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Summary. This paper reviews and extends the mathematical finance literature on
bubbles in complete markets. We provide a new characterization theorem for bubbles
under the standard no arbitrage (NFLVR) framework, showing that bubbles can be
of three types. Type 1 bubbles are uniformly integrable martingales, and these can
exist with an infinite lifetime. Type 2 bubbles are non-uniformly integrable martin-
gales, and these can exist for a finite, but unbounded, lifetime. Last, type 3 bubbles
are strict local martingales, and these can exist for a finite lifetime only . When one
adds a no dominance assumption (from Merton [24]), only type 1 bubbles remain. In
addition, under Merton’s no dominance hypothesis, put-call parity holds and there
are no bubbles in standard call and put options. Our analysis implies that if one
believes asset price bubbles exist and are an important economic phenomena, then
asset markets must be incomplete.
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1.1 Introduction

Although asset price bubbles, their existence and characterization, have en-
thralled the imagination of economists for many years, only recently has this
topic been studied using the tools of mathematical finance, see in particular
Loewenstein and Willard [22], Cox and Hobson [7], Jarrow and Madan [20],
Gilles [15], Gilles and Leroy [16], and Huang and Werner [17]. The purpose
of this paper is to review and to extend this mathematical finance literature
in order to increase our understanding of asset price bubbles. In this paper,
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we restrict our attention to arbitrage free economies that satisfy both the no-
free-lunch-with-vanishing-risk (NFLVR) and complete markets hypotheses, in
order that both the first and second fundamental theorems of asset pricing
apply. Equivalently, there exists a unique equivalent local martingale measure.
We exclude the study of incomplete markets. (We study incomplete market
asset price bubbles in a companion paper, see Jarrow, Protter, Shimbo [21].)
We also exclude the study of charges, since charges require a stronger notion
of no arbitrage (see Jarrow and Madan [20], Gilles [15], Gilles and Leroy [16]).

We make two contributions to the bubbles literature. First, we provide a
new characterization theorem for asset price bubbles. Second, we study the
effect of additionally imposing Merton’s [24] no dominance assumption on the
existence of bubbles in an economy. Our new results in this regard are:

(i) Bubbles can be of three types: an asset price process that is (1) a
uniformly integrable martingale, (2) a martingale that is not a uniformly in-
tegrable martingale, or (3) a strict local martingale that is not a martingale.
Bubbles of type 1 can be viewed as the asset price process containing a com-
ponent analogous to fiat money. Type 2 bubbles are generated by the fact
that all trading strategies must terminate in finite time, and type 3 bubbles
are caused by the standard admissibility condition used to exclude doubling
strategies.

(ii) Bubbles cannot be started - “born” - in a complete market. (In con-
trast, they can be born in incomplete markets.) They either exist at the start
or not, and if they do exist, they may disappear as the economy evolves.

(iii) Bubbles in standard European call and put options can only be of
type 3, because standard options have finite maturities. Under NFLVR, any
assets and contingent claims can have bubbles and put–call parity does not
hold in general.

(iv) Under NFLVR and no dominance, in complete markets, there can be
no type 2 or type 3 asset price bubbles. Consequently, standard options have
no bubbles and put-call parity holds.

The economic conclusions from this paper are three-fold. First, bubbles of
type 1 are uninteresting from an economic perspective because they represent
a permanent but stochastic wedge between an asset’s fundamental value and
its market price, generated by a perceived residual value at time infinity.

Second, type 2 bubbles are the result of trading strategies being of finite
time duration, although possibly unbounded. To try to profit from a bubble of
type 2 or type 3, one would short the asset in anticipation of the bubble burst-
ing. Because a type 2 bubble can exist, with positive probability, beyond any
trading strategy, these bubbles can persist as they do not violate the NFLVR
assumption. Type 3 bubbles occur in assets with finite maturities. For these
asset price bubbles, unprotected shorting is not feasible because due to the
admissibility condition, if the short’s value gets low enough, the trading strat-
egy must be terminated with positive probability, before the bubble bursts.
This admissibility condition removes downward selling pressure on the asset’s
price, and hence enables these bubbles to exist.
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Third, modulo type 1 bubbles, under both the NFLVR and no dominance
hypotheses, there can be no asset pricing bubbles in complete markets. This
implies that, if one believes asset pricing bubbles exist and are an important
economic phenomena, and if one accepts Merton’s “no dominance” assump-
tion, then asset markets must be incomplete.

An outline of this paper is as follows. Section 2 presents our model struc-
ture and defines an asset price bubble. Section 3 characterizes the properties
of asset price bubbles. Section 4 provides the economic intuition underlying
the mathematics, while section 5 extends the analysis to contingent claims
bubbles. Finally, section 6 concludes.

1.2 Model Description

This section presents the details of our economic model.

1.2.1 No Free Lunch with Vanishing Risk (NFLVR)

Traded in our economy is a risky asset and a money market account. For
simplicity, and without loss of generality, we assume that the spot interest
rate is 0 in our economy, so that the money market account has constant unit
value. Let τ be a maturity (life) of the risky asset. Let {Dt}0≤t<τ be a càdlàg
semimartingale representing the cumulative dividend process of the risky asset
with Xτ its terminal payoff or liquidation value at time τ . We assume that
Xτ , Dt ≥ 0. The market price of the risky asset is given by a non-negative
càdlàg semimartingale S = (St)t≥0 defined on a complete probability space
(Ω,F ,P) with filtration F. We assume that the filtration F satisfies the usual
hypotheses. Note that for t such that 4Dt > 0, St denotes a price ex-dividend,
since St is càdlàg . Let Wt be a wealth process from owning the asset, given
by

Wt = St +
∫ t∧τ

0

dDu + Xτ1{τ≤t}. (1.1)

A key notion in our economy will be an equivalent local martingale mea-
sure.

Definition 1 (Equivalent Local Martingale Measure). Let Q be a prob-
ability measure equivalent to P such that the wealth process Wt is a Q-local
martingale. We call Q an Equivalent Local Martingale Measure (ELMM). We
denote the set of ELMMs by Me

loc(W ).

