

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Mathematics and Statistics - McMaster University Joint work with Omneia Ismail (McMaster)

IFT, August 31, 2011

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

1 Introduction

2 Theoretical underpinnings

3 Bank formation

4 Bank runs

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Financial crises in the past 800 years encompass:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks Financial crises in the past 800 years encompass:
 sovereign defaults

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Financial crises in the past 800 years encompass:

- sovereign defaults
- 2 currency debasement and inflation

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Financial crises in the past 800 years encompass:

- sovereign defaults
- 2 currency debasement and inflation
- exchange rate crises

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Financial crises in the past 800 years encompass:

- sovereign defaults
- 2 currency debasement and inflation
- exchange rate crises
- banking crises

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial crises in the past 800 years encompass:
 - sovereign defaults
 - 2 currency debasement and inflation
 - exchange rate crises
 - banking crises
- Graduating from banking crises has eluded developed and developing countries alike Reinhart and Rogoff (2009).

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial crises in the past 800 years encompass:
 - sovereign defaults
 - 2 currency debasement and inflation
 - exchange rate crises
 - banking crises
- Graduating from banking crises has eluded developed and developing countries alike Reinhart and Rogoff (2009).
- Individual banks are subject to runs, largely addressed by deposit insurance, capital requirements, and regulation.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial crises in the past 800 years encompass:
 - sovereign defaults
 - 2 currency debasement and inflation
 - exchange rate crises
 - banking crises
- Graduating from banking crises has eluded developed and developing countries alike Reinhart and Rogoff (2009).
- Individual banks are subject to runs, largely addressed by deposit insurance, capital requirements, and regulation.
- However, the principles that govern individual prudence do not necessarily apply to systems as a whole.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

- Theoretical underpinnings
- Bank formation
- Bank runs
- Interbank networks

- Financial crises in the past 800 years encompass:
 - sovereign defaults
 - 2 currency debasement and inflation
 - exchange rate crises
 - banking crises
- Graduating from banking crises has eluded developed and developing countries alike Reinhart and Rogoff (2009).
- Individual banks are subject to runs, largely addressed by deposit insurance, capital requirements, and regulation.
- However, the principles that govern individual prudence do not necessarily apply to systems as a whole.
- Financial innovation and integration leads to highly interconnected, complex and potentially fragile banking systems.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

- Theoretical underpinnings
- Bank formation
- Bank runs
- Interbank networks

- Financial crises in the past 800 years encompass:
 - sovereign defaults
 - 2 currency debasement and inflation
 - exchange rate crises
 - banking crises
- Graduating from banking crises has eluded developed and developing countries alike Reinhart and Rogoff (2009).
- Individual banks are subject to runs, largely addressed by deposit insurance, capital requirements, and regulation.
- However, the principles that govern individual prudence do not necessarily apply to systems as a whole.
- Financial innovation and integration leads to highly interconnected, complex and potentially fragile banking systems.
- Systemic crises are essentially stories of contagion, interdependence, interaction and trust Kirman (2010)

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.

 Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.

- Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).
- Interactions are modelled directly, without fictitious clearing mechanisms.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.
- Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).
- Interactions are modelled directly, without fictitious clearing mechanisms.
- Hierarchical structures (i.e, banks are agents, but so are their clients, as well as the government).

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.
- Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).
- Interactions are modelled directly, without fictitious clearing mechanisms.
- Hierarchical structures (i.e, banks are agents, but so are their clients, as well as the government).
- Equilibrium is just one possible outcome, not assumed a priori.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

- Modern macroeconomic theory (e.g 'sophisticated' DSGE models) is hopeless to deal with banking crises.
- Representative agents, neutrality of money, stationarity of expectations, and assumed equilibrium states are non-starters for the problem at hand.
- Agent-based computational economics (ACE) has emerged as an alternative.
- Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).
- Interactions are modelled directly, without fictitious clearing mechanisms.
- Hierarchical structures (i.e, banks are agents, but so are their clients, as well as the government).
- Equilibrium is just one possible outcome, not assumed a priori.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Focus on the relationships between different entities as well as the entities themselves

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Provide unifying principles for ecosystems, power transmission, infectious diseases, etc.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Provide unifying principles for ecosystems, power transmission, infectious diseases, etc.
- In the context of banking, networks can help explain:

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.
- Provide unifying principles for ecosystems, power transmission, infectious diseases, etc.
- In the context of banking, networks can help explain:
 - the effect of network structure on system stability

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.
- Provide unifying principles for ecosystems, power transmission, infectious diseases, etc.
- In the context of banking, networks can help explain:
 - the effect of network structure on system stability
 - the dynamic evolution of interbank links in order to reduce exposure to risk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

- Focus on the relationships between different entities as well as the entities themselves
- Well suited to study systems where complexity arises from both the interactions among units and the anatomy of the system.
- Provide unifying principles for ecosystems, power transmission, infectious diseases, etc.
- In the context of banking, networks can help explain:
 - the effect of network structure on system stability
 - the dynamic evolution of interbank links in order to reduce exposure to risk
- The bulk of recent work on systemic risk focuses on the first aspect.

