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The methods of statistical dynamics am applied to a fluid with 5 conserved fields (the 
mass, the energy, and three components of momentum) moving in a given external field. 
When the field is zero, we recover a previously derived system of parabolic partial differential 
equations, called ‘corrections to fluid dynamics’. 
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1. Introduction 

In a previous paper [23], we described a stochastic model of a fluid with no 
external field and derived a system of parabolic equations expressing the dynamics 
of the density fields of mass, energy and momentum. An unusual feature of the 
system is that the Euler continuity equation acquires a diffusion term. This bulk 
diffusion does not appear in the standard theory [l], but has arisen in some other 
works [3, 9, 251. It is likely that our equations are more stable and physically more 
accurate than the usual Navier-Stokes equations. In a model in an external field, 
but without a velocity field [21], we studied the dynamics of the mass and energy 
densities; they differed from the equations got by putting the velocity field, u(x, t) 
equal to zero in the Navier-Stokes system. In particular, the mass density p(x, t) 
did not obey the Euler continuity equation with u = 0 but rather the Smoluchowski 
equation. This contains not only the diffusion term found in [23], but also a drift, 
as predicted by Smoluchowski, and implicit in the work of Einstein. In the present 
paper, we take the model of [23], and put it in an external field @. We derive the 
full set of equations 

s + div(up) = h div p-1V(01/2p) + ~ 

y + div[u(pe + P)] = A div [2p-‘V (Oli2P) + p_lV (O”2p) a/m 

(1) 

(2) 

v31 
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$! + div(pu @ u) = -pV<P/m - VP + h div ($@u) 

+ $aip-’ [3& (/l(X)01’2U) + V (/I(X)01’2Uj)]. (3) 

Here, p is the mass density, u is the velocity field, and 0 is the temperature. The 
energy density per unit mass e reduces in this approximation to Q/m + 3kBO/(2m). 
The equations reduce to those of [23] when Q = 0, while if u = 0 they reduce 
to [21] with suitable changes due to the different multiplicity of states in the two 
models. This is a property of any good approximation method, which is not true of 
the usual compressible Navier-Stokes equations with temperature, as studied in [16, 
171 for example. The equations of [21] can be extended to models with interparticle 
forces, treated as a nonlinear mean field theory by a development of the theory of 
nonlinear parabolic systems [4-81. 

2. Review of the model 

2.1. The sample space, conserved quantities and information manifold 

Let A be a finite subset of the cubic lattice (a?Q3 with spacing a x 10m8 cm, 
representing the size of the hard core of the fluid molecules. We endow our model 
with a local structure by assigning to each x E A a sample space Q2,, which specifies 
the possible configurations at x. The total sample space is then the product space 

a= l-Ixe* !&. For a structureless monatomic fluid (e.g. argon) we choose 

(4) 

where E x 6.6 x lo-l9 c.g.s. is the quantum of momentum of a particle confined to 
a region of size a3 (see the discussion following Eq. (6) in [23]) . A point w E G! 
is thus the collection {c+}~.I\. If w is such that w, = 0 for a certain x E A then the 
configuration w has no particle at x; we also say that there is a hole, or vacancy, 
at X. If w, = k E (rQ3, then in the configuration w there is a particle at x and its 
momentum is k. 

The state space of the system consists of the probability measures on CZ and 
is denoted by ‘c (52). The information manifold S c X associated with the model 
consists of the parametric exponential family [14] determined by the slow variables, 
that is, the local mean values of the five conserved quantities: the mass, energy 
and the three components of the momentum along the three unit vectors el, e2, es 
generating the lattice. These are the random variables: 

Nx tw) = 
0 ifw,=0, 

1 if w, = k E (EZ)~, 

0 
8, (w) = 

if 0, = 0, 

(2m)-‘k.k + a(x) if o, = k, 

(5) 

(6) 
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FX (0) = 
0 ifw,=0, 

k if W, = k, 
(7) 

where m is the mass of the molecule and 4> is a given real-valued potential, which 
could be time-dependent. The states in S c E are those of the form p = n, pX, 
where 

Px = EJ’ exp (-&NX - #lx& - cX - Fx) . (8) 

Here, &, /L and cX are fields of intensive variables that obviously determine p; they 

are called the canonical coordinates for p E S. The great grand partition function 
E, at each site is the normalising factor 

(9) 

= 1 + expC-& - &@W>Zr &Z3, (10) 

where 

(11) 

This can be calculated explicitly if, due to the small parameter E, we approximate 
sums by integrals: 

Bxk’ 
- - - (;k 

2m 
dk 

fw(m(5’)2/(28)). 

(12) 

(13) 

The means (N,, E,, mx) of the slow variables in a state p E M also determine 
p; these are called the ‘mixture’ coordinates. They are related to the canonical 
coordinates by a Legendre transform: 

N 
a i0g ~~ 

n=- 

ah ’ 
x E A, 

E 
a log $x 

-I afix ’ ,:ab, 
x E A, 

& 
- 

a<; ’ 
i = 1,2,3, X & A. 

