Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction
Keen model without government
Persistence theory
Introducing government
Examples

Research in Options, December 10, 2012
What is wrong with this picture?

Figure: http://www.washingtonpost.com/wp-srv/special/politics/fiscal-cliff-questions/
What is the fiscal cliff?

The term “fiscal cliff” is Washington shorthand for a series of automatic spending cuts and tax increases set to take effect in January. If enacted, they would amount to the largest spurt of deficit reduction in more than 40 years but could also push the country back into a recession.
3. What happens if we go over the fiscal cliff?

Analysts have said that going over the fiscal cliff could derail the economy’s fragile recovery. The nonpartisan Congressional Budget Office predicts that a recession would be significant but brief, with unemployment peaking around 9 percent and economic growth recovering during the second half of 2013. The International Monetary Fund has estimated that the automatic spending cuts and tax increases would knock perhaps four percentage points of growth off of a U.S. economy that is already only experiencing slow growth. Click on the image at right for a graphic explaining the situation.
In other words: Keynes roolz!
Really bad economics: hardcore (freshwater) DSGE

The strand of DSGE economists affiliated with RBC theory made the following predictions after 2008:

1. Increases government borrowing would lead to higher interest rates on government debt because of “crowding out”.
2. Increases in the money supply would lead to inflation.
3. Fiscal stimulus has zero effect in an ideal world and negative effect in practice (because of decreased confidence).
Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction

Keen model without government

Persistence theory

Introducing government

Examples

Wrong prediction number 1

Figure: Government borrowing and interest rates.
Wrong prediction number 2

Figure: Monetary base and inflation.
Wrong prediction number 3

Figure: Fiscal tightening and GDP.
The strand of DSGE economists affiliated with New Keynesian theory got all these predictions right.

They did so by augmented DSGE with ‘imperfections’ (wage stickiness, asymmetric information, imperfect competition, etc).

Still DSGE at core - analogous to adding epicycles to Ptolemaic planetary system.

For example: “Ignoring the foreign component, or looking at the world as a whole, the overall level of debt makes no difference to aggregate net worth – one person’s liability is another person’s asset.” (Paul Krugman and Gauti B. Eggertsson, 2010, pp. 2-3)
Then we can safely ignore this...

Figure: Private and public debt ratios.
Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction
Keen model without government
Persistence theory
Introducing government
Examples

Figure: Change in debt and unemployment.
Much better economics: SFC models

- Stock-flow consistent models emerged in the last decade as a common language for many heterodox schools of thought in economics.
- Consider both real and monetary factors from the start
- Specify the balance sheet and transactions between sectors
- Accommodate a number of behavioural assumptions in a way that is consistent with the underlying accounting structure.
- Reject silly (and mathematically unsound!) hypotheses such as the RARE individual (representative agent with rational expectations).
- See Godley and Lavoie (2007) for the full framework.
An example of a (fairly general) Godley table

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th>Households</th>
<th>Firms current</th>
<th>Firms capital</th>
<th>Banks</th>
<th>Central Bank</th>
<th>Gov</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>+H_h</td>
<td>+K</td>
<td></td>
<td>+H_b</td>
<td>-H</td>
<td></td>
<td>+K</td>
</tr>
<tr>
<td>Cash</td>
<td>+H_f</td>
<td></td>
<td></td>
<td>-A</td>
<td>+A</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Advances</td>
<td>+M_h</td>
<td>+M_f</td>
<td>-L</td>
<td>+L</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Deposits</td>
<td>+B_h</td>
<td>+B_f</td>
<td></td>
<td>+B_b</td>
<td>-B</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td>-$p_f E_f$</td>
<td>-$p_f E_f$</td>
<td>+$p_b E_b$</td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Equities</td>
<td>+$p_f E_f$</td>
<td>-$p_f E_f$</td>
<td>+$p_b E_b$</td>
<td>-</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Sum (net worth)</td>
<td></td>
<td>V_h</td>
<td>V_f</td>
<td>V_b</td>
<td>0</td>
<td></td>
<td>V_g</td>
</tr>
<tr>
<td>Transactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>-C</td>
<td>+C</td>
<td></td>
<td></td>
<td></td>
<td>-$G</td>
<td>0</td>
</tr>
<tr>
<td>Gov spending</td>
<td>+G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Investment</td>
<td>+I</td>
<td>-I</td>
<td></td>
<td></td>
<td></td>
<td>-$G</td>
<td>0</td>
</tr>
<tr>
<td>memo [GDP]</td>
<td>+W</td>
<td>-W</td>
<td></td>
<td>-T_b</td>
<td>+T</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wages</td>
<td>-T_h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Taxes</td>
<td>+$r_M M_h$</td>
<td>+$r_f M_f$</td>
<td>-$r_M L$</td>
<td>+$r_B B_b$</td>
<td>+$r_B B_c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest on deposits</td>
<td>+$r_B B_h$</td>
<td>+$r_B B_f$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on loans</td>
<td>+$r_f L$</td>
<td>+$r_f L$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on bills</td>
<td>+F_f</td>
<td>+F_f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Profits</td>
<td>-F_f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Financial Balances</td>
<td>S_h</td>
<td>0</td>
<td>S_f</td>
<td>S_b</td>
<td>0</td>
<td>S_g</td>
<td>0</td>
</tr>
<tr>
<td>Flow of Funds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>-H_h</td>
<td>-H_f</td>
<td>-H_b</td>
<td>+H</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Advances</td>
<td>-M_h</td>
<td>-M_f</td>
<td>+M</td>
<td>-A</td>
<td>+A</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Deposits</td>
<td>-B_h</td>
<td>-B_f</td>
<td>-B_b</td>
<td>-B_c</td>
<td>+B</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>+L</td>
<td>-L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Equities</td>
<td>-$p_f E_f$</td>
<td>+$p_f E_f$</td>
<td>+$p_b E_b$</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Column sum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Godley table for monetary Keen model