An
agent-based
model for
bank
formation,
bank runs and
interbank
networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

• Financial institutions are connected through:

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks Financial institutions are connected through:
 direct links in the interbank market

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial institutions are connected through:
 - direct links in the interbank market
 - 2 indirect links through similar portfolio exposure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Shocks come from assets or liabilities.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure
- Shocks come from assets or liabilities.
- For example, Allen and Gale (2000) investigate links of the first type and conclude that fully connected networks are robust to liquidity (liability) shocks.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

- Introduction
- Theoretical underpinnings
- Bank formation
- Bank runs
- Interbank networks

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure
- Shocks come from assets or liabilities.
- For example, Allen and Gale (2000) investigate links of the first type and conclude that fully connected networks are robust to liquidity (liability) shocks.
- Alternatively, Cifuentes, Ferrucci and Shin (2005) consider exposure to common assets under market-to-market and minimal capital requirements and reach different conclusions.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

- Introduction
- Theoretical underpinnings
- Bank formation

Bank runs

Interbank networks

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure
- Shocks come from assets or liabilities.
- For example, Allen and Gale (2000) investigate links of the first type and conclude that fully connected networks are robust to liquidity (liability) shocks.
- Alternatively, Cifuentes, Ferrucci and Shin (2005) consider exposure to common assets under market-to-market and minimal capital requirements and reach different conclusions.
- Unifying the effects of both types of links and shocks is still largely open.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

- Introduction
- Theoretical underpinnings
- Bank formation

Bank runs

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure
- Shocks come from assets or liabilities.
- For example, Allen and Gale (2000) investigate links of the first type and conclude that fully connected networks are robust to liquidity (liability) shocks.
- Alternatively, Cifuentes, Ferrucci and Shin (2005) consider exposure to common assets under market-to-market and minimal capital requirements and reach different conclusions.
- Unifying the effects of both types of links and shocks is still largely open.
- Most studies define failure as default and loss of capital.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

- Introduction
- Theoretical underpinnings
- Bank formation

Bank runs

- Financial institutions are connected through:
 - direct links in the interbank market
 - Indirect links through similar portfolio exposure
- Shocks come from assets or liabilities.
- For example, Allen and Gale (2000) investigate links of the first type and conclude that fully connected networks are robust to liquidity (liability) shocks.
- Alternatively, Cifuentes, Ferrucci and Shin (2005) consider exposure to common assets under market-to-market and minimal capital requirements and reach different conclusions.
- Unifying the effects of both types of links and shocks is still largely open.
- Most studies define failure as default and loss of capital.
- Systemic failure should also include cases where the network does not provide its social and economic function.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.

- For example, an asset can pay $1 \leq r_1 \leq r_2$ at dates
 - T = 0, 1, 2.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.

- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- The lower the ratio r_1/r_2 the less liquid is the asset.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.
- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- The lower the ratio r_1/r_2 the less liquid is the asset.
- At time *t* = 0, consumers don't know in which future date they will consume.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.
- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- The lower the ratio r_1/r_2 the less liquid is the asset.
- At time *t* = 0, consumers don't know in which future date they will consume.
- The consumer's expected utility is

$$wU(r_1)+(1-w)U(r_2),$$

where w is the proportion of early consumers (type 1).

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.
- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- The lower the ratio r_1/r_2 the less liquid is the asset.
- At time *t* = 0, consumers don't know in which future date they will consume.
- The consumer's expected utility is

$$wU(r_1)+(1-w)U(r_2),$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where w is the proportion of early consumers (type 1).

• Sufficiently risk-averse consumers prefer the liquid asset.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Let $A = (r_1 = 1, r_2 = 2)$ represent an illiquid asset and $B = (r_1 = 1.28, r_2 = 1.813)$ a liquid one.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let $A = (r_1 = 1, r_2 = 2)$ represent an illiquid asset and $B = (r_1 = 1.28, r_2 = 1.813)$ a liquid one.
- Assume investors with power utility $u(c) = 1 c^{-1}$ and w = 1/4.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let $A = (r_1 = 1, r_2 = 2)$ represent an illiquid asset and $B = (r_1 = 1.28, r_2 = 1.813)$ a liquid one.
- Assume investors with power utility $u(c) = 1 c^{-1}$ and w = 1/4.
- The expected utility from holding the illiquid asset is

$$E[u(c)] = \frac{1}{4}u(1) + \frac{3}{4}u(2) = 0.375$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let $A = (r_1 = 1, r_2 = 2)$ represent an illiquid asset and $B = (r_1 = 1.28, r_2 = 1.813)$ a liquid one.
- Assume investors with power utility $u(c) = 1 c^{-1}$ and w = 1/4.
- The expected utility from holding the illiquid asset is

$$E[u(c)] = \frac{1}{4}u(1) + \frac{3}{4}u(2) = 0.375$$

• By comparison, the expected utility from holding the liquid asset is

$$E[u(c)] = \frac{1}{4}u(1.28) + \frac{3}{4}u(1.813) = 0.391$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let $A = (r_1 = 1, r_2 = 2)$ represent an illiquid asset and $B = (r_1 = 1.28, r_2 = 1.813)$ a liquid one.
- Assume investors with power utility $u(c) = 1 c^{-1}$ and w = 1/4.
- The expected utility from holding the illiquid asset is

$$E[u(c)] = \frac{1}{4}u(1) + \frac{3}{4}u(2) = 0.375$$

• By comparison, the expected utility from holding the liquid asset is

$$E[u(c)] = \frac{1}{4}u(1.28) + \frac{3}{4}u(1.813) = 0.391$$

• Observe, however, that risk-neutral investors would prefer the illiquid asset, since:

$$E[A] = 1.75 > 1.68 = E[B]$$

Liquidity risk sharing

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Consider an economy with dates T = 0, 1, 2 and an illiquid asset A = (1, R) and consumer preferences given by

$$U(c_1^j, c_2^j, \omega) = \begin{cases} u^j(c_1) & \text{if j is of type 1 in state } \omega \\ u^j(c_2) & \text{if j is of type 2 in state } \omega \end{cases}$$
(1)