A trading strategy is defined to be a pair of predictable processes {πt, ηt}t≥0

representing the number of units of the risky asset and money market account
held at time t with {πt}t≥0 ∈ L(W ).( See Protter [25] for the definition of
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the space of integrable processes L(W ).) The wealth process of the trading
strategy {πt, ηt}t≥0 is given by V π

t = πtSt + ηt. Assume temporarily that π is
a semimartingale. Then a self-financing trading strategy with V π

0 = 0 is a
trading strategy {πt, ηt}t≥0 such that the associated wealth process Vt = V π,η

t

is given by

V π,η
t =

∫ t

0

πudWu

=
∫ t

0

πudSu +
∫ t∧τ

0

πudDu + πτXτ1{τ≤t}

=
(

πtSt −
∫ t

0

Su−dπu − [πc, Sc]t

)
+

∫ t∧τ

0

πudDu + πτXτ1{τ≤t}

= πtSt + ηt (1.2)

where we have used integration by parts, and where

ηt =
∫ t∧τ

0

πudDu + πτXτ1{τ≤t} −
∫ t

0

Su−dπu − [πc, Sc]t. (1.3)

If we now discard the temporary assumption that π is a semimartingale, we
simply define a self-financing trading strategy (π, η) to be a pair of pro-
cesses, with π predictable and η optional and such that:

V π,η
t = πtSt + ηt =

∫ t

0

πudWu.

As noted, a self-financing trading strategy starts with zero units of the money
market account, η0 = 0, and it reflects proceeds from purchases/sales of a
risky asset which accumulate holdings in the money market account as the
cash flows from the risky asset are deposited. In particular, equation (1.3)
shows that η is uniquely determined by π if a trading strategy is self-financing.
Therefore without loss of generality, we represent (π, η) by π.

To avoid doubling strategies, we further restrict the class of self-financing
trading strategies.

Definition 2 (Admissibility). Let V π,η
t be the wealth process given by (1.2).

We say that the trading strategy π is a−admissible if it is self-financing and
V π,η

t ≥ −a a.s. We say a trading strategy is admissible if it is self-financing
and V π,η

t ≥ −a for some a ∈ R+.

The notion of admissibility corresponds to a lower bound on the wealth
process, an implicit inability to borrow if one’s debt becomes too large. (For
example, see Loewenstein and Willard [22, Equation (5) on page 23] ). There
are several alternative definitions of admissibility that could be employed and
these are discussed in Section 1.4.3. However, all of our results are robust to
these alternative formulations.
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We want to explore the existence of bubbles in arbitrage free markets,
hence, we need to define the no free lunch with vanishing risk (NFLVR) hy-
pothesis. Let

K = {Wπ
∞ = (π ·W )∞ : π is admissible}

C = (K − L0
+) ∩ L∞

where C denotes the closure of C in the sup-norm topology of L∞.
We say that a semi-martingale S satisfies the No Free Lunch with Vanish-

ing Risk (NFLVR) condition with respect to admissible integrands, if

C̄ ∩ L∞+ = {0}. (1.4)

Given NFLVR, we impose the following assumption.

Assumption 1 The market satisfies NFLVR hypothesis.

By the first fundamental theorem of finance [9], this implies that the mar-
ket admits an equivalent σ-martingale measure. By Proposition 3.3 and Corol-
lary 3.5 [1, pp. 307, 309], a σ-martingale bounded from below is a local mar-
tingale. (For the definition and properties of σ-martingales, see [25], [14], [9],
[19, Section III.6e].) Thus we have the following theorem:

Theorem 1 (First Fundamental Theorem). A market satisfies the NFLVR
condition if and only if there exists an ELMM.

Theorem 1 holds even if the price process is not locally bounded due to
the assumption that Wt is non-negative. (In [9], the driving semimartingale
(price process) takes values in Rd and is not locally bounded from below.)

We are interested in studying the existence and characterization of bubbles
in complete markets. A market is complete if for all X∞ ∈ L2(Ω,F∞, P ), there
exists a self-financing trading strategy {πt, ηt}t≥0 and c ∈ R such that

X∞ = c +
∫ ∞

0

πudWu. (1.5)

For the subsequent analysis, we also assume that the market is complete,
hence by the second fundamental theorem of asset pricing (see Harrison and
Pliska [18]), the ELMM is unique.

Assumption 2 Given the market satisfies NFLVR, the ELMM is unique.

This assumption will be key to a number of the subsequent results. For
the remainder of the paper we assume that both Assumptions 1 and 2 hold,
i.e. that the markets are arbitrage free and complete.
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1.2.2 No Dominance

In addition to assumption 1, we will also study the imposition of Merton’s
[24] no dominance assumption. To state this assumption in our setting, assume
that there are two assets or contingent claims characterized by the pair of cash
flows ({D1

t }t≥0, X
1
τ ), ({D2

t }t≥0, X
2
τ ). Let V 1

t , V 2
t denote their market prices at

time t.

Assumption 3 (No Dominance) For any stopping time σ, if

D2
σ+u −D2

σ ≥ D1
σ+u −D1

σ and X2
τ 1{τ>σ} ≥ X1

τ 1{τ>σ} for u > 0 (1.6)

then V 2
σ ≥ V 1

σ . Furthermore, if for some stopping time σ:

E{1({D2∞−D2
σ>D1∞−D1

σ}∪{X2
τ1{τ>σ}>X1

τ1{τ>σ}})|Fσ} > 0 (1.7)

with positive probability, then V 2
σ > V 1

σ .

Note that (1.6) implies that X2
τ 1{τ>σ} ≥ X1

τ 1{τ>σ} for any stopping time σ.
This assumption rephrases Assumption 1 of Merton [24] in modern mathe-

matical terms, we believe for the first time. In essence, it codifies the intuitively
obvious idea that, all things being equal, financial agents prefer more to less.
Assumption 3 is violated only if there is an agent who is willing to buy a
dominated security at the higher price.

Assumption 3 is related to Assumption 1, but they are not equivalent.

Lemma 1 Assumption 3 implies Assumption 1. However, the converse is not
true.

Proof. Assume that W allows for a free lunch with vanishing risk. There is
f ∈ L∞+ (P)\{0} and sequence {fn}∞n=0 = {(Hn · W )∞}∞n=0 where Hn is a
sequence of admissible integrands and {gn} satisfying gn ≤ fn such that

lim
n
‖f − gn‖∞ = 0 (1.8)

In particular the negative part {(fn)−} tends to zero uniformly (See [10,
page 131]). Applying Assumption 3 to two terminal payoff f and 0, we have
0 = V0(f) > 0, a contradiction. Therefore Assumption 3 implies Assumption
1. For the converse, see Example 1. ut
The domain of Assumption 3 contains a domain of Assumption 3, C̄∩L∞+ (P).
This explains why Assumption 3 implies Assumption 1.

The following is an example consistent with Assumption 1 but excluded
by Assumption 3.