(l-3 

Using the explicit expression for the partition function, these can be used to de- 
duce several equations relating the macroscopic variables in the theory. In particular, 
if we introduce the mean velocity field 

mx 
UX =L:----, 

mNx 
(17) 
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and the temperature field 0, = l/&n /I,), it is straightforward to show that 

(18) 

(19) 

The discrete nature of the model allows us to use the von Neumann entropy 

s(P) := -b c P(w) 1% P(W), 
0 

(20) 

which for p E S gives 

S = c (RN, + /9xEx + Cx . mx + log Ed. (21) 

XEh 

An argument from equilibrium theory [23] then leads to the definition of the ther- 
modynamical pressure as 

P(X) = a-3kB@ log zx. (22) 

If the ratio V,/ V (between the smallest volume that the N = C, N, particles can 

occupy, that is VO = a3N, and the total volume V) is small, then the formula above 
for the pressure reduces to the perfect gas approximation 

The other macroscopic variables in terms of which the hydrodynamical equations 
are written are the mass density p(x) = m NX/a3 and the energy density per unit 
of mass e(x) = E, /(m N,). If we ignore the small term involving u, . u, in (19), 
we see that 

e(x) = 
W) _&_ + F :=4(x) + S.$. (24) 

2.2. The hopping dynamics and the continuum limit 

Whether time is discrete or continuous, the dynamics traces out an orbit in S. 
The need to take the time interval larger than zero has been well explained in [2]. 
For discrete time, the dynamics consists of two steps. The first one is a stochastic 
map T : IZ + IS which maps each shell 

~N,E,m = {a E 52 : EN, = N, CE” = E, cp” = a) 
x x x 

to itself. This is obtained when we specify the hopping rules that are responsible 
for changing the configuration of the particles and hence the local values of the 
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slow variables. If we start with a state p E S, the state T(p) will generally not 
be an exponential state. The second step in the dynamics is then an orthogonal 
projection back to S following a path that conserves the means of all the slow 
variables [ 181. This is the thermalising map Q, defined for any state p with finite 
expectations of the five slow fields, as the unique point in S with these expectations 
as mixture coordinates. So Qp is determined by 

EQ,[J%] = E,LVxI = Nx, (25) 

EQ#x] = E,L%I = Ex, (26) 
EQ,[~x] = EJRI = mx. (27) 

The precise meaning of orthogonality in the description above, as well as the 
characterisation of the path followed during the projection as a geodesic for a 
certain affine connection (the ‘mixture’ connection), is part of the subject called 
information geometry [2, 10-151. 

Our model is specified by giving hopping rules. We require that T should couple 
only neighbouring points in A, where we consider two points to be neighbours if 
their distance along one of the lattice unit vectors is one mean free path, denoted by 
fZ. A particle moving from a site is taken to move exactly the distance e and then to 
thermalise. This was called abrupt thermulisation. The more elaborate assumption, 
that the size of its hop is random, governed by the exponential law with mean e, 
leads [24] to similar conclusions. We assume that C is an integer multiple of the 
lattice spacing u, but allow it to depend on the local density by taking e/a to be 
the nearest integer to 

Pmax m 
-r-* 
P(X) a3/-W 

Suppose that w E G is such that x E A is occupied. Consider in turn the possibility 
of jumping from x along the direction of the unit vectors fei of the cubic lattice 
to an empty site x’ := x f eei, i = 1,2,3. In the absence of an external potential 
[23], the jump will take a time fJ/]ui], where v, := k,/m. We then define the 
(random) hopping, rate from x to x + f?ei to be the inverse of this relaxation time, 
namely u1.e if ~1 > 0 and zero if vi is negative, in which case there is a rate 
-vi/e of hopping to x - eei. The situation in the presence of an external potential 
is a little more involved because the potential causes a change in the velocity along 
the jump. From now on, assume for definiteness that @(x + &?i) > Q(x). If the 
particle at x hops to x + &i, its potential energy increases to @(x + eei) and so 
its kinetic energy must decrease by the same amount. Its change in momentum 
is taken to be entirely in the direction of ei. So its velocity in the i-direction, 
VX := k,/m (we omit the index i for u and k in the following formulae since it 
is clear from the rest of the notation what is the component involved) is reduced 
to v: := k:/m, where 

kz/(2m) = kz/(2m) - Q(x + hi) + Q(X) 

= kE/(2m) - l&@(x) + 0(12), (28) 



18 M. R. GRASSELLI and R. F. STREATER 

that is 

lrC: = (k,2 - 2??0Z& a(X)) 1’2 . (29) 

In order for the move to be energetically possible, we must have 

k, > K; := (2ema@(X))1’2. (30) 