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th>Households</th>
<th>Firms current</th>
<th>Firms capital</th>
<th>Banks</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital goods</td>
<td>+M_h</td>
<td>+K</td>
<td></td>
<td></td>
<td>+K</td>
</tr>
<tr>
<td>Deposits</td>
<td></td>
<td>+M_f</td>
<td></td>
<td>-M</td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>-L</td>
<td>+L</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Sum (net worth)</td>
<td>V_h</td>
<td>V_f</td>
<td>V_b</td>
<td></td>
<td>+K</td>
</tr>
</tbody>
</table>

Transactions

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Firms current</th>
<th>Firms capital</th>
<th>Banks</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>-C</td>
<td>+C</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Investment</td>
<td></td>
<td>+I</td>
<td>-I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Accounting memo [GDP]</td>
<td>[Y]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>+W</td>
<td>-W</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on M</td>
<td>+r_MM_h</td>
<td>+r_MM_f</td>
<td></td>
<td>-r_MM</td>
<td>0</td>
</tr>
<tr>
<td>Interest on L</td>
<td></td>
<td>-r_LL</td>
<td>+r_LL</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Profits</td>
<td>-F_f</td>
<td>+F_f_u</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Financial Balances</td>
<td>S_h</td>
<td>0</td>
<td>S_f</td>
<td>S_b</td>
<td>0</td>
</tr>
</tbody>
</table>

Flow of Funds

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Firms current</th>
<th>Firms capital</th>
<th>Banks</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposits</td>
<td>-M_h</td>
<td>-M_f</td>
<td>+M</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>+L</td>
<td>-L</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Column sum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
From the first, second and third columns of the transactions and flow of funds matrices we obtain that

\[W + r_{M} M_{h} - C = S_{h} = \dot{M}_{h}, \]

\[C - W + r_{M} M_{f} - r_{L} L = F_{fu} - I = \dot{M}_{f} - \dot{L} \]

\[r_{L} L - r_{M} M = S_{b} = \dot{L} - \dot{M}. \]

An example of firm behaviour satisfying (1)–(3) is

\[\dot{L} = I - R \]

\[\dot{M}_{f} = I - R + C - W + r_{M} M_{f} - r_{L} L \]

for chosen levels of investment \(I \) and repayment \(R \).
Behavioral relationships

- Investment and repayment can then be modelled as a function of any firm-related variable:

\[I = \kappa(\omega, L, M_f), \]
\[R = \rho(\omega, L, M_f). \]

- Consumption is a function of household-related variables:

\[C = \xi(\omega, M_h). \]

- Wage changes are given by

\[\dot{w} = \Phi(\omega, \lambda, p). \]

- Finally, the price level evolves according to

\[\dot{p} = P(\omega, \lambda, p). \]
Collecting these definitions and that $K_R = \nu Y_R$ for a constant ν, we arrive at the following closed 6-dimensional system

\[
\begin{align*}
\dot{w} &= \Phi(\omega, \lambda, p) \\
\dot{\lambda} &= \lambda \left[\frac{\kappa(\omega, L, M_f)}{\nu} - \alpha - \beta - \delta \right] \\
\dot{p} &= P(\omega, \lambda, p) \\
\dot{L} &= \kappa(\omega, L, M_f) Y - \rho(\omega, L, M_f) \\
\dot{M_f} &= \kappa(\omega, L, M_f) Y - \rho(\omega, L, M_f) + \xi(\omega, M_h) - w \ell + r_M M_f - r_L L \\
\dot{M_h} &= w \ell + r_M M_h - \xi(\omega, M_h),
\end{align*}
\]

(11)

where $\ell = \lambda N$ and $Y = a \ell$, for total population N and productivity a.