Example 1. Consider two assets maturing at τ with payoffs Xτ and Yτ , re-
spectively. Suppose that Xτ ≥ Yτ almost surely. Then,
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X∗
t = EQ[Xτ |Ft]1{t<τ} ≥ EQ[Yτ |Ft]1{t<τ} = Y ∗

t . (1.9)

Let {β·} be a non-negative local martingale such that βτ = 0 and βt > X∗
t −Y ∗

t

for some t ∈ (0, τ). ( The existence of such a process follows, for example,
from Example 3.) Suppose further that the prices of asset Xt = X∗

t and
Yt = βt + Y ∗

t . Then, Assumption 3 is violated because Yt > Xt.
To see that this is not an NFLVR, consider a strategy that would attempt

to take advantage of this mis-pricing. One would want to sell Y and to buy
X, say at time t. Then, if held until maturity, this would generate a cash
flow equal to βt − (X∗

t − Y ∗
t ) > 0 at time t and Xτ − Yτ ≥ 0 at time τ .

However, for any u with t < u ≤ τ , the market value of this trading strategy
is −Yu + Xu = −βu + (X∗

u − Y ∗
u ). Since −βt is negative and unbounded, this

strategy is inadmissible and not a NFLVR. We will discuss issues related to
admissibility further in Section 1.4.3.

One situation Assumption 3 is meant to exclude is often called a suicide
strategy (see Harrison and Pliska [18] for the notion of a suicide strategy).
An alternative approach for dealing with suicide strategies is to restrict the
analysis to the set of maximal assets. An outcome (π · S)∞ of an admissible
strategy π is called maximal if for any admissible strategy π′ such that (π′ ·
S)∞ ≥ (π · S)∞, then π′ = π.

1.2.3 Bubbles

This section provides the definition of an asset pricing bubble in our economy.
To do this, we must first define the asset’s fundamental price.

The Fundamental Price

We define the fundamental price as the expected value of the asset’s future
payoffs with respect to the ELMM Q ∈ Me

loc(W ).( Recall that we assume
that the market is complete, Assumption 2.)

Definition 3 (Fundamental Price). The fundamental price S∗t of an asset
with market price St is defined by

S∗t = EQ

[∫ τ

t

dDu + Xτ1{τ<∞}|Ft

]
1{t<τ}. (1.10)

Note that the fundamental price is just the conditional expected value
of the asset’s cash flows, under the valuation measure Q. (Note that since
the random variable is positive, the conditional expectation is always defined;
however in Lemma 2 which follows we show that it is actually in L1 and thus
is classically defined.) Also, note that if the asset has a payoff at τ = ∞, then
this payoff Xτ1{τ=∞} does not contribute to the fundamental price S∗t . We do
this because an agent cannot consume the payoff Xτ1{τ=∞} by employing an
admissible trading strategy. Indeed, although unbounded in time, for a given
ω ∈ Ω all such admissible trading strategies must terminate in finite time.
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Lemma 2 The fundamental price in (1.10) is well defined. Furthermore, St

converges to S∞ ∈ L1(Q) almost surely and S∗t converges to 0 almost surely.

Proof. Fix Q ∈Me
loc(W ). To show that S∗t is well defined, it suffices to show

that
∫ τ

0
dDu + Xτ1{τ<∞} ∈ L1(Q) since for all t,

0 ≤
∫ τ

t

dDu + Xτ1{t<τ} ≤
∫ τ

0

dDu + Xτ1{t<τ} (1.11)

By hypothesis, Wt is a non-negative supermartingale. By the martingale con-
vergence theorem (see [11, VI.6 in page 72]), there exists W∞ ∈ L1(Q) such
that Wt → W∞ almost surely. To show the convergence of St, observe that

W∞ = lim
t→∞

Wt = lim
t→∞

(
St +

∫ t∧τ

0

dDu + Xτ1{τ≤t}

)

= lim
t→∞

St +
∫ τ

0

dDu + Xτ1{τ<∞} a.s..
(1.12)

It follows that there exists S∞ ∈ L1(Q) and
∫ τ

0
dDu + Xτ1{τ<∞} ∈ L1(Q)

since St ≥ 0. Therefore S∗t is well defined for all t ≥ 0. Observe that

EQ

[∫ τ

t

dDu + Xτ1{τ<∞}|Ft

]

=−
∫ t

0

dDu + EQ

[(∫ τ

0

dDu + Xτ1{τ<∞}

)
|Ft

] (1.13)

and

EQ

[(∫ τ

0

dDu + Xτ1{τ<∞}

)
|Ft

]
1{t<τ}

=
(

EQ

[(∫ τ

0

dDu + Xτ

)
1{τ<∞}|Ft

]
+ EQ

[
1{τ=∞}

∫ ∞

0

dDu|Ft

])
1{t<τ}

(1.14)

Substituting (1.14) into (1.13) and then into (1.10),

lim
t→∞

S∗t =−
∫ ∞

0

dDu1{τ=∞} + 1{τ=∞}EQ

[∫ τ

0

dDu + Xτ1{τ<∞}|F∞
]

=−
∫ ∞

0

dDu1{τ=∞} + 1{τ=∞}EQ{
∫ ∞

0

dDu|F∞}

=0
(1.15)

Note that, in general,
∫∞
0

dDu + Xτ1{τ<∞} need not be P-integrable. In
this regard, Lemma 2 shows that the existence of Q implies that

∫∞
0

dDu +
Xτ1{τ<∞} is Q-integrable.
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Lemma 3 The fundamental wealth process W ∗
t = S∗t +

∫ τ∧t

0
dDu + Xτ1{τ≤t}

is a uniformly integrable martingale under Q ∈Me
loc(W ) closed by

W ∗
∞ =

∫ τ

0

dDu + Xτ1{τ<∞}. (1.16)

Proof. By Lemma 2,

W ∗
∞ := lim

t→∞
W ∗

t

= lim
t→∞

(
S∗t +

∫ t∧τ

0

dDu + Xτ1{τ≤t}

)

=
∫ τ

0

dDu + Xτ1{τ<∞} a.s.

(1.17)

W ∗
∞ is in L1(Q) since S∞ ≥ 0, W∞ ∈ L1 and W ∗

∞+ S∞ = W∞. Observe that

E [W ∗
∞|Ft] = E

[(∫ τ

t

dDu + Xτ

)
|Ft

]
1{t<τ}

+
(
−

∫ t

τ

dDu + Xτ

)
1{τ≤t} +

(∫ t

0

dDu

)
1{t<τ}

= S∗t +
∫ t∧τ

0

dDu + Xτ1{τ≤t}

= W ∗
t .

(1.18)

It follows that W ∗
t is a closable and hence uniformly integrable martingale.

The Asset Price Bubble

Definition 4 (Bubble). The asset price bubble βt for St is given by

βt = St − S∗t . (1.19)

As indicated, the asset price bubble is the asset’s market price less the
asset’s fundamental price.