Liquidity risk sharing

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Consider an economy with dates T = 0, 1, 2 and an illiquid asset A = (1, R) and consumer preferences given by

$$U(c_1^j, c_2^j, \omega) = \begin{cases} u^j(c_1) & \text{if j is of type 1 in state } \omega \\ u^j(c_2) & \text{if j is of type 2 in state } \omega \end{cases}$$
(1)

• Denoting by *w* the fraction of early consumers (type 1), the optimal risk sharing for *publicly* observed preferences is

$$u'(c_1^{1*}) = Ru'(c_2^{2*})$$
(2)

$$(1-w)c_2^{2*} = (1-wc_1^{1*})R$$
 (3)

Liquidity risk sharing

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Consider an economy with dates T = 0, 1, 2 and an illiquid asset A = (1, R) and consumer preferences given by

$$U(c_1^j, c_2^j, \omega) = \begin{cases} u^j(c_1) & \text{if j is of type 1 in state } \omega \\ u^j(c_2) & \text{if j is of type 2 in state } \omega \end{cases}$$
(1)

• Denoting by *w* the fraction of early consumers (type 1), the optimal risk sharing for *publicly* observed preferences is

$$u'(c_1^{1*}) = Ru'(c_2^{2*})$$
(2)

$$(1-w)c_2^{2*} = (1-wc_1^{1*})R$$
 (3)

• However, liquidity preferences are private unverifiable information !

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Suppose now that a bank offers a fixed claim r_1 per unit deposited at time 0.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Suppose now that a bank offers a fixed claim r_1 per unit deposited at time 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Assume that withdrawers are served sequentially in random order until bank runs out of assets.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Suppose now that a bank offers a fixed claim r_1 per unit deposited at time 0.
- Assume that withdrawers are served sequentially in random order until bank runs out of assets.
- Denoting by f_j the fraction of withdrawers before j and by f their total fraction, the payoffs per unit deposited are

$$\begin{split} &\mathcal{N}_1(f_j,r_1) = r_1 \mathbf{1}_{\{f_j < r_1^{-1}\}} \\ &\mathcal{N}_2(f,r_1) = [R(1-r_1f)/(1-f)]^+ \end{split}$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Suppose now that a bank offers a fixed claim r_1 per unit deposited at time 0.
- Assume that withdrawers are served sequentially in random order until bank runs out of assets.
- Denoting by f_j the fraction of withdrawers before j and by f their total fraction, the payoffs per unit deposited are

$$\begin{split} &\mathcal{M}_1(f_j,r_1)=r_1 \mathbf{1}_{\{f_j < r_1^{-1}\}} \\ &\mathcal{M}_2(f,r_1)=[R(1-r_1f)/(1-f)]^+ \end{split}$$

• Setting $r_1 = c_1^{1*}$, a good equilibrium corresponds to f = w, since this leads to $V_2 = c_2^{2*} > c_1^{1*} = V_1$.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Suppose now that a bank offers a fixed claim r_1 per unit deposited at time 0.
- Assume that withdrawers are served sequentially in random order until bank runs out of assets.
- Denoting by f_j the fraction of withdrawers before j and by f their total fraction, the payoffs per unit deposited are

$$V_1(f_j, r_1) = r_1 \mathbf{1}_{\{f_j < r_1^{-1}\}}$$

 $V_2(f, r_1) = [R(1 - r_1 f)/(1 - f)]^+$

- Setting $r_1 = c_1^{1*}$, a good equilibrium corresponds to f = w, since this leads to $V_2 = c_2^{2*} > c_1^{1*} = V_1$.
- However, it is clear that f = 1 (run) is also an equilibrium leading to $V_1 \le c_1^{1*}$ and $V_2 = 0 < c_2^{2*}$.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Let the illiquid asset be A = (1, 2), $u(c) = 1 - c^{-1}$ and w = 1/4

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1,2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1,2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1-w+w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1, 2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1 - w + w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

• Suppose the bank offers the liquid asset B = (1.28, 1.813) to 100 depositors each with \$1 at 0 and invests in A.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1, 2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1 - w + w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

- Suppose the bank offers the liquid asset *B* = (1.28, 1.813) to 100 depositors each with \$1 at 0 and invests in *A*.
- If f = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1,2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1 - w + w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

- Suppose the bank offers the liquid asset B = (1.28, 1.813) to 100 depositors each with \$1 at 0 and invests in A.
- If f = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.

• At t = 2 the remaining depositors receive $\frac{68 \times 2}{75} = 1.813$.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1, 2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1 - w + w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

- Suppose the bank offers the liquid asset B = (1.28, 1.813) to 100 depositors each with \$1 at 0 and invests in A.
- If f = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.
- At t = 2 the remaining depositors receive $\frac{68 \times 2}{75} = 1.813$.
- Therefore a forecast $\hat{f} = 1/4$ is a Nash equilibrium.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Let the illiquid asset be A = (1,2), $u(c) = 1 c^{-1}$ and w = 1/4
- Then the marginal utility condition becomes $c_2^{2*} = \sqrt{R}c_1^{1*}$.
- Substituting into the budget constraint (3) gives

$$c_1^{1*} = rac{\sqrt{R}}{1 - w + w\sqrt{R}} = 1.28, \qquad c_2^{2*} = 1.813.$$

- Suppose the bank offers the liquid asset *B* = (1.28, 1.813) to 100 depositors each with \$1 at 0 and invests in *A*.
- If f = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.
- At t = 2 the remaining depositors receive $\frac{68 \times 2}{75} = 1.813$.
- Therefore a forecast $\hat{f} = 1/4$ is a Nash equilibrium.
- However, the forecast $\hat{f} = 1$ is another Nash equilibrium.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Consider an economy with 4 banks (regions) A, B, C, D.