Similarly, if the particle at x with velocity V, -C 0 in the i-direction hops to x -Lci, 
its potential energy decreases to @(x -&i), with a corresponding rise in its kinetic 
energy. Therefore (again taking the change in momentum to be entirely in the 
i-direction) its (negative) velocity in the i-direction becomes u,” = ki/m, where 

k12/(2m) = kz/(2m) + a(x) - @(x - &i) 

= kz/(2m) + lai@(x - hi) + 0(C2), (31) 

that is 
k; = - (kz + 2mC& +(x - hi)) 1’2 . (32) 

We take the hopping rate from x to x’ = x f fZei to be the average of the initial 
and final rates: 

I 
v, + v,” 

r_(k,) := -= = 
-k.x + [k,2 + (K:_aei)2]1’2, if k 

r(k) = 
2ml 

< o. 
x_ , 

u, + u: 
r+(k,) := - = 

k, + [k; - (K;)2]1’2 

(33) 

2ml 2m.l ’ 
if k, 2 K;. 

These hopping rates increase with k, and there are infinitely many possible mo- 
mentum states. To be a Markov chain, the sum of all rates out of a configuration 
must be less than one. For any k, this can be achieved by choosing dt small 
enough. To do this for all k, with a fixed dt we must put in a cut-off, there are 
no hops if Ikn 1 > K,, say. Finally, r (k,)dt gives the probability of a transition in 
an interval dt provided that the site x is occupied and the site x’ is empty, so the 
actual entries of the Markov matrix are conditional probabilities and the transition 
rate above should appear multiplied by factors of the form N,(l - N,!). As argued 
in [23], we neglect N, comparing to 1, therefore leaving out the second term in 
the factors above. 

The continuum limit we are going to take in order to obtain the hydrodynamical 
equations corresponds to -! + 0, c + 00, such that the product 1c remains finite 
and nonzero, where 

ks@o c:= - 
( > 

112 
(34) 

m 

is the approximate velocity of sound at the reference temperature 00. The diffusion 
constant that appears when we take the limit is then predicted to be 

lCP 
h := (2n@o)l/2 = 

ahd 

(2n 00) II2 * 
(35) 
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3. Hydrodynamics in an external field 

When a transition from x to x + .!?ei occurs in a potential @, the loss of mass 
and energy from the site x is equal to the gain at the site x + eei. This is not true 
of momentum; the loss at x differs from the gain at x + eei by ki := (2Lm&@)“*. 
So we deal will N and E first. We take it that if 0 5 k’ -z K~ then no hop is 
made. 

Before we start the calculations, let us recall that integrals of the form 

00 

K(5) = 
s 

k” exp{-/?k*/(2m) - (k)dk, n = 0, 1,2,3, 
0 

were evaluated up to second order in < in Appendix 1 of [23]. For later use, we 
reproduce the results here up to zeroth order in { for n = 0, 1, 

Ml(t) = 5, 
and to first order in < for n = 2, 

M*(c) = (;)“‘(;)“* -2(F)*<. 

(36) 

(37) 

(38) 

3.1. Dynamics of the mass density in an external field 

Since the field Q(x) is external, it does not depend on the configuration w, of 
the random fields at x. It therefore cancels in the exponential states. This is seen 
in its simplest case in the model studied in [ 191. The potential enters only in its 
suppression or enhancement of the transition rate; in the present case, the rate is 
the average of the initial and final rates. This shows up mainly in the appearance 
of a nonzero lower limit to the (positive) momentum for any right-going hop to be 
possible. 

Let J!/fJ be the change in the value of N, due to the hoppings occuring between 
x and x*i Cei in such 
in an interval 6t is 

a way that the change due to exchanges with both x f eei 

So the total change in 

f _ Ji 
&&I, = _ x+eei 

I! 
x6t. 

N, in an interval 6t due to hoppings in 

SNX = @iN, + 62N, + 83Nx)8t. 

(39) 

all directions is 

(40) 

Using the hopping rates defined in the previous section, the loss/gain contribution 
to the particle current involving the exchange between x and x - .tei is 

Jj = - C ‘r-(kx)P,(k)N,(k) + C ‘r+(k,-eei)p,-cei(k)N;-e,i(k). (41) 
k's0 ki>Ki 
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As in [23], the analysis of this expression is best handled by introducing a 
conditional probability j&(o) = p(o]NX = 1) on the particle space 52 - 0, that is, 

j&(k) = (ZiZGs)-l exp{--BX lkl*/(2m) - CX - W. (42) 

We now use the fact that px (k) = N,&(k) and N,(k) = 1 on the particle space 
52 - 0, replace the sums by integrals in (41), and add and subtract the term 

F; = Nx(Zie)-’ J k?K 
k+(k)exp (-g - [k) dk, 

to obtain 

J; = F; - $ 
I J ki0 

Cr_(k,)exp (-g - <‘k) dk 

-l (F; - F:‘_,,) /l. 