1.3 Properties of Bubbles

In this section, we analyze the properties of asset price bubbles applying
semimartingale theory and potential theory. We begin with a non standard
definition:

Definition 5 (Strict Local Martingale). A strict local martingale is a
local martingale which is not a martingale.



10 Robert A. Jarrow, Philip Protter, and Kazuhiro Shimbo

The term “strict local martingale” is not common in the literature, but it
can be found in the recent book of Delbaen and Schachermayer [10], who in
turn refer to a paper of Elworthy et al [13]. We hasten to remark that their
definition of a strict local martingale is different from our definition. Indeed,
Delbaen and Schachermayer refer to a strict local martingale as being a local
martingale which is not a uniformly integrable martingale. They allow a strict
local martingale to be actually a martingale, as long as the martingale itself
is not uniformly integrable. Our definition is more appropriate for the study
of bubbles, as will be made clear shortly.

1.3.1 Characterization of Bubbles

Theorem 2. If there exists a non-trivial bubble βt 6≡ 0 in an asset’s price,
then we have three and only three possibilities:

1. βt is a local martingale (which could be a uniformly integrable martingale)
if P(τ = ∞) > 0.

2. βt is a local martingale but not a uniformly integrable martingale if is
unbounded, but with P(τ < ∞) = 1.

3. βt is a strict Q-local martingale, if τ is a bounded stopping time.

Proof. Fix Q ∈ Me
loc(W ). Since Wt is a closable supermartingale, (See proof

of Lemma 2), there exists W∞ ∈ L1(Q) such that Wt → W∞ almost surely.
Let

β′t = Wt −EQ[W∞|Ft] (1.20)

Then β′t is a (non-negative) local martingale since it is a difference of a local
martingale and a uniformly integrable martingale. By Lemma 3,

EQ[W∞|Ft] = EQ[W ∗
∞|Ft] + E[S∞|Ft] = W ∗

t + E[S∞|Ft] (1.21)

By the definition of wealth processes and (1.20), (1.21):

βt = St − S∗t
= Wt −W ∗

t

=
(
EQ[W∞|Ft] + β1

t

)− (EQ[W∞|Ft]− EQ[S∞|Ft])
= β′t + EQ[S∞|Ft].

(1.22)

If τ < T for T ∈ R+, then S∞ = 0. A bubble βt = β′t = 0 for t ≥ τ and in
particular βT = 0. If βt is a martingale,

βt = E[βT |Ft] = 0 ∀t ≤ T (1.23)

It follows that β· is a strict local martingale. This proves (1). For (2) assume
that βt is uniformly integrable martingale. Then by Doob’s optional sampling
theorem, for any stopping time τ0 ≤ τ ,
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βτ0 = EQ[βτ |Fτ0 ] = 0 (1.24)

and since β is optional, it follows from (for example) the section theorems of
P.A. Meyer that β = 0 on [0, τ ]. Therefore the bubble does not exist. For (3),
EQ[S∞|Ft] is a uniformly integrable martingale and claim holds .

As indicated, there are three types of bubbles that can be present in an
asset’s price. Type 1 bubbles occur when the asset has infinite life with a
payoff at {τ = ∞}. Type 2 bubbles occur when the asset’s life is finite,
but unbounded. Type 3 bubbles are for assets whose lives are bounded. In a
subsequent section, we will provide an intuitive economic explanation for why
these bubbles exist. Before that, however, we provide some examples.

1.3.2 Examples

This section presents simple examples of bubbles of types 1,2 and 3.

A Uniformly Integrable Martingale Bubble: Fiat Money (Type 1)

Example 2. Let St = 1 for all t be fiat money. Fiat money is money that the
government declares to be legal tender although it cannot be converted into
standard specie. Since money never matures, τ = ∞ and X∞ = 1. Money
pays no dividend and hence Dt ≡ 0. Therefore S∗t ≡ 0 and

βt = St − S∗t = 1. (1.25)

The entire value of money comes from the bubble, its payoff X∞ = 1, and
it is a trivial uniformly integrable martingale. Note that in our setting, fiat
money is equivalent to our money market account (paying zero interest for all
times).

A Martingale Bubble (Type 2)

Example 3. Let the asset’s maturity τ be a positive random time with P (τ >
t) > 0 for all t. Let the fundamental price process be S∗t = 1{t<τ} with payoff
1 at time τ . Set

βt =
1− 1{τ≤t}
P (τ > t)

. (1.26)

Lemma 4 shows that βt is a martingale which is not a uniformly integrable
martingale, with β∞ = 0. Then

St = S∗t + βt (1.27)

is a price process with a non-uniformly integrable bubble.
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Lemma 4 Let τ0 be a positive finite random variable such that P (τ0 > t) > 0
for all t. Let Dt = 1{τ0≤t}, Dt be a filtration generated by Dt. Then

Nt =
1−Dt

P (τ0 > t)
(1.28)

is a martingale which is not a uniformly integrable martingale, and N∞ = 0.

Proof. By the structure of Dt (for example, see Protter [25, Lemma on page
121]) for s < t,

P (τ0 > t|Ds) = 1{τ0>t}P (τ0 > t|τ0 > s) = 1{τ0>s}
P (τ0 > t)
P (τ0 > s)

(1.29)

Therefore

E [1−Dt|Ds] = (1−Ds)
P (τ0 > t)
P (τ0 > s)

(1.30)

This shows that Nt is a martingale. Observe that Nt = 0 on {t > τ0} and
hence Nt → 0 a.s. because τ0 < ∞. If N = (Nt)t≥0 is a uniformly integrable
martingale, then N is closable by N∞ and Nt = E[N∞|Dt] ≡ 0, which is not
true. Therefore N is not uniformly integrable. ut

This example has the asset’s maturity τ having a positive probability of
continuing past any given future time t. Although finite with probability one,
the asset’s life is unbounded.

A Strict Local Martingale Bubble (Type 3)

The following example is essentially that contained in Cox and Hobson [7],
Example 3.5 in page 9 and 2.2.1 on page 4.

Example 4. Let the fundamental price process S∗t = 1[0,T ) with a payoff of 1
at time T . Define

βt =
∫ t

0

βu√
T − u

dBu (1.31)

where Bt is a standard Brownian motion. Lemma 5 shows that βt is a strict
local martingale with βT = 0. Then

St = S∗t + βt (1.32)

is a price process with a strict local martingale bubble.

