) Vo(o) = O(-1) & O(1).

This reflects the fact that V(o) can be identified with the relative homology of the
universal elliptic curve over the moduli stack of generalized elliptic curves. A vector
valued modular form of minimal weight —1 for ¢ is given by

2miT
re)= ().
The decomposition (6) is the Hodge decomposition for the relative homology of the

universal elliptic curve, and one might ask to what extent such a relationship holds
for other representations of SLy(Z).

We end this Section by looking more closely at the bound m; < d/2 for weight
multiplicities given in Theorem 4.1, where d = dim p. We will show (Lemma 4.6)
that if ¢ is the number of distinct weight multiplicities and e the minimum of the
(nonnegative) integers [d/2] — m; (j > 1), then /e < 8. We can be more precise for
small e. First we treat the case e = 0, where we show that ¢/ < 3.

Lemma 4.4. Suppose that p is irreducible. There are exactly 2 distinct weight multiplic-
ities in the weight profile of p if, and only if, dim p = 2.

Proof. The result is clear if dimp = 2, so assume that m;,m, are the two weight
multiplicities. Then we must have m; = my = d/2, because neither multiplicity may
exceed d/2. Let Fy,...,Fy, be a basis for the vvmfs of least weight k,. Then it is
easy to see that that DF, ..., DFy/, may be chosen as the free generators of weight

k1 = ko + 2, so that we have relations of the form D*F; = E, ijl a;;jF; (a;; € C).

Let A\ be an eigenvalue of the matrix of coefficients (a;;) corresponding to a
nonzero [ in the linear span of the Fjs. Then we have D*F = ME,F, so that F
satisfies an order 2 MLDE. Therefore dim p = 2 because p is irreducible. O

Lemma 4.5. Suppose that p is irreducible and some weight multiplicity in the weight
profile of p is d/2. Then either dimp = 2, or the multiplicity profile has the form
(mq,d/2,m3) (and in particular, there are just 3 weights).

Proof. Let m; = d/2. By the inequality of Theorem 4.1 we have
d/2 S Z ms_1—2¢ S d/2

t>—1
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Therefore, all nonzero weight multiplicities already appear in the displayed inequali-
ties. By the no-gap Lemma, there must be either 2 or 3 nonzero multiplicities, and if
there are 2 then dim p = 2 by Lemma 4.4. If there are 3 then we cannot have m; = d/2
because m; < m,, and similarly m3 = d/2 is ruled out. Therefore m, = d/2, and the
Lemma is proved. O

It is evident that the argument of the last Lemma can be systematized. The gen-
eral idea is that the inequality of Theorem 4.1 involves mainly multiplicities m;_;_o;
(the point being that the subscripts have the same parity), whereas the no-gap Lemma
says that there must also be (nonzero) multiplicities for the intermediate multiplici-
ties m; with j° = j (mod 2). In the general case we can argue as follows. For each
weight multiplicity m;, define e; := [d/2] — m; > 0. By Theorem 4.1 we have

m; + Z my_—1-2¢ Z Qmj = 2[d/2] — 2€j.

t>—1

The number of integers ;' in the range [1, j — 2] satisfying j' = j (mod 2) is [j — 1/2].
By the no-gap Lemma we have m; > 1 for these j', whence we obtain

d=Y m;>[j—1/2]+2[d/2] - 2e;.

This implies that

In a nutshell, if we have a multiplicity m; that is ‘not too far’ from d/2 (i.e., e, is small)
then j must be small too. For example, if some m; = d/2 = e; = 0 = j < 1 (because
d is even), and we easily recover the results of Lemma 4.5 in this case.

Let e := min; e; be as before, with e = ¢;,. There may be several such jj, but
they all satisfy jo < 4(e + 1). By duality, all of these arguments apply to the cuspidal
weight profiles too, and we know that in these cases the weight multiplicities are
reversed upon passing from p to p (cf. Remark 2.3). Moreover, e is the same for
p and pY. Therefore, not only must the minimum discrepancy e occur by the time
we reach the 4(e + 1)"* weight multiplicity, the last time the minimum discrepancy
occurs must be within the same distance of the highest weight. Therefore, as there
are exactly ¢ distinct weight multiplicities, then ¢ < 8e + 7. We state this as

Lemma 4.6. Let p be irreducible and suppose that m, = (mq,...,my). Let e be the
minimum value of [d/2] —m; (1 < j < {). Then

¢ <8e+T.