(43) 

(44) 

We start by calculating Fi. In the term 

we make the change of variable 

Then k dk = k’ dk’, and the integral becomes 

J k’ [(k” + K*) “* + k’] 

2m(kR + /c*)l/* 
“““,,+ K2) _ {i&12 + K2)1/2 &I, 

k’z0 > 

which can be written as 

s k’ [(k’* + K*) “* + k’] /3kf2 __ 
2m (k’* + K*) ‘I2 

exp 2m 
- cik’ 

k’z0 > 

xexp --- 
[ 

@* 
2m 

((k’* + K2)li2 _ k’) {’ &‘. 
I 

The arguments of the exponentials are small, and we expand them to first order, 
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This gives us the three terms 

J k’ [(k’ + K2)‘12 + k’] 

At>0 2m(kn + K2)li2 
exp -g - {‘k’) dk’ 

BK2 -- 
J 

k’ [(k” + K2)lj2 + k’] 

2m !dz_o 2m(kR + ~~~~~~ 
exp -g - (‘k’) dk’ 

(45) 

(46) 

K2Ci s k’ 
__ 

2m k%O (kR + ~~~~~~ 
exp -z - Cik’) dk’. (47) 

The dominant term is (43, in which we may replace the factor 

k” [(k” + /c*)~‘~ + k’] 

2m (kn + K2) ‘I2 

by the velocity when Q, = 0, namely k’/m, with an error of O(e loge) (Aping 
1). So the contribution of this term to the mass current can be approximated in 
the limit by 

(48) 

Making tbe same replacement in (46), with the same error, we obtain 

Therefore, the contribution coming from (46) to the mass current is 

v2 

exp(-mtri)2/2B>Ms(r’), 

which, to zeroth order in <‘, gives 

w Nx Lc 
l?&<p(x) = -- -&Q(X) = - 

kBW2 2n0 (49) 
0 

When multiplied by m/a3 this is what we call the Smoluchowski, or drift, current 

(50) 

The integral in (47) is bounded by 
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Expanding Ma to zeroth order in <’ , this gives 

ciK2 1 2nm --- - 
( ) 

I’= 

=- 2m2 j3 
rieyw (2nm)l'2 qy t++, 

so that it can be ignored in the limit. 
We now turn our attention to the second term in the current (44). We can again 

replace the factor .&_ by @I/m (Appendix 2), so that the contribution to the mass 
current from this term is 

When we combine this with (48) and multiply it all by m/a3 what we find is 
simply pu’. 

Finally, we need to deal with the last term in (44), which in the limit becomes 
just -J?& Fj. As we have just shown, the only nonnegligible terms in Fi itself are 
(48) and (49). But (49) is already of order Cc and therefore can be ignored when 
multiplied by the additional L above. The only term that survives is 

-t& [$~m~eXp(-~-{ik)dk] 

=_fg, 5 - B [() 
l/2 

m 2nm 
exp(-m(ti)=/2B)M1(Ji) , 1 

which, to zeroth order in t ’ , is 

When multiplied by m/a3 this is what we call the diffusion current 

which is made up of 

and the Soret current 

(53) 

the Fick current 

- J-01/2& (log p) 

- )c(2@t/=)-qj.@ I * 

(54) 

(55) 

Therefore, we obtain the total mass current by collecting together (48), (51), 
(49) and (52), that is 

(56) 
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We now go back to (39) and expand the finite difference in there as 

Ji -Jj 
X+&i 

e 
= !$ + ;g + o(e*). 

Since the expression we just found for Jj does not contain any term with a large 
factor c, we see that, in the limit e + 0 subject to keeping .t!c finite, Eq. (40) 
becomes 

aNX 
-+divJ=O. 

at 
(57) 

Multiplying both sides of (57) by m/a3 gives us the equation for the time 
evolution of the particle’s density 

$ + div(up) = h div p-1V(@1/2p) + - 

or 

s + div(J,) = 0, 

where the conserved density current is found to be 

(59) 

Jp=up+Jd+Js. (60) 

3.2. Dynamics of the energy in an external potential 

Let J:/l be now the change in the value of E, due to the hoppings occurring 
between x and x - fZei. AS before, the change due to exchanges with both x f .&i 
in an interval 6t is 

(61) 

and the total change in E, in an interval 6t due to hoppings in all directions is 

6E, = (SIEx + A2EX + cY3Ex)St. (62) 

We have that 

Jo = - C ~r-(k,)p,(k)‘,(k) + C ‘~+(k,-eei)Px-eei (k)‘,-e,i (k), 
k’ 50 k’ zKi 

where C = k - k/2m + O(x). 