イロト 不得 トイヨト イヨト

э.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Consider an economy with 4 banks (regions) A, B, C, D.
- There is a continuum of agents with unit endowment at time 0 and liquidity preferences given according to (1).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Consider an economy with 4 banks (regions) A, B, C, D.
- There is a continuum of agents with unit endowment at time 0 and liquidity preferences given according to (1).
- The probability *w* of being an early consumer varies from one region to another conditional on two states *S*₁ and *S*₂ with equal probabilities:

Table: Regional Liquidity Shocks

	Α	В	С	D
S_1	WH	WL	WH	WL
S_2	WL	WH	WL	WH

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Consider an economy with 4 banks (regions) A, B, C, D.
- There is a continuum of agents with unit endowment at time 0 and liquidity preferences given according to (1).
- The probability *w* of being an early consumer varies from one region to another conditional on two states *S*₁ and *S*₂ with equal probabilities:

Table: Regional Liquidity Shocks

	Α	В	С	D
S_1	WH	WL	WH	WL
S_2	WL	WH	WL	WH

• Each bank can invest in a liquid asset (1, 1) and an illiquid asset (r < 1, R > 1) and promises consumption (c₁, c₂).

・ロン ・ 理 と ・ ヨ と ・ ヨ と … ヨ …

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • The **central planner solution** consists of the best allocation (*x*, *y*) of per capita amounts invested in the illiquid and liquid assets maximizing the consumer's expected utility.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- The **central planner solution** consists of the best allocation (x, y) of per capita amounts invested in the illiquid and liquid assets maximizing the consumer's expected utility.
- This is easily seen to be given by

$$\gamma c_1 = y, \quad (1 - \gamma)c_2 = Rx,$$

where $\gamma = \frac{w_H + w_L}{2}$ is the fraction of early consumers.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- The **central planner solution** consists of the best allocation (x, y) of per capita amounts invested in the illiquid and liquid assets maximizing the consumer's expected utility.
- This is easily seen to be given by

$$\gamma c_1 = y, \quad (1 - \gamma)c_2 = Rx,$$

where $\gamma = \frac{w_H + w_L}{2}$ is the fraction of early consumers.

• Once liquidity is revealed, the central planner moves resources around.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- The **central planner solution** consists of the best allocation (x, y) of per capita amounts invested in the illiquid and liquid assets maximizing the consumer's expected utility.
- This is easily seen to be given by

$$\gamma c_1 = y, \quad (1-\gamma)c_2 = Rx,$$

where $\gamma = \frac{w_H + w_L}{2}$ is the fraction of early consumers.

- Once liquidity is revealed, the central planner moves resources around.
- For example, in state S_1 , A and C have excess demand $(w_H \gamma)c_1$ at t = 1, which equals the excess supply $(\gamma w_L)c_1$ from B and D.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- The **central planner solution** consists of the best allocation (x, y) of per capita amounts invested in the illiquid and liquid assets maximizing the consumer's expected utility.
- This is easily seen to be given by

$$\gamma c_1 = y, \quad (1-\gamma)c_2 = Rx,$$

where $\gamma = \frac{w_H + w_L}{2}$ is the fraction of early consumers.

- Once liquidity is revealed, the central planner moves resources around.
- For example, in state S_1 , A and C have excess demand $(w_H \gamma)c_1$ at t = 1, which equals the excess supply $(\gamma w_L)c_1$ from B and D.
- At t = 2 the flow is reversed, since the excess supply $(w_H \gamma)c_2$ from A and C equals the excess demand $(\gamma w_L)c_2$ from B and D.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • In the absence of a central planner, interbank loans can overcome the maldistribution of liquidity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the absence of a central planner, interbank loans can overcome the maldistribution of liquidity.
- Suppose that the network is completely connected (i.e links between all banks).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the absence of a central planner, interbank loans can overcome the maldistribution of liquidity.
- Suppose that the network is completely connected (i.e links between all banks).
- To achieve the optimal allocation, it is enough for banks to exchange deposits $z_i = (w_H \gamma)/2$ at time t = 0.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the absence of a central planner, interbank loans can overcome the maldistribution of liquidity.
- Suppose that the network is completely connected (i.e links between all banks).
- To achieve the optimal allocation, it is enough for banks to exchange deposits z_i = (w_H - γ)/2 at time t = 0.
- At t = 1, a bank with high liquidity demand satisfies

$$\left[w_H + \frac{w_H - \gamma}{2}\right]c_1 = y + \frac{3(w_H - \gamma)c_1}{2},$$

which reduces to $\gamma c_1 = y$.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the absence of a central planner, interbank loans can overcome the maldistribution of liquidity.
- Suppose that the network is completely connected (i.e links between all banks).
- To achieve the optimal allocation, it is enough for banks to exchange deposits z_i = (w_H - γ)/2 at time t = 0.
- At t = 1, a bank with high liquidity demand satisfies

$$\left[w_H + \frac{w_H - \gamma}{2}\right]c_1 = y + \frac{3(w_H - \gamma)c_1}{2},$$

which reduces to $\gamma c_1 = y$.

• At t = 2, the same bank satisfies

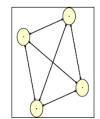
$$[(1-w_H)+(w_H-\gamma)]c_2=Rx,$$

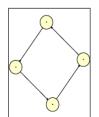
which reduces to $(1 - \gamma)c_2 = Rx$.