Lemma 5 A process βt defined by equation (1.31) is a continuous local mar-
tingale on [0, T ].
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Proof. The stochastic integral
∫ ·
0
1/
√

T − sdBs is a local martingale but not
a martingale on [0, T ) (because it is a stochastic integral of a predictable
integrand w.r.t Brownian motion), such that

[∫ ·

0

1/
√

T − sdBs,

∫ ·

0

1/
√

T − sdBs

]

u

= −ln

[
1− u− t

T

]
:= Au (1.33)

and continuous on [0, T ). By Dubins-Schwartz theorem, there exists a Brow-
nian motion B̃ such that

dβu = βudB̃Au
(1.34)

and

βu = β0E
(
B̃Au

)
= β0 exp

(
B̃Au −

1
2
Au

)
(1.35)

for all u < T . By the Law of the Iterated Logarithm, we can show that
limt→∞ E(Bt) = 0. Since Au is monotonic and limu→∞Au = ∞,

lim
u→T

βu = 0 a.s. (1.36)

Since we setβT = 0, βT− = ST and {βt} is continuous on [0, T ]. E[βT ] = 0 <
E[β0] implies that {βt} is not a martingale. ut

In this example, although the asset has finite maturity T , a bubble still
exists.

1.3.3 A Bubble Decomposition

In this section, we refine Theorem 2 to obtain a unique decomposition of an
asset price bubble that yields some additional insights. The key tool is the
decomposition of a positive supermartingale.

Theorem 3 (Riesz decomposition I). Let X be a right continuous su-
permartingale such that EX−

t = limt→∞EX−
t < ∞. Then there exists the

limit X∞ = limt→∞Xt a.s. exists and E|X∞| < ∞. X has the decomposi-
tion X = U + V , where {Ut} is a right continuous version of the uniformly
integrable martingale E[X∞|Ft] and Vt = Xt − Ut is a right continuous su-
permartingale which is zero a.s. at infinity. Vt is positive if the .r.v X−

t are
uniformly integrable.

Proof. See Dellacherie and Meyer [11, V.34, 35 and VI.8 in page 73] ut
Definition 6 (Potential). A positive right continuous supermartingale such
that limt→∞EZt = 0 is called a potential.

Theorem 4 (Riesz decomposition II). Every right continuous positive su-
permartingale X can be decomposed as a sum of X = Y + Z where Y is a
right continuous martingale and Z is a potential. This decomposition is unique
except on an evanescent set and Y is the greatest right continuous martingale
bounded above by X.
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Proof. See Dellacherie and Meyer [11, VI.9 in page 73] ut
Theorem 5. St admits a unique (up to an evanescent set) decomposition

St = S∗t + βt = S∗t + (β1
t + β2

t + β3
t ), (1.37)

where β = (βt)t≥0 is a càdlàg local martingale and

• β1
t is a càdlàg non-negative uniformly integrable martingale with β1

t → X∞
almost surely,

• β2
t is a càdlàg non-negative non-uniformly integrable martingale with β2

t →
0 almost surely,

• β3
t is a càdlàg non-negative supermartingale (and strict local martingale)

such that Eβ3
t → 0 and β3

t → 0 almost surely. That is, β3
t is a potential.

Furthermore, (S∗t + β1
t + β2

t ) is the greatest submartingale bounded above
by Wt.

Proof. Let β1
t = EQ[S∞|Ft]. Define

Kt = Wt − (W ∗
t + β1

t ) = Wt − EQ[Wt|Ft]. (1.38)

By Theorem 3, K = (Kt)t≥0 is a non-negative supermartingale and Kt → 0
almost surely. Let Mt be a uniformly integrable martingale such that

0 ≤ Mt ≤ Wt −Kt ∀t ≥ 0 (1.39)

Since Wt − Kt → 0 almost surely, Mt → 0 almost surely. Then Mt ≡ 0.
Therefore K is unique up to evanescent set. By Theorem 4, K has a unique
decomposition:

Kt = β2
t + β3

t , (1.40)

where β2 is a martingale, β3 is a non negative supermartingale such that
Eβ3

t → 0, which implies β3
t → 0 almost surely. Since Kt → 0 almost surely,

β2
t = Kt − β3

t → 0 almost surely. Since β2
t is defined as

β2
t = lim

u→∞
EQ[Kt+u|Ft] (1.41)

and Ks ≥ 0 for all s ∈ [0,∞), β2
t ≥ 0. This complete the proof. ut

As in the previous Theorem 2, β1
t , β2

t , β3
t give the type 1, 2 and 3 bubbles,

respectively. First, for type 1 bubbles with infinite maturity, we see that the
type 1 bubble component converges to the asset’s value at time ∞, X∞. This
time ∞ value X∞ can be thought of as analogous to fiat money, embedded
as part of the asset’s price process. Indeed, it is a residual value that pays
zero dividends for all finite times. Second, this decomposition also shows that
for finite maturity assets, τ < ∞, the critical threshold is that of uniform
integrability. This is due to the fact that when τ < ∞, the type 2 and 3
bubble components of β = (βt)t≥0 have to converges to 0 almost surely, while
they need not converge in L1.

As a direct consequence of this theorem, we obtain the following corollary.
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Corollary 1 Any asset price bubble βt has the following properties:

1. βt ≥ 0,
2. βτ1{τ<∞} = 0, and
3. if βt = 0 then βu = 0 for all u ≥ t.

Proof. (1), (2) hold by Theorem 5. A non-negative supermartingale stays at
0 once it hits 0, which implies (3). ut

This is a key result. Condition (1) states that bubbles are always non-
negative, i.e. the market price can never be less than the fundamental value.
Condition (2) states that if the bubble’s maturity is finite τ < ∞, then the
bubble must burst on or before τ . Finally, Condition (3) states that if the
bubble ever bursts before the asset’s maturity, then it can never start again.
Alternatively stated, Condition (3) states that in the context of our model,
bubbles must either exist at the start of the model, or they never will exist.
And, if they exist and burst, then they can not start again. The fact that this
model does not include bubble birth is a weakness of the theory, due in part
to the fact that the markets are complete and there is a unique martingale
measure.

1.3.4 No Dominance

In this section, we add Assumption 3 (the assumption of No Dominance) to
the previous structure to see what additional insights can be obtained. We
only consider assets whose maturities are finite, i.e. τ < ∞ a.s. This means
that we only consider bubbles of type 2 and 3.

Let Wt be the wealth process generated by the asset with price St. Now,
by our complete markets Assumption 2, we know that there exists a local
martingale representation

W ∗
t = W ∗

0 +
∫ t

0

π1
udWu, βt = β0 +

∫ t

0

π2
udWu (1.42)

where W ∗ is the fundamental wealth process and βt is the asset price bubble.
Let {ηi

t}t≥0 be holdings in money market account given by equation (1.3) so
that the trading strategies (πi, ηi) are self-financing. Since β∞ = 0, Wt and
W ∗

t have the same cash flows. Since W ∗
∞ ≥ 0, {πi

t} represents an admissible
trading strategy. This observation implies that there are two alternative ways
of obtaining the asset’s cash flows. The first is to buy and hold the asset,
obtaining the wealth process W. The second is to hold the admissible trading
strategy {π1

t }, obtaining the wealth process W ∗ instead. The cost of obtaining
the first position is W0 ≥ W ∗

0 , with strict inequality if a bubble exists. This
implies that if there is a bubble, then the second method for buying the asset
dominates the first, yielding the following proposition.