(63) 

The analogue of the quantity F, of the previous section is now 

G; = Nx(Zc3)-’ ~i,Kier,(k’)(~+O(x))exp(-~-I.k)d’k. W 
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Adding and subtracting this to (63), replacing sums by integrals and again using 
that px(k) = N,&((k), we obtain 

4 (G; - G:_+,) /l. (65) 

We calculate G, first (for i = 1). In the integral 

f hLK 
- 

we make the change of variables kf = kf -K2 while keeping k$ = k2 and ki = k3. 
Note that 

kf/2m + CD(x) = kff2m + Q(x + &I) 

and krdkl = kidk’,, so defining 

A(k’) = 
k’ . k’ 
Zm+@(x+@) 

/t?k’ . k’ 
-y--t-k’ , 

the integral becomes 

s k’, [(k;2 + ~~1”~ + q] 

k; 10 2m(kf + tc2)lj2 
A(k’) exp BK2 -G - ((k? + /c2)*j2 - k’,) [’ 

> 
d3k’. (66) 

We now expand the exponential to first order 

(kf+r2)lf2-k; - L;fi - (k;’ +/c2)l’*] <‘_ 

Thus the integral splits in the following three terms: 

Nx J k; [(kf + /c~)I’~ + k;] 

zE3 2m(kf + ~~~~~~ 
A(k’)d3k’ 

k; 20 

NxBK2 -- 
s 

k; [(kf + K2)“2 + k;] 

2mzc3 &;>(I 2m(kf + K~)‘/~ 
A(k’)d3k’ 

N,K~ ki -- 
28 I k;>o 2m(kf + ~~~~~~ 

A(k’)d3k’. 

(67) 

(68) 

(69) 

If we approximate the hopping rates appearing above simply by ki/m (Appendix 
3) and use that @(x + eel) = Q(X) + @t@(x), the integral in (67) becomes 

- !!&!i - < . k’ d3k’ 
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+$i s %1@(X) exp 
/?k’ . k’ 

-7 - < . k’ d3k’. 
k;>O m > 

(70) 

The first part of (70) is later going to be combined with the integral over the 
negative values of kr appearing in the second term of (65). As for the second part 
of (70), we have 

&’ 

= 

= Ml(C ‘)exp - 
( 

Expanding it to zeroth order in <I, we get 

(71) 

For the integral (68), we again approximate the hopping rate by k{/m and use 
that ct>(x + eel) = a(x) + e&@(x), to obtain 

NxsK2 f 
-2m2kk3 k’110 

J-‘, (!!?$)exp(-y -( .k’)&k’ 

NtPK2 
-2m2ze3 k;>O J ki(+(x) +&@(x))exp ‘;ik’ _ 3 . k’ -~ d3k’. (72) 

The first term above divides into three integrals. The first one is 

112 
4#<P(x)kgO; 

the second one is 

(73) 
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(74) 

while the third one is 

So the total contribution from the first term of (72) is 

The terms involving the velocities disappear in the limit. The remaining 

(75) 

(76) 

term is 

(77) 

As for the second part of (72) we have 

Nx~K* B ( > 
l/2 

- 2m22E3 [Q(x) + WW>l WK’) = -Nx - 
2nm 

Q@(x) [Q(x) + ealQ(x)l, 

(78) 
of which only the first term survives in the limit, leaving us with 

(79) 

The integral in (69) is itself of smaller order and can be ignored (Appendix 4). 
This completes the contribution of Gi to the energy current. 

We move on to deal with the second term in (65). The factor tr_ can be 
replaced by -ki/m (Appendix 5), leading to a contribution of the form 

/?k.k 
-- 

2m 
630) 
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As promised, this joins the first part of (70) to give 

Nx a2 log z 
=u;E, + -~ 

m abag 

We finally look at the last part of (65), which in the limit becomes -&G,. 
As we have just seen, all the contributions coming from G, are abeady of order 
Cc (and can therefore be discarded when multip~ed by the ad~tion~ C above) with 
the exception of the first part of (70), that is, 

We recognise the term not involving Q> as being equal to the first term in (72) 
times a factor -2m//?G = -@.t&@(x))-‘. Therefore, its contribution to the energy 
current is 

- E+ 
[ 

2$NxksB312 1 = -2$al(NxkB@“‘). (83) 

As for the term involving tp, we again recognise it as being equal to the term 
involving Q? in the second part of (72) times the factor -2m/jhc2 = -l//U&@. 
Therefore, its contribution to the energy current is 

We can now take a breath and collect all the terms we have obtained for the 
energy current to put back in (65). They are (71), (77), (79), (81), (83) and (84) 
and the end result is 

_ ,WW Nx 
-----(s(x) - 2h~(NxkB03/2) 
kBW2 p PI 

- $&(N~@“2)O(x). (W 

Again we see that none of the terms in .Jj contains a large factor c, so that 
tire discussion preceding (57) applies here as well and in the limit we obtain 

aEx 
,t+div.ko, (86) 
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that is 

a& 
-g- + dh[~,(E, + N,k~0,)] = div 2$N,Ot~‘V$(x) 

+ix, 
I 

. (87) 

We now use that e(x) = E,/(mN,), 4(x) = @(x)/m, p(x) = mZVx/a3 and 
PX = NXks@,/a3, divide both sides of the previous equation by a3 and obtain 