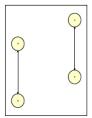
Shocks and stability

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction


Theoretical underpinnings


Bank formation

Bank runs

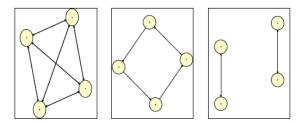
Interbank networks • Allen and Gale (2000) then analyze the effects of small shocks to interbank markets with networks of the form:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Shocks and stability

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction

Theoretical underpinnings

Bank formation

Bank runs

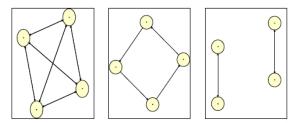
Interbank networks • Allen and Gale (2000) then analyze the effects of small shocks to interbank markets with networks of the form:

• They show that the complete network absorbs shocks better than the incomplete one.

Shocks and stability

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Allen and Gale (2000) then analyze the effects of small shocks to interbank markets with networks of the form:

- They show that the complete network absorbs shocks better than the incomplete one.
- Their analytic model is difficult to generalize to arbitrary (asymmetric) networks.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks Society

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference
- Searching for partners

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting

Bank birth

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting

- Bank birth
- Interbank Links

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Bank birth
- Interbank Links
- Contagion

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We have a society of individuals investing at the beginning of each period (*t* = 0).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We have a society of individuals investing at the beginning of each period (t = 0).
- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We have a society of individuals investing at the beginning of each period (t = 0).
- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*
- If $U_i < 0.5$ the agent is deemed to be liquid asset investor (short-term, early consumer), otherwise the agent is an illiquid asset investor (long-term, late consumer).

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We have a society of individuals investing at the beginning of each period (t = 0).

• For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*

 If U_i < 0.5 the agent is deemed to be liquid asset investor (short-term, early consumer), otherwise the agent is an illiquid asset investor (long-term, late consumer).

• There is a mid-period (t = 1) shock to their preferences:

$$\widetilde{U}_i = U_i + (-1)^{ran_i} rac{\epsilon_i}{2}$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We have a society of individuals investing at the beginning of each period (t = 0).

- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*
- If U_i < 0.5 the agent is deemed to be liquid asset investor (short-term, early consumer), otherwise the agent is an illiquid asset investor (long-term, late consumer).
- There is a mid-period (t = 1) shock to their preferences:

$$\widetilde{U}_i = U_i + (-1)^{ran_i} rac{\epsilon_i}{2}$$

• If $U_i < 0.5$ the investor wants to be a short term investor, otherwise he wants to be long term investor.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We have a society of individuals investing at the beginning of each period (t = 0).

- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*
- If U_i < 0.5 the agent is deemed to be liquid asset investor (short-term, early consumer), otherwise the agent is an illiquid asset investor (long-term, late consumer).
- There is a mid-period (t = 1) shock to their preferences:

$$\widetilde{U}_i = U_i + (-1)^{ran_i} rac{\epsilon_i}{2}$$

- If U
 _i < 0.5 the investor wants to be a short term investor, otherwise he wants to be long term investor.
- If the shock is big enough the individual wishes to have invested differently.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We have a society of individuals investing at the beginning of each period (t = 0).
- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*
- If U_i < 0.5 the agent is deemed to be liquid asset investor (short-term, early consumer), otherwise the agent is an illiquid asset investor (long-term, late consumer).
- There is a mid-period (t = 1) shock to their preferences:

$$\widetilde{U}_i = U_i + (-1)^{ran_i} rac{\epsilon_i}{2}$$

- If $\tilde{U}_i < 0.5$ the investor wants to be a short term investor, otherwise he wants to be long term investor.
- If the shock is big enough the individual wishes to have invested differently.
- Because of anticipated shocks, individuals explore the society searching to partners to exchange investments?

Searching for partners

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We impose some constrains on the individual capacity to go around and seek other individuals to trade.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Searching for partners

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We impose some constrains on the individual capacity to go around and seek other individuals to trade.
- This reflects the inherited limited capability of information gathering and environment knowledge of individual agents.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Searching for partners

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We impose some constrains on the individual capacity to go around and seek other individuals to trade.
- This reflects the inherited limited capability of information gathering and environment knowledge of individual agents.
- We use a combination of Von Neumann and Moore neighborhood:
 - 5 1 6 2 X 3 7 4 8

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• All agents have a set of 7 predictors as follows:

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.

- All agents have a set of 7 predictors as follows:
 - I Today would be the same as last period.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.

- All agents have a set of 7 predictors as follows:
 - Today would be the same as last period.
 - Or Today would be the same as two periods ago.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.

- All agents have a set of 7 predictors as follows:
 - Today would be the same as last period.
 - Or Today would be the same as two periods ago.
 - Today would be the same as three periods ago.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.
- All agents have a set of 7 predictors as follows:
 - Today would be the same as last period.
 - 2 Today would be the same as two periods ago.
 - Today would be the same as three periods ago.

Today would be the same as four periods ago.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.
- All agents have a set of 7 predictors as follows:
 - **1** Today would be the same as last period.
 - 2 Today would be the same as two periods ago.
 - Today would be the same as three periods ago.
 - Today would be the same as four periods ago.
 - **o** Today would be the same as five periods ago.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.
- All agents have a set of 7 predictors as follows:
 - **1** Today would be the same as last period.
 - Icoday would be the same as two periods ago.
 - Today would be the same as three periods ago.
 - Today would be the same as four periods ago.
 - 5 Today would be the same as five periods ago.
 - Today would be the same as the mode for the last three periods.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the inductive reasoning proposed by Arthur (2000) for individuals with bounded rationality dealing with complex environments.
- We assume agents make predictions using a memory of 5 periods.
- All agents have a set of 7 predictors as follows:
 - Today would be the same as last period.
 - Icoday would be the same as two periods ago.
 - Today would be the same as three periods ago.
 - Today would be the same as four periods ago.
 - 5 Today would be the same as five periods ago.
 - Today would be the same as the mode for the last three periods.
 - Today would be the same as the mode for the last five periods.