Proposition 1 Under Assumption 3 , type 2 and type 3 bubbles do not exist.
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Proof. For any admissible payoff function, there is an admissible trading strat-
egy to replicate S∗t . Under Assumption 3, V0(S∗0 ) ≥ V0(S0) and V0(S0) ≥
V0(S∗0 ). Hence V0(S0) = V0(S∗0 ), since the cash flow of a synthetic asset S∗

and an asset St are the same. It follows that β ≡ 0 and type 2 or type 3
bubbles do not exist. ut

This proposition implies that given both the NFLVR assumption 1 and the
no dominance assumption 3, the only possible asset price bubbles are those
of type 1. Essentially, under these two weak no arbitrage assumptions, only
infinite horizon assets can have bubbles in complete markets.

1.4 The Economic Intuition

This section provides the economic intuition underlying the existence of asset
price bubbles of types 1, 2, and 3.

1.4.1 Type 1 Bubbles

Type 1 bubbles are for assets with infinite lives, with positive probability. As
argued after Theorem 5, type 1 bubbles are due to a component of an asset’s
price process X∞ that is obtained at time ∞. This component of the asset’s
price is analogous to fiat money, a residual value received at time ∞. As such,
bubbles of type 1 are uninteresting from an economic perspective because they
represent a permanent (but stochastic) wedge between an asset’s fundamental
value and its market price, generated by an exogenously given value at time
∞.

1.4.2 Type 2 Bubbles

Type 2 bubbles are for assets with finite, but unbounded lives. In a type 2
bubble, the market price of the asset exceeds its fundamental value. To take
advantage of this discrepancy, one would form a trading strategy that is long
the fundamental value, and short the asset’s price. This is possible because the
market is complete. If held until the asset’s maturity, when β2

τ1{τ<∞} = 0, this
would (if possible) create an arbitrage opportunity (FLVR). Unfortunately, for
any sample path of the asset price process, the trading strategy must terminate
at some finite time. And, there is a positive probability that the bubble exceeds
this termination time, ruining the trading strategy, and making it ”risky” and
not an arbitrage. This situation enables asset price bubbles of type 2 to exist
in our economy.
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1.4.3 Type 3 Bubbles

Type 3 bubbles are for assets with finite and bounded lives. In a type 3 bubble,
the market price of the asset exceeds it fundamental value. Just as for a type
2 bubble, to take advantage of this discrepancy, one would form a trading
strategy that is long the fundamental value, and short the asset’s price. This
is possible because the market is complete. If held until the asset’s maturity,
when β3

τ1{τ<∞} = 0, this would (if possible) create an arbitrage opportunity
(FLVR). Unfortunately, to be a FLVR trading strategy, the trading strategy
must be admissible. Shorting the asset is an inadmissible trading strategy,
because if the price of the asset becomes large enough, the value of the trading
strategy will fall below any given lower bound. Hence, there are NFLVR with
type 3 bubbles.

Alternatively stated, the first fundamental theorem of asset pricing is for-
mulated for admissible trading strategies. And, admissible trading strategies
are used to exclude doubling strategies, which would be possible otherwise.
Restricting the class of trading strategies to be admissible (to exclude dou-
bling strategies) implies that it also excludes shorting the asset for a fixed
time horizon (short and hold) as an admissible trading strategy. This removes
downward selling pressure on the asset price process, allowing bubbles to exist
in an arbitrage free setting.

The question naturally arises, therefore, whether the class of admissible
trading strategies can be relaxed further, to exclude both doubling strategies,
but still allow shorting the stock over a fixed investment horizon. Unfortu-
nately, the answer is no. To justify this statement, we briefly explore the
concept of admissibility. The standard definition of admissibility, the one we
adopted, yield the following set of possible trading strategy values:

W = ∪a {Wu : Wu ≥ −a,∀u ∈ [0, T ]} (1.43)

As usual, W is the wealth process generated by a risky asset with price process
S. The weakest notion of admissibility consistent with NFLVR (see Strasser
[29]) yields the following set of trading strategy values:

W∗ =
{

X = H ·W : H ∈ L(W ) ∧ lim
n→∞

EQ[(H ·W )−σn
1{σn<∞}] = 0

}
(1.44)

where the notation Z− for a random variable Z means Z− = −(Z ∧ 0), and

σn = inf{t ∈ [0, T ] : Xt ≤ −n}. (1.45)

Clearly W ⊂ W∗. Replacing our definition by this weaker notion of admissi-
bility does not affect our analysis for type 3 bubbles. Short selling an asset
with type 3 bubble is not admissible even in the sense of (1.44) as follows from
Lemma 6:

Lemma 6 Assume that St has a type 3 bubble βt. Then A trading strategy
Ht = −1(0,T ] is not an admissible strategy and W0 −WT /∈ W∗.
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Proof. It suffices to show that if W0−WT ∈ W∗ then type 3 bubble does not
exist. Let H = −1(0,T ] ∈ L(W ). Then

(H ·W )−σn
= (W0 −Wσn∧T )− = (Wσn∧T −W0)+ ≥ Wσn∧T −W0 (1.46)

By definition σn takes a value in [0, T ]∪ {∞} and (σn ∧ T )1{σn<∞} = σn. By
(1.46) and hypothesis,

lim
n→∞

EQ[Wσn1{σn<∞}] = lim
n→∞

EQ[(Wσn −W0)1{σn<∞}]

≤ lim
n→∞

EQ[(H ·W )−σn
1{σn<∞}]

= 0.