F + div[u(pe + P)] = h div [2p-‘V (01/2P) + p-tV (01/2p) # 

which can be written as (recall (50) and (53)) 

y + div[u(pe + P) + (& + Js)# + 2JsP] = 2A. div [p-IV (po’12)] . (89) 

3.3. Dynamics of the moment in an exterm4 field 

Since momentum is not conserved (as there are body forces due to the external 
field), the rate of change of momentum density will not be the divergence of 
something; we expect the extra term to be p f where f := -V@/m is the force 
per unit mass. To see this, let us define the current Jj as in the previous sections, 
namely 

(90) 

Then the change in m, J’ due to exchanges with both x z.t 8ei in an interval St 
will only be given by the usual 

& (91) 

for i # j, because it is implicit in this formula that the particles hopping from 
x z&z&i to x have their j-component of the, momentum unchanged during the jump. 
We do this case first. The analogue of F: and Gi from the previous sections is 
now 

H’ = N x x (zc3)-’ s Lr+(k”)kj exp _y - {. k 
> 

d3k, (92) 
k’>& 



Adding and subtracting this to (go), replacing sums by integral and using that 
p,(k) = N,&(k), we obtain the familiar form 

I Cr_(k”)ki exp 
/3k.k 

P-=0 
-x - C 0 k 

> 
d3k 

- 

- t! (Hi - H:‘_,,) /e. (93) 

Notice that since ET! = mN,u{, in this section we shall keep all terms of order 
mu!. If we now perform in (92) the integrations over k, (r # i, r # j) and kj we 
find 

s k>_K 

er+(k)exp(-g -{k)dk 

But now we can use the calculation we have aheady done for Fj, that is, in the 
limit we have 

The second term above, when multiplied by m/a3, simply gives mui Ji. 
As for the second term in (93), we can also perform the integrations over k, 

(r # i,r # j) and kj, as well as to replace the factor lr_(k’) by -k’/m to find 

mu:$fw~exp(-$ -,ik)dk. (93 

When we add this to what we have found in the first term in (94) and multiply 
them by m/a3, the resulting term is mp&~. 

Finally, we look at the last term in (93), which in the limit becomes --&Ii Hj. 
Since the second term in (94) is already of order ec, we see that the only surviving 
contribution here is 

which, to zeroth order in <’ , gives 

(97) 
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Therefore, the momentum current, for i # j, is given by 

J’ = mN,u;u; - x 
1 

mui - h~(N,0112md). (98) 
P 

Once more, none of the above terms contains a large factor c, so in the limit 
C + 0 subject to Cc finite, we can approximate the term (Ji+c, - Ji)/l in (91) 

simply by ai Jj. 

For i = j, Eq. (91) is not correct. In this case, if kx_eej > K:_,, is the 

j-component of the momentum for a particle at x - 4!e,, then 

is the j-component 
is the j-component 

k.i-Lej 
= [kz_Lej - 2m.tai Q(x - L$)]~/~ 

of its momentum when it arrives at X. Similarly, if kx+eej -c 0 
of the momentum for a particle at x + &?j, then 

k” x+eej = -[k:+,, + 2mCi3j Q(x)] ‘I2 

is the j-component of its momentum when it gets to x. Therefore, the total rate of 

change in r& due to exchanges with x f &j consists of the following four terms: 

Sjm,j 
PC 

at k 
c r- (kx+eej )kz+eej Px+eej @x+eej ) (99) 

*+eej 50 

- c r+(k&p,(k,) - c r-(k,)k,p,(k,) (100) 

kx ZIG,’ kxso 

+ 
c r+(Leej )k:-eej Px-eej (kx-eej 1. (101) 

kx-eqi ZKi_ee. 
J 

If we now recall from (33) what the hopping rates look like, and use that 

( kx+% + k;+eej) k:‘+eej = (k,+tej + kc+eej) kx+eej + 2mBj a(x), 

( kx-eej + ki-eej ) k:-eej = (kx-eej + ki_eej) kx-ee, - ZYmajQ(x - tej), 

then we can rewrite the above as 

6jmi 

-= 

6t k 
c r- (kx+eej )kx+eej Px+eej (kx+eej 1 

x+eej 50 

- 
c r+Wkxpx&) - c r-(kxWxpx(kx) 
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which we then recognise as 

Sjmi Jxj+eej - J,’ 
-=- 

6t e 

- a,@(x) C Px+eej(kx+eej) 
k x+eej 50 

- ajQ(X - &j) c Px-c, (kx-eej )a 

k-e7 ?KL_ec. 
J 

In the limit, the last two terms above add up to N, aj Q(x) (Appendix 

Let us now calculate Ji, that is 

(102) 

6). 