Learning and Predicting

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Each predictor makes one of the following forecasts:

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks Each predictor makes one of the following forecasts:
N = agent will not need a partner

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Each predictor makes one of the following forecasts:

- 1 N = agent will not need a partner
- 2 G = agent will need a partner and will find one

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Each predictor makes one of the following forecasts:

- 1 N = agent will not need a partner
- 2 G = agent will need a partner and will find one
- \bigcirc B = agent will need a partner and will not find one

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

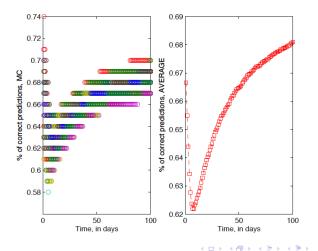
- Each predictor makes one of the following forecasts:
 - $\ \, \bullet \ \, \mathsf{N} = \mathsf{agent} \ \mathsf{will} \ \mathsf{not} \ \mathsf{need} \ \mathsf{a} \ \mathsf{partner}$
 - \bigcirc G = agent will need a partner and will find one
 - \bigcirc B = agent will need a partner and will not find one
- Depending on the realized outcome, a predictor's strength gets updated by

$$\Delta S = \left\{ egin{array}{cc} +1 & \mbox{if the forecast is correct} \\ -1 & \mbox{if the forecast is incorrect} \end{array}
ight.$$

Learning simulation

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks We use 400 persons over a time span of 100 periods in a simulation with 100 realizations:

500

э

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We follow the work of Howitt and Clower (1999, 2007) on the emergence of economic organizations.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the work of Howitt and Clower (1999, 2007) on the emergence of economic organizations.
- A randomly selected agent *i* is hit by the 'idea of entrepreneurship' and makes an initial estimate Wⁱ = Zⁱ/8 of the fraction of early consumers, where Zⁱ is a random integer in [0,8] and reflects the entrepreneur's 'animal spirits'.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the work of Howitt and Clower (1999, 2007) on the emergence of economic organizations.
- A randomly selected agent *i* is hit by the 'idea of entrepreneurship' and makes an initial estimate Wⁱ = Zⁱ/8 of the fraction of early consumers, where Zⁱ is a random integer in [0,8] and reflects the entrepreneur's 'animal spirits'.
- The bank is establish if there are x and y such that $x + y \le 1$ and

$$y = c_1 W_i$$

$$Rx = c_2(1 - W_i),$$

where (c_1, c_2) is the promised consumption.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the work of Howitt and Clower (1999, 2007) on the emergence of economic organizations.
- A randomly selected agent *i* is hit by the 'idea of entrepreneurship' and makes an initial estimate Wⁱ = Zⁱ/8 of the fraction of early consumers, where Zⁱ is a random integer in [0,8] and reflects the entrepreneur's 'animal spirits'.
- The bank is establish if there are x and y such that $x + y \le 1$ and

$$y = c_1 W_i$$

$$Rx = c_2 (1 - W_i),$$

where (c_1, c_2) is the promised consumption.

• Individuals become aware of bank existence only if the bank lies in their neighbourhood

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We follow the work of Howitt and Clower (1999, 2007) on the emergence of economic organizations.
- A randomly selected agent *i* is hit by the 'idea of entrepreneurship' and makes an initial estimate Wⁱ = Zⁱ/8 of the fraction of early consumers, where Zⁱ is a random integer in [0,8] and reflects the entrepreneur's 'animal spirits'.
- The bank is establish if there are x and y such that $x + y \le 1$ and

$$y = c_1 W_i$$

$$Rx = c_2 (1 - W_i),$$

where (c_1, c_2) is the promised consumption.

- Individuals become aware of bank existence only if the bank lies in their neighbourhood
- $\bullet\,$ In addition we give the bank the reach of its new members, $_{\mbox{\scriptsize o}}$

To join or not to join a bank

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Agents need to decide between trading directly either in the liquid asset (1, 1) or the illiquid asset (r < 1, R > 1) or joining the bank and receiving $(c_1 > 1, c_2 < R)$.

To join or not to join a bank

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Agents need to decide between trading directly either in the liquid asset (1, 1) or the illiquid asset (r < 1, R > 1) or joining the bank and receiving $(c_1 > 1, c_2 < R)$.

• For example, an agent who current has late preferences might have the following payoff table:

	forecast	strength	payoff (join)	payoff (not join)
1	Ν	-2	<i>c</i> ₂	R
2	G	0	<i>c</i> ₁	1
3	Ν	+1	<i>c</i> ₂	R
4	В	-1	<i>c</i> ₁	r
5	G	+1	<i>c</i> ₁	1
6	Ν	0	<i>c</i> ₂	R
7	В	+2	c_1	r

To join or not to join a bank

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • Agents need to decide between trading directly either in the liquid asset (1, 1) or the illiquid asset (r < 1, R > 1) or joining the bank and receiving $(c_1 > 1, c_2 < R)$.