(1.47)

Since Wt ≥ 0, limn→∞EQ[Wσn
1{σn<∞}] = 0. Since Wt is a supermartingale

and W0 ≥ 0

E[(H ·W )−T ] = E[(WT −W0)+] ≤ EWT ≤ EW0 < ∞ (1.48)

By [29, Theorem 1.4], (H ·W )t = W0 −Wt is a supermartingale. Then by [1,
Theorem 3.3], there exists a martingale M such that (W0 −Wt)− ≤ Mt for
0 ≤ t ≤ T . Then Wt ≤ Mt + W0 for 0 ≤ t ≤ T . Since Wt is a local martingale
and Mt + W0 is a martingale, Wt is a martingale. Since 0 ≤ βt ≤ Wt, βt is
also a martingale and type 3 bubble does not exist. ut

This motivation for the existence of stock price bubbles is consistent with
the rich literature on the question “If stocks are overpriced, why aren’t prices
corrected by short sales?”. To answer this question, two types of short-sales
constraints were used. The first constraint is a structural limitation in the
economy caused by a limited ability and/or costs to borrow an asset for a
short-sale (see, for example, Oftek and Richardson [23], Duffie Gârleanu and
Pedersen [12], Chen, Hong and Stein [6], D’Avolio [8]). The second constraint
is indirect and is caused by the risk associated with short sales (see, for ex-
ample, DeLong et al. [3] and Shleifer and Vishny [28]). Using Internet stock
data from the alleged bubble period (1999 to 2000), Battalio and Schultz [2]
argue that put-call parity holds and the constraint on short-sales was not the
reason for the alleged Internet stock bubble.

1.5 Bubbles and Contingent Claims Pricing

This section studies the pricing of contingent claims in markets where the
underlying asset price process has a bubble. Bubbles can have two impacts on
a contingent claims value. The first is that a bubble in the underlying asset
price process influences the contingent claims’ price. The second is that the
contingent claim itself can have a bubble. This section explores these possi-
bilities in our market setting. For the remainder of this section we assume



1 Asset Price Bubbles in Complete Markets 19

that the risky asset S does not pay dividends, so that Wt = St. We restrict
our attention to European contingent claims in this paper because under the
NFLVR and no dominance assumptions, American contingent claims provide
no additional insights. However, this is not true for the incomplete market
setting, see Jarrow, Protter, Shimbo [21]. Following our analysis for the un-
derlying asset price process, the first topic to discuss is the fundamental price
for a contingent claim.

1.5.1 The Fundamental Price of a Contingent Claim

Definition 7. The fundamental price V (H)t of a European contingent claim
with payoff function H at maturity T is given by

V ∗
t (H) = EQ[H(S)T |Ft], (1.49)

where H(S)T denotes a functional of the path of S on the time interval [0, T ].
That is, H(S)T = H(Sr; 0 ≤ r ≤ T ).

Note that in this definition, the market price of the asset S = (St)0≤t≤T ,
and not its fundamental value, is used in the payoff function. This makes sense
since the contingent claim is written on the market price of the asset, and not
it fundamental value. As seen in Theorem 6 below, this definition is equivalent
to the fair price as defined by Cox and Hobson [7]. We believe Definition 7 is
more natural since it is valid in an incomplete market setting as well.

Theorem 6 (Cox and Hobson Theorem 3.3). If the market is complete,
the fundamental price is equivalent to the smallest initial cost to finance a
replicating portfolio of a contingent claim.

Proof. Let {θu}u∈[0,T ] be an admissible trading strategy and vt be a wealth
process associated with θ:

vt = v0 +
∫ t

0

θudSu (1.50)

Let V be a set of wealth process of admissible trading strategies θt:

V = {vt = v0 : vT ≥ H(S)T , admissible, self-financing} . (1.51)

Fix vt ∈ V. By the definition of risk neutral measure, vt is a local martingale.
Since H(S)T ≥ 0, vt is non negative and hence vt is a supermartingale. Then
there exists a decomposition on [0, T ]:

vt = Mt + Ct, (1.52)

where Mt is a uniformly integrable martingale and Ct is a potential (a non-
negative supermartingale converging to 0). This decomposition is unique (up
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to an evanescent set). In addition, Mt is the greatest martingale dominated
by vt. (See Dellacherie and Meyer V.34, 35 and VI.8, 9 in Page 73 for the
discussion of this decomposition.) At option maturity date T ,

vT = H(S)T = MT + CT (1.53)

and vt = Mt = Ct = 0 on t > T , CT = 0 and hence MT = H(S)T . Recall
that {Mt} is a uniformly integrable martingale, whence:

Mt = E[H(S)T |Ft] a.s. (1.54)

Since we assume a complete market, there exists a predictable process θt such
that

Mt = M0 +
∫ T

0

θudSu (1.55)

Since H is positive, Mt ≥ 0 and hence this strategy is admissible. Therefore
for any potential Ct, vt = Mt + Ct is a super-replicating portfolio. (Mt is a
replicating portfolio. Adding C makes it super-replicating except for the case
C ≡ 0). The fair price is the infimum of such vt’s:

V ∗
t (H) = inf

v∈V
vt = Mt + inf

Ct:potential with CT =0
Ct = Mt + 0

= E[H(S)T |Ft],
(1.56)

which complete the proof. ut
Since contingent claims discussed here have a fixed maturity T , by The-

orem 2, contingent claims can not have type 1 or type 2 bubbles. The only
possible bubbles in the contingent claims’ price are of type 3. We explore these
bubbles below. However this does not imply that the existence of type 1 or 2
bubbles in the underlying asset’s price does not affect the price of the contin-
gent claim. Indeed, it appears within the payoff function H as a component
of the asset price ST .

1.5.2 A Contingent Claims’ Price Bubble

Analogous to the underlying asset, a contingent claims’ price bubble is defined
by

δt = Vt(H)− V ∗
t (H)

where Vt(H) is the market price of the contingent claim at time t.

1.5.3 Bubbles under NFLVR

This section studies contingent claims’ price bubbles under NFLVR. Assume
that St is a non-dividend paying asset with τ > T almost surely for some
T ∈ R+. Let Ct(K)∗, Pt(K)∗, Ft(K)∗ be the fundamental prices of a call
option, put option and forward contract on S.
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Lemma 7 (Put-Call parity for fundamental prices) Fundamental prices
satisfy put-call parity:

C∗(K)− P ∗(K) = F ∗(K). (1.57)

Proof. At maturity of an option with terminal time T ,

(ST −K)+ − (K − ST )+ = ST −K ∀K ≥ 0 (1.58)

Since a fundamental price of contingent claims with payoff function H is
EQ[H(S)T |Ft],

C∗t (K)− P ∗t (K) = EQ[(ST −K)+|Ft]− EQ[(K − ST )+|Ft]
= EQ[ST −K|Ft]
= F ∗t (K)

(1.59)

ut
However, the market prices of the call, put, and forward need not satisfy
put-call parity.