J,’ = H,’ - s s fZr_(kj)kj exp 
j3k.k 

-x - < e k d3k 
kj 50 > 

- .t Hi - H;_lej) 1.f.. 
( 

We find that Hi reduces to 

H,’ = 2 
k + (k2 - /c2)1’2 

I s kZK 2m 
kexp(-g-gjk)dk, 

where we can make the familiar change of variables kR = k2 - ~~ to obtain 

Expanding the exponential to first order gives the usual three terms 

(103) 

(kn + ,v2)1’2 + k’ 

2m 1 ( k’ exp -g - <‘t’) dk’ (104) 
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In (104), we can replace the factor 

(k” + K2) “’ + k’ 

2m 

by k’/m (Appendix 7), so that it amounts to 

$& l,_o(k’j2exp (-g - (ik’) dk’. (107) 

In (105), the same replacement gives 

which, to first order in <j (recall that we are keeping terms proportional 

in this section, since m,’ = N,mu!), gives 

2Nx#lmlajQ(x) - 
2m2 

= 

(&)1’2[(~)1’2(!!)3’2-2(!!!,‘tj] 
-QV&W> _ 112 

- 
2 

.t!aj @(x)muj 

of which only the second term survives in the limit, resulting in 

Similarly in (106), we obtain 

N,K’(’ 
y----&WCj)= 

l/2 m 

I F 

(106) 

to muj 

(109) 

(110) 

(111) 
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Moving to the second term in (103), we replace the factor f!r_(kj) by -kj/m 
(Appendix g), so it contributes with 

--$-&k’exp(-g-{jk)dk. (112) 

Combining (107) and (112), what we obtain is 

= rnN,(~~)~ + NxkBO,. (113) 

Finally, for the last term in (103), which in the limit becomes -&$H~, only 

(107) contributes, since the other terms in Hi are already of order 45~. We get 

which, to first order in <j, gives 

-~aj($(_$._)1’2[(~)1’2(!?)112-2(%)2/11) 

c = - ?aj (N,kBO,) - 2Caj [mdN. (&--y/2 i] 
e = - 2aj (N,kBO,) - 2faj (Nx01’2mu~). (114) 

Therefore, the momentum current for i = j is given by the sum of (1 lo), (11 l), 
(113) and (114), that is 

Jxj = rnN,(~$)~ + N,kBO, - 1 mui 

-faj (N,kBO,) - 2aaj (Nx@'/2mu!). 

We see that the term N,kBO, above is of a larger order than the others and 
is not negligible in the expansion of the finite difference (JX+cej - J,) /C. What we 
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J xi&j 

e 

Thus, in this case, the finite difference (JX+eej - Jx) /.! can be approximated by 

aj mNx(ui)’ + NxkB@, - x pf”$,2 a,@(x) mu! - 2$lj (N,0”*mu~) 1 > . (11% 
Therefore, collecting together the contributions from i = 1,2,3, we see from 

(91), (102) and the equation above, that the change in rnj is governed by the 
equation 

The first term above is not covariant and we need to average it over SO (3). 
The averaging procedure is explained in [23], and its result is 

3 ai c -- i=l ad 5p [ 
5 (NX@/*rn*i) + 2& (Nx@l/Zm~:)]. 
ax’ 

(117) 

We can now put it back into (116), divide both sides of it by u3 and use that 

zn,’ = mN,ui, p(x) = mNX/u3, fj = -$@(x)/m and Px = N,~B@,/u~ to obtain 

amu! 
at 

(118) 
In vector notation, this reads 

~+div(p”@u)=pf-VP+hdiv 
($28”) 

+ $a& [3ai (P(x)@/*u) + v (~(~)o~/*d)], (119) 
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which can be written as 

~+di”(puOu+JsD”)=pf--VP 

35 

4. Appendices 

4.1. Appendix 1 

The difference between the cases with and without au external potential is 

k’ 
-- 

k’ [(k’ + K2)1’2 + k’] = k’ [(kR + K2)lj2 - k’] 

m 2m(kR + ~~~~~~ 2m(kR + K~)*/~ 

< 
(kn + K2)li2 - k’ 

- 
2m ’ 

So we need to bound integrals of the form 

B1 :=$ 
J 

(kR + K2)li2 - k’ 

2m 
exp 

I k’?O 

-g - (‘k’) dk’. 

We have 

Hence, 

W2 + K2)1’2 - k’ = k, + (5: K2)1,2 

if k’ ) K 

Since ~~ = 2.t!rnlM and the term Nx/(ZiC) is O(l), we see that the error is 
o@. loge). 
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4.2. Appendix 2 

Here the difference between the cases with and without an external potential is 

k k - (k* + /c*)l/* k + (k* + a~*)~‘* -- 
m 2m = 2m ’ 

so the integral we need to bound is 

B2 := 2 
(k* + /c*)l/* + k 

I J ks0 

2m exp(-g-li,>dk, 

With the change of variable k’ = -k, we are led to the problem of finding an 
upper bound for 

NX s (kR + K*)l/* - k’ 

5 k’?O 2m 
exp -g + (‘k’) dk’. 

But this reduces to the case of Appendix 1, since the quadratic (negative) term 
in the exponent eventually (and in fact very quickly, since m is so small) overcomes 
the linear (positive) one. 