• For example, an agent who current has late preferences might have the following payoff table:

	forecast	strength	payoff (join)	payoff (not join)
1	Ν	-2	<i>c</i> ₂	R
2	G	0	<i>c</i> ₁	1
3	Ν	+1	<i>c</i> ₂	R
4	В	-1	c_1	r
5	G	+1	<i>c</i> ₁	1
6	Ν	0	<i>c</i> ₂	R
7	В	+2	<i>c</i> ₁	r

The decision is based on the weighted sum of payoffs.

Experiment: bank formation

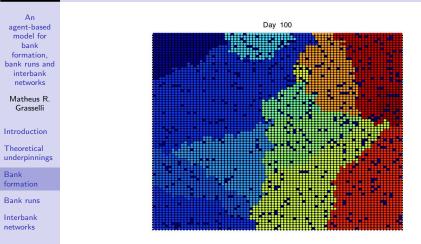
An
agent-based
model for
bank
formation,
bank runs and
interbank
networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation


Bank runs

Interbank networks

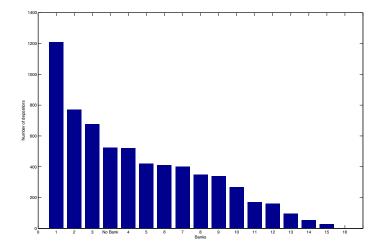
Experiment (continued): established banks

Figure: Banks at T=100 with $c_1 = 1.1$, $c_2 = 1.5$ and R = 2

Experiment (continued): number of depositors

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

メリアスピアス ミアス ミア・ミー ワベワ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks In the previous section we assumed that an agent never leaves a bank after joining.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • In the previous section we assumed that an agent never leaves a bank after joining.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• To model bank failures and runs we need a learning mechanism for banks themselves.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the previous section we assumed that an agent never leaves a bank after joining.
- To model bank failures and runs we need a learning mechanism for banks themselves.
- Having made the allocation (xⁱ_t, yⁱ_t) based on Wⁱ_t, banks accumulates reserves according to the realized Wⁱ_t:

$$C_t^i = [y_t^i - c_1 \overline{W}_t^i] + [Rx_t^i - c_2(1 - \overline{W}_t^i)].$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- In the previous section we assumed that an agent never leaves a bank after joining.
- To model bank failures and runs we need a learning mechanism for banks themselves.
- Having made the allocation (xⁱ_t, yⁱ_t) based on Wⁱ_t, banks accumulates reserves according to the realized Wⁱ_t:

$$C_t^i = [y_t^i - c_1 \overline{W}_t^i] + [Rx_t^i - c_2(1 - \overline{W}_t^i)].$$

• Banks update their estimate of early consumers through

$$W_{t+1}^{i} = \max\left\{W_{t}^{i} + \alpha(\overline{W}_{t}^{i} - W_{t}^{i}), \frac{1 - c_{2}/R}{c_{1} - c_{2}/R}\right\}, \quad (4)$$

reflecting both adaptation through a parameter $\alpha \in (0, 1)$ and the budget constraint $x_{t+1}^i + y_{t+1}^i \leq 1$ where

$$y_{t+1}^{i} = c_1 W_{t+1}^{i}, \quad Rx_{t+1}^{i} = c_2 (1 - W_{t+1}^{i}).$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We say that a bank is subject to a run if late consumers receive less than c_1 at the end of the period.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We say that a bank is subject to a run if late consumers receive less than c_1 at the end of the period.
- If the bank underestimates the fraction of early consumers, there is a run provided

$$(\overline{W}_t^i - W_t^i)c_1 > \left[rac{(1 - W_t^i)c_2}{R} - rac{(1 - \overline{W}_t^i)c_1}{R}
ight]r + C_t^i$$

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We say that a bank is subject to a run if late consumers receive less than c_1 at the end of the period.
- If the bank underestimates the fraction of early consumers, there is a run provided

$$(\overline{W}_t^i - W_t^i)c_1 > \left[rac{(1 - W_t^i)c_2}{R} - rac{(1 - \overline{W}_t^i)c_1}{R}
ight]r + C_t^i$$

• Conversely, if the bank overestimates \overline{W}'_t , the amount available to late consumers (without using reserves) is

$$rac{c_2(1-W^i_t)+c_1(W^i_t-\overline{W}^i_t)}{1-\overline{W}^i_t}=c_2-(c_2-c_1)rac{W^i_t-\overline{W}^i_t}{1-\overline{W}^i_t}\ =c_1+(c_2-c_1)rac{1-W^i_t}{1-\overline{W}^i_t}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We say that a bank is subject to a run if late consumers receive less than c_1 at the end of the period.
- If the bank underestimates the fraction of early consumers, there is a run provided

$$(\overline{W}_t^i - W_t^i)c_1 > \left[rac{(1 - W_t^i)c_2}{R} - rac{(1 - \overline{W}_t^i)c_1}{R}
ight]r + C_t^i$$

• Conversely, if the bank overestimates \overline{W}'_t , the amount available to late consumers (without using reserves) is

$$rac{c_2(1-W^i_t)+c_1(W^i_t-\overline{W}^i_t)}{1-\overline{W}^i_t}=c_2-(c_2-c_1)rac{W^i_t-\overline{W}^i_t}{1-\overline{W}^i_t}\ =c_1+(c_2-c_1)rac{1-W^i_t}{1-\overline{W}^i_t}$$

• The banks uses reserves to bring this as close as $possible_{acce}$

Experiment: bank formation and runs

An
agent-based
model for
bank
formation,
bank runs and
interbank
networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

Experiment: established banks (with possible runs)

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

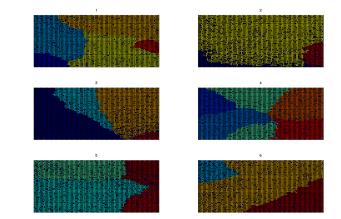


Figure: Banks at T=100 with $c_1 = 1.1$, $c_2 = 1.5$ and R = 2

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • As before, banks update their estimate of the fraction of early consumers according to (4).