Example 5. Let Bi
t, i = {1, 2, 3, 4, 5} be independent Brownian motions. Define

M i
t by

M1
t = exp

(
B1

t −
t

2

)
, M i

t = 1 +
∫ t

0

M i
s√

T − s
dBi

s 2 ≤ i ≤ 5. (1.60)

Consider a market with a finite time horizon [0, T ]. The market is com-
plete with respect to the filtration generated by {(M i

t )t≥ 0}5i=1. M1
t is a

uniformly integrable martingale on [0, T ]. By Lemma 5, {M i
t}5i=2 are non-

negative strict local martingales that converge to 0 almost surely as t → T .
Let S∗t = sups≤t M1

s . Suppose the market prices in this model are given by

• St = S∗t + M2
t

• Ct(K) = C∗t (K) + M3
t

• Pt(K) = P ∗t (K) + M4
t

• Ft(K) = F ∗t (K) + M5
t

All of the traded securities in this example have bubbles. To take advantage
of any of these bubbles {M i

t}4i=2 based on the time T convergence, an agent
must short sell at least one asset. However, as shown in Lemma 6 shorting an
asset with a type 3 bubble is not admissible. Therefore such strategies are not
a free lunch with vanishing risk.

In summary, this example shows that Assumption 1 is not strong enough
to exclude bubbles in contingent claims. And, given the existence of bubbles
in calls and puts, we get various possibilities for put-call parity in market
prices.
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• Ct(K)− Pt(K) = Ft(K) if and only if δF
t = δc

t − δp
t .

• Ct(K)− Pt(K) = St −K if and only if δS
t = δc

t − δp
t .

This example validates the following important observation. In the well
studied Black Scholes economy (a complete market under the standard
NFLVR structure), contrary to common belief, the Black-Scholes formula need
not hold! Indeed, if there is a bubble in the market price of the option (M3

t ),
then the market price (Ct(K)) can differ from the option’s fundamental price
(C∗t (K)) - the Black-Scholes formula. This insight has numerous ramifications,
for example, it implies that the implied volatility (from the Black-Scholes for-
mula) does not have to equal the historical volatility. In fact, if there is a
bubble, then the implied volatility should exceed the historical volatility, and
there exist no arbitrage opportunities! (Note that this is with the market still
being complete.) This possibility, at present, is not commonly understood.
However, all is not lost. One additional assumption returns the Black-Scholes
economy to normalcy, but an additional assumption is required! This is the
assumption of no dominance, which we discuss in the next section.

1.5.4 Bubbles under No Dominance

This section analyzes the behavior of the market prices of call and put options
under Assumption 3. We start with a useful lemma.

Lemma 8 Let H ′ be a payoff function of a contingent claim such that
Vt(H ′) = V ∗

t (H ′). Then for every contingent claim with payoff H such that
H(S)T ≤ H ′(ST ), Vt(H) = V ∗

t (H).

Proof. Since contingent claims have bounded maturity, we only need to con-
sider type 3 bubbles. Let L be a collection of stopping times on [0, T ]. Then
for all L ∈ L, VL(H) ≤ VL(H ′) by Assumption 3. Since {Vt(H ′)}t∈[0,T ] is
a martingale it is uniformly integrable martingale and in class (D) on [0, T ].
Then {Vt(H)} is also in class (D) and it is a uniformly integrable martingale
on [0, T ]. (See Jacod and Shiryaev [19, Definition 1.46, Proposition 1.47 in
page 11]). Therefore type 3 bubbles do not exist for this contingent claim. ut

This lemma states that if we have a contingent claim with no bubbles, and
this contingent claim dominates another contingent claims’ payoff, then the
dominated contingent claim will not have a bubble as well. Immediately, we
get the following corollary.

Corollary 2 If H(S)T is bounded, then Vt(H) = Vt(H∗). In particular a put
option does not have a bubble.

Proof. Assume that H(S)T < α for some α ∈ R+. Then applying Lemma 8
for H(x) = α, we have desired result. ut
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Theorem 7. Ct(K) − C∗t (K) = St − E[ST |Ft] for all K ≥ 0. This implies
calls and forwards (with K = 0) can only have type 3 bubbles and that they
must be equal to the asset price type 3 bubble.

Proof. Let Ct(K), Pt and Ft(K) denote market prices of call, put option with
strike K and a forward contract with delivery price K. Then

F ∗t (K) = E[ST |Ft]−K ≤ St −K (1.61)

By Assumption 3, the price of two admissible portfolios with the same cash
flow are the same. Thus

Ft = St −K = F ∗t (K) + (St − E[ST |Ft]) (1.62)

This implies a forward contract has a Type 3 bubble of size β3
t = St−E[ST |Ft].

To investigate put call parity, take the conditional expectation on the identity:
(ST −K)+ − (K − ST )+ = ST −K.

C∗t (K)− P ∗t (K) = F ∗t (K) ≤ St −K. (1.63)

By Assumption 3 and (1.62),

Ct(K)− Pt(K) = Ft(K) = St −K (1.64)

By subtracting (1.63) from (1.62)

[Ct(K)− C∗t (K)]− [Pt(K)− Pt(K)∗] = β3
t (1.65)

By Corollary 2, Pt(K)−Pt(K)∗ = 0. The claim follows since Ct(K)−C∗t (K) =
β3

t . ut
This theorem states that a call option’s bubble, if it exists, must equal the

stock price’s type 3 bubble. But, we know from proposition 1 that under the no
dominance assumption, asset prices have no type 3 bubbles. Thus, call options
have no bubbles under the no dominance assumption as well.

Since both European calls and puts have no bubbles under the no dominance
assumption, put call parity (as in Merton [24]) holds as well.

1.6 Conclusion

This paper reviews and extends the mathematical finance literature on bub-
bles in complete markets. We provide a new characterization theorem for
bubbles under the standard no arbitrage (NFLVR) framework, showing that
bubbles can be of three types. Type 1 bubbles are uniformly integrable mar-
tingales, and these can exist for assets with infinite lifetimes. Type 2 bubbles
are non-uniformly integrable martingales, and these can exist for assets with
finite, but unbounded lives. Last, type 3 bubbles are strict local martingales,
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and these can exist for assets with finite lives. In addition, we show that bub-
bles can only be non-negative, and must exist at the start of the model. Bubble
birth cannot occur in the standard NFLVR, complete markets structure.

When one adds a no dominance assumption (from Merton (1973)), we
show that only type 1 bubbles are possible. In addition, under Merton’s no
dominance hypothesis, put-call parity holds and there are no bubbles in stan-
dard call and put options. Our analysis implies that if one believes asset price
bubbles exist and are an important economic phenomena, then asset markets
must be incomplete. Incomplete market bubbles are studied in a companion
paper, which is in preparation.
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Ann. Inst. H. Poincaré Probab. Statist., 30:303–315, 1994.

2. R. Battalio and P. Schultz.Options and bubble, Journal of Finance, Forthcom-
ing, 2006.

3. J. B De Long, A. Shleifer, L. H.Summers, and R. J. Waldmann. Noise trader
risk in financial markets, Journal of Political Economy 98:703–738, 1990.
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