Differential Equations
Special case: Keen (1995)

- Let $D = L - M_f$ and assume that $p = p_0$, $r_M = r_F = r$.
- Supposing further that $\Phi = \Phi(\lambda)$ and $I = \kappa(\pi) Y$, where $\pi = 1 - \omega - rd$, leads to

$$
\dot{\omega} = \omega [\Phi(\lambda) - \alpha]
$$

$$
\dot{\lambda} = \lambda \left[\frac{\kappa(1 - \omega - rd)}{\nu} - \alpha - \beta - \delta \right]
$$

(12)

$$
\dot{d} = d \left[r - \frac{\kappa(1 - \omega - rd)}{\nu} + \delta \right] + \kappa(1 - \omega - rd) - (1 - \omega)
$$

- Observe that the equation for M_h separates as

$$
\dot{M}_h = w \ell + r_M M_h - \xi(\omega, M_h),
$$

(13)

and only depends on the rest of the system through w.
Equilibria

- The system (12) has a good equilibrium at

\[\bar{\omega} = 1 - \bar{\pi} - r \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}}{\alpha + \beta} \]

\[\bar{\lambda} = \Phi^{-1}(\alpha) \]

\[\bar{d} = \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}}{\alpha + \beta} \]

with

\[\bar{\pi} = \kappa^{-1}(\nu(\alpha + \beta + \delta)), \]

which is stable for a large range of parameters.

- It also has a bad equilibrium at \((0, 0, +\infty)\), which is stable if

\[\frac{\kappa(-\infty)}{\nu} - \delta < r \] \hspace{1cm} (14)
Example 1: convergence to the good equilibrium in a Keen model

\(\omega_0 = 0.75, \lambda_0 = 0.75, d_0 = 0.1, Y_0 = 100 \)
Example 2: explosive debt in a Keen model

\[\omega_0 = 0.75, \lambda_0 = 0.7, d_0 = 0.1, Y_0 = 100 \]
Introduction

Keen model without government

Persistence theory

Introducing government

Examples
Persistence theory on mathematical biology

- Which species, in a mathematical model of interacting species, will survive over the long term?
- In a mathematical model of an epidemic, will the disease drive a host population to extinction or will the host persist?
- Can a disease remain endemic in a population?
Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction

Keen model without government

Persistence theory

Introducing government

Examples

Persistence definitions

Let \(\Phi(t, x) : \mathbb{R}^+ \times X \to X \) be the semiflow generated by a differential system with initial values \(x \in X \). For a nonnegative functional \(\rho \) from \(X \) to \(\mathbb{R}^+ \), we say

- \(\Phi \) is \(\rho \)-strongly persistent (SP) if \(\liminf_{t \to \infty} \rho(\Phi(t, x)) > 0 \) for any \(x \in X \) with \(\rho(x) > 0 \).
- \(\Phi \) is \(\rho \)-weakly persistent (WP) if \(\limsup_{t \to \infty} \rho(\Phi(t, x)) > 0 \) for any \(x \in X \) with \(\rho(x) > 0 \).
- \(\Phi \) is \(\rho \)-uniformly strongly persistent (USP) if \(\liminf_{t \to \infty} \rho(\Phi(t, x)) > \varepsilon \) for any \(x \in X \) with \(\rho(x) > 0 \).
- \(\Phi \) is \(\rho \)-uniformly weakly persistent (UWP) if \(\limsup_{t \to \infty} \rho(\Phi(t, x)) > \varepsilon \) for any \(x \in X \) with \(\rho(x) > 0 \).
Example: Goodwin model