5. MULTIPLICITY TABLES IN LOW DIMENSIONS

The following lists of multiplicity profiles 7, for irreducible representations p of
SLo(Z) were generated by a computer using the results discussed in Section 2, the no-
gap lemma (Lemma 3.3), and Theorem 4.1. They contain all multiplicity profiles that
can arise from irreducible representations in dimensions six through ten, but our lists
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may include some examples that do not occur in practice®. In each dimension there is
a unique multiplicity tuple of length d, all of whose entries are one. This corresponds
to the case of cyclic p (Lemma 3.9). Similarly, in dimension d > 4 there are d — 3
tuples of length d — 2, all entries of which are one save for a single two (which cannot
occur in the first or last entries). We omit these from our lists in dimension seven and
higher in order to fit the data within the margins.

5.1. d = 6. Total number of types: < 10.

| [ma, ... me] | [ma, ...
1,11, 1,1] ] |

7Y Y ) )

5.3. d = 8. Total number of types: < 38

[mb ,mﬁ] [ml,- .,m5] [mlw--,md [ml,m2>m3]
[1,1,1,1,2,2] [1,1,1,3,2} [1,1,3,3] [1,4,3]
[1,1,1,2,2,1] [1,1,2,2,2} [1,2,3,2] [2,3,3]
[1,1,2,1,2,1] [1,1,2,3,1} [1,3, 2,2] [2,4,2]
[1,1,2,2,1,1] [1,1,3,2,1} [1,3, 3, 1] [3, 3,2]
[1,2,1,1,2,1] [1,2,1,2,2} [2,2,2,2] [3,4, 1]
[1,2,1,2,1,1] [1,2,2,2,1} [2,2,3, 1]
[1,2,2,1,1,1] [1,2,3,1,1} [2,3, 2, 1]
[2,2,1,1,1,1] [1,3,2,1,1} [3,3,1,1]

[2,2,1,2, 1}

[2,2,2, 1, 1}

[2,3,1, 1, 1}

2Since we do not have explicit equations for the character variety of SLo(Z) in dimensions six or
greater, we do not know that there in fact exist representations p of SLy(Z) having all of the possible
prescribed values for Tr(p(R)), Tr(p(S)) and Tr(L) satisfying the obvious constraints.
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5.4. d =9. Total number of types: < 72

—— ————

— — —— r—— —— ——r——r—— —— —— —— —

N F A F AN NN NN
NN N o <
—_ oA A A A A NN NN MM

————————————————r———— —— —— ———

M AN AN I AN AN ™~ — A ™
MmN NN NN~ NN AN~ —
NN AN NN NS AN~ N
T A A NN NN NN NS
— o o o o o o~ 27 27 27 27 27 37

P O O O e e e i i

'7m6]

[ml,..

AN AN N = A ™ ™ = N ™™ o o o
NN ANNN A A NNN A AN A
AN A AT AN AN AN AN -
T —_ A A NN NN A NNN AN - -
VA A A A A A AN NN NN N NN T
17 17 1.; 1./ 1./ 17 17 17 17 17 17 17 1./ 17 27 27 27 27

S S S S S S S S S S S it i R it R i

'7m7]

[ml,..

————r——r————r———— ——r——— —— —— — —

AN o e e ]
N NN AN N -
—H AN AN AN A AN A
1’ 17 17 27 27 17 1.; 2’ 1’ 17 27 17 17 17
17 17 17 1./ 1./ 2./ 27 2./ 17 17 17 27 1./ 17
—HrH A A A A A AN NN NN
1./ 17 17 17 17 1./ 1./ 17 17 1./ 17 17 17 2./

e S S R it
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5.5. d = 10. Total number of types: < 142

—————— ————

T T T S T S e

— —— —— —— ——————r————r——r———— —————

<t MO M AN A M ANANN NN~ — -
FdF A F A FTAF AT NN NN N~
— AN M NN e < <
A A A A A NN NNN N <

S Y Y ST I D I D B B S e el e el R

M M AN AN 1 M AN~ N~~~ NN~~~
N N N N T NN ANNMNN A B ANMNNNN AN~ —
NN F AN MmN FANNNFTS T NNND AN N~ N~
VA A A A AN NN NN FANNNN T e <
—_— e e—AT A At A A A A A A A AT AT N NN NN 3a 3a 3a

O B e S S S S S S T s I S B B S s S S el el i

'7m6]

[ml,..

—

NNl ANN NN NN AN A NN A N
AN AN NN NN AT NN NN AT NN AN A N
HA A A AN AN NSNS A A A AN AN AANN A NN~ o~ —
A A A A A A A A AN A NN ANNANNN T
17 1./ 1./ 17 17 1./ 1./ 17 17 1./ 1./ 17 17 17 1./ 17 17 17 1./ 1./ 17 27 27 2./ 27 27 27 2./ 2./ 37

P B S S S e S O O S S i i e i D R}

. 7m7]

[ml,..

——————————————————— —— —— ———————————————— —— ———————————————— —— —

NN mAdNT N AN ANN A AN NN AN A A AN A A AN A
NN ATt NN N A T AN AT AN A AT AT AT AN AN AN A A AN~ =N -
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