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- As before, banks update their estimate of the fraction of early consumers according to (4).
- In addition, they deem the estimate to be adequate if the fraction of reserves lost in a given period is less than a certain threshold.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- As before, banks update their estimate of the fraction of early consumers according to (4).
- In addition, they deem the estimate to be adequate if the fraction of reserves lost in a given period is less than a certain threshold.
- They use the same set of predictors as clients to forecast the adequacy of their estimates as being 'adequate', 'inadequate' or 'undetermined'.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

- Introduction
- Theoretical underpinnings
- Bank formation
- Bank runs
- Interbank networks

- As before, banks update their estimate of the fraction of early consumers according to (4).
- In addition, they deem the estimate to be adequate if the fraction of reserves lost in a given period is less than a certain threshold.
- They use the same set of predictors as clients to forecast the adequacy of their estimates as being 'adequate', 'inadequate' or 'undetermined'.
- Banks with inadequate or undetermined estimates have an incentive to exchange deposits with other banks and try to protect their reserves.

Experiment: adequacy of estimates through time

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

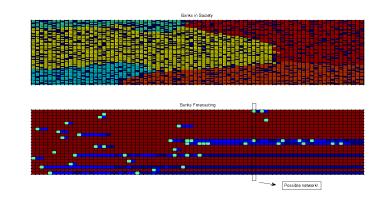


Figure: Banks at T=100 with $c_1 = 1.1$, $c_2 = 1.5$ and R = 2 and adequacy of estimates over time.

Experiment: possible network

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

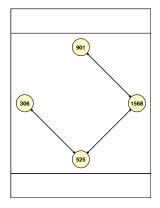


Figure: Snapshot of possible interbank loans

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.

• We form 2C different regions (communities) as follows:

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.

- We form 2C different regions (communities) as follows:
 - Select 2C cells at random to be the base

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の○○

- We form 2C different regions (communities) as follows:
 - Select 2C cells at random to be the base
 - 2 Choose the largest reach M around the base

Correlated liquidity shocks

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.
- We form 2C different regions (communities) as follows:
 - Select 2C cells at random to be the base
 - 2 Choose the largest reach M around the base
 - S Randomly select $2M^2$ cells around the base to form a community

Correlated liquidity shocks

An agent-based model for bank formation, bank runs and interbank networks

> Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

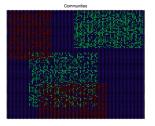
Interbank networks

- As in Allen and Gale (2000), we consider regional liquidity shocks in a society with no overall shortage of liquidity.
- We form 2C different regions (communities) as follows:
 - Select 2C cells at random to be the base
 - 2 Choose the largest reach M around the base
 - 3 Randomly select $2M^2$ cells around the base to form a community
 - Alter half of the communities to early preferences (i.e $\widetilde{U}_i = 0.2$) and half of the communities to late preferences (i.e $\widetilde{U}_i = 0.8$).

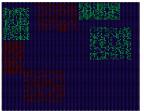
Examples of correlated liquidity shocks

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli


Introduction

Theoretical underpinnings


Bank formation

Bank runs

Interbank networks

Communities

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Experiment: bank formation and runs with correlated shocks

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

Experiment: adequacy of estimates through time (with correlated shocks)

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

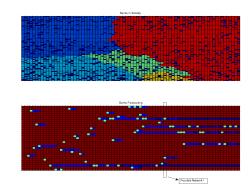


Figure: Banks at T=100 with $c_1 = 1.1$, $c_2 = 1.5$ and R = 2 and adequacy of estimates over time.

Experiment: another possible network

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

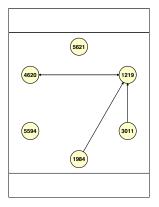


Figure: Snapshot of possible interbank loans with correlated liquidity shocks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks • We modelled individual liquidity preferences in a society.

ヘロト 人間ト 人団ト 人団ト

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Banks arise as providers of liquidity, but are inevitably subject to possible runs.

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.
- Banks arise as providers of liquidity, but are inevitably subject to possible runs.
- Interbank loans redistributed the effect of correlated liquidity shocks across the society.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.
- Banks arise as providers of liquidity, but are inevitably subject to possible runs.
- Interbank loans redistributed the effect of correlated liquidity shocks across the society.
- Robustness of the model is being tested through extensive simulations.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.
- Banks arise as providers of liquidity, but are inevitably subject to possible runs.
- Interbank loans redistributed the effect of correlated liquidity shocks across the society.
- Robustness of the model is being tested through extensive simulations.
- Ultimately want to adjust model parameters to reproduced different observed networks and use it as a testbed for policy implications.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

An agent-based model for bank formation, bank runs and interbank networks

Matheus R. Grasselli

Introduction

Theoretical underpinnings

Bank formation

Bank runs

Interbank networks

- We modelled individual liquidity preferences in a society.
- Changes in preferences lead agents to search for trading partners.
- Banks arise as providers of liquidity, but are inevitably subject to possible runs.
- Interbank loans redistributed the effect of correlated liquidity shocks across the society.
- Robustness of the model is being tested through extensive simulations.
- Ultimately want to adjust model parameters to reproduced different observed networks and use it as a testbed for policy implications.
- Thank you.