4.3. Appedix 3 

As in Appendix 1, the difference between the cases with or without an external 
potential is 

k’, -- 
k’, [ (kf + K*)l’* + k;] = k; [(k;* + K*)l’* - k;] 

m 2m(kf + K*)~/* 2m(kf + K*)~/* 

< 
(k;2 + K*)l’* - k; 

- 
2m ’ 

so that we need to bound the integral 

B3:=$$ 
s 

(k;* + K*)l/* - k’ 

2m 
’ A(k’)d3k’. 

k; 20 

NX =- 
ZE3 J dk, (k? + K*)l’* - k; x 

k; 20 2m 

X _!!!&!?{.k' 

which gives rise to the following four terms 

(k;* + K*)l’* - k; k;2 

2m 1 ( g exp 
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Nx 
+ (Zl~mmZ2r) 

&t~2e2) + W-C2H 

Nx 
+ (&~)(2m&~) 

&[M2.(C3) + M2(-C3)l + 

Using that, to zeroth order in <, I%& and ZiC are pro~~on~, respectively, to 
&f2 and ,--l/2, we conclude that the last three terms are all of the same order 
as &, that is, O(eloge). 

For the first of these terms, using the same estimate as iu Appendix 1, we find 

making it of a smaller order than the last three. Therefore, B3 itself is of order 
o(e loge). 

4.4. Appendix 4 

The integral in (69) is bounded by 

NxK2 s 2mZc3 k;?O 
A(k’)d3k’ 

N,K~ 

s ( 

k’ . k’ 
=E- 

2mZE3 qro 2m 
+ Wx’) 

> ( 
exp -!!!$!!! _I‘.k’ 

> 
&k;’ 

N,K~ 
=- 

2mZe3 

(Z24p) M2(c1) + 

+ (ZlEW2E) 

2m [“2(c3) + M2(-<3)1 + ~(n’)(Z2~)(Z3r)Mo(t1) . 1 
Now, to zero& order in C, this reduces to 

N,~~rt’/~ N K2R112 N,K~x V2 

41/2B3/2m’/2(216) 
+ 

x 

21/i@3/2m’/2(Z2E) 
+ 

21/2B3/2m1f2(Z~c) 
+ 
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Recalling that K* = 24&Q, and that the term Nx/(ZiC) is O(l), we find that 
the expression above is o(.f?*). 

4.5. Appendix 5 

As in Appendix 
potential is 

so that the integral 

ZV, [ (k: + K*)l’* + kr ._ 
B5’=263 Jklco 2m 

A 

2, the difference between the cases with or without an external 

k k - (k* + /c*)l’* k + (k* + K*)l’* 
-- 

m 2m = 2m ’ 

to be bound in this is 

k-k 
X 2m +*(x) 

> ( 
exp 

/Yk.k 
-- 

2m 
- < -k 

> 
d3k. 

So, performing the change of variable k’ = -k, the integral becomes 

B5=$ 
s 

(k;2 + K*)l’* - k; 

2m 
X 

k; )O 

pk’ . k’ 
-2m + < - k’ d3k’ 

which reduces to the case dealt in Appendix 3, since the quadratic term in the 
exponential quickly dominates the linear one. 

4.6. Appendix 6 

Replacing sums by integrals and using that pX (k) = N, j& (k) we find that the 
last two terms in (102) can be expressed as 

We first notice that we can move the lower limit of integration in the second 
term above from K to zero, since the error involved in doing so is of order K, that 
is, 0(kT3/*). We are then left with 

N 
a,@(x) 

x+eej 

Zj (X + lk?j)E 

MO (-Ci+eej ) + aj@(x - tej) 
N.x -eej 

Zj (X - lj)E 

MO(Ci-eej). 
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Expanding Ma to zeroth order in <, we get 

l/2 

+ aj@(x - &j) 

In the limit e + 0 this reduces to 

112 = N,aj@(x). 

4.7. Appendix 7 

Here the difference is 

k’ + (k’ + /c~)~‘~ k’ (kR + K~)I’~ - k’ --_= 
2m m 2m 

and the integral to bound is 

& :- Nx (‘k’) dk’. J ZjC kt 

(kn +;;‘2 - k’k’exp ( c 
Using the same estimate as in Appendix 1, we find 

B7j& (kl’k’exp(-g -cik’)dk’ 

00 
+K2 

s ( 
exp 

K 
-g - cik’) dk’) 

which we conclude is 0(e2), since, to zeroth order in <, Ma is proportional to 
m112 

4.8. Appendix 8 

The integral to be bound here is 

B8 := $ J k + (k2 + /c~)~‘~ 

I ks0 2m 
kexp(-g-{‘k)dk. 

With the change of variables k’ = -k this becomes 

Bs=-z 
J 

k’ + (k’ + /c~)~‘~ 

2m 
kexp 

J k’?O ( 
-g - <‘k’) dk’, 

which has the same bound as that of Appendix 7. 
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