- (Goodwin 1967) Predator-prey system of wage share (ω) and employment rate (λ), with $\pi = 1 - \omega$:

 $$\dot{\omega} = \omega[\Phi(\lambda) - \alpha]$$

 $$\dot{\lambda} = \lambda[\pi/\nu - \alpha - \beta - \delta].$$

- This is e^π–SP and e^π–UWP, but not e^π–USP.
Introducing a government sector

- Following Keen (and echoing Minsky) we add discretionary government spending and taxation into the original system in the form

\[G = G_1 + G_2 \]
\[T = T_1 + T_2 \]

where

\[
\dot{G}_1 = \eta_1(\lambda)Y \\
\dot{G}_2 = \eta_2(\lambda)G_2 \\
\dot{T}_1 = \Theta_1(\pi)Y \\
\dot{T}_2 = \Theta_2(\pi)T_2
\]

- Defining \(g = G/Y \) and \(\tau = T/Y \), the net profit share is now

\[
\pi = 1 - \omega - rd + g - \tau,
\]

and government debt evolves according to

\[
\dot{B} = rB + G - T.
\]
Differential equations - full system

Denoting \(\gamma(\pi) = \kappa(\pi)/\nu - \delta \), a bit of algebra leads to the following eight–dimensional system:

\[
\begin{align*}
\dot{\omega} &= \omega [\Phi(\lambda) - \alpha] \\
\dot{\lambda} &= \lambda [\gamma(\pi) - \alpha - \beta] \\
\dot{d} &= \kappa(\pi) - \pi - d \gamma(\pi) \\
\dot{g}_1 &= \eta_1(\lambda) - g_1 \gamma(\pi) \\
\dot{g}_2 &= g_2 [\eta_2(\lambda) - \gamma(\pi)] \\
\dot{\tau}_1 &= \Theta_1(\pi) - g \tau_1 \gamma(\pi) \\
\dot{\tau}_2 &= \tau_2 [\Theta_2(\pi) - \gamma(\pi)] \\
\dot{b} &= b [r - \gamma(\pi)] + g_1 + g_2 - \tau_1 - \tau_2
\end{align*}
\]
Notice that π does not depend on b, so that the last equation in (15) can be solved separately.

Observe further that we can write

$$\dot{\pi} = -\omega - r \dot{d} + \dot{g} - \dot{\tau}$$

leading to the five-dimensional system

$$\begin{align*}
\dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha \right], \\
\dot{\lambda} &= \lambda \left[\gamma(\pi) - \alpha - \beta \right] \\
\dot{g}_2 &= g_2 \left[\eta_2(\lambda) - \gamma(\pi) \right] \\
\dot{\tau}_2 &= \tau_2 \left[\Theta_2(\pi) - \gamma(\pi) \right] \\
\dot{\pi} &= -\omega(\Phi(\lambda) - \alpha) - r(\kappa(\pi) - \pi) + (1 - \omega - \pi)\gamma(\pi) \\
&\quad + \eta_1(\lambda) + g_2\eta_2(\lambda) - \Theta_2(\pi) - \tau_2\Theta_2(\pi)
\end{align*}$$

(16)
Good equilibrium

- The system (17) has a good equilibrium at
 \[\bar{\omega} = 1 - \bar{\pi} - r \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}}{\alpha + \beta} + \frac{\eta_1(\bar{\lambda}) - \Theta_1(\bar{\pi})}{\alpha + \beta} \]
 \[\bar{\lambda} = \Phi^{-1}(\alpha) \]
 \[\bar{\pi} = \kappa^{-1}(\nu(\alpha + \beta + \delta)) \]
 \[\bar{g}_2 = \bar{\tau}_2 = 0 \]
 and this is locally stable for a large range of parameters.

- The other variables then converge exponentially fast to
 \[\bar{d} = \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}}{\alpha + \beta} \]
 \[\bar{g}_1 = \frac{\eta_1(\bar{\lambda})}{\alpha + \beta} \]
 \[\bar{\tau}_1 = \frac{\Theta_1(\bar{\pi})}{\alpha + \beta} \]
Bad equilibria - destabilizing a stable crisis

- Recall that $\pi = 1 - \omega - rd + g - \tau$.
- The system (17) has bad equilibria of the form $(\omega, \lambda, g_2, \tau_2, \pi) = (0, 0, 0, 0, -\infty)$
 $(\omega, \lambda, g_2, \tau_2, \pi) = (0, 0, \pm\infty, 0, -\infty)$

- If $g_2(0) > 0$, then any equilibria with $\pi \to -\infty$ is locally unstable provided $\eta_2(0) > r$.
- On the other hand, if $g_2(0) < 0$ (austerity), then these equilibria are all locally stable.
Persistence results

Proposition 1: Assume $g_2(0) > 0$, then the system (17) is e^{π}-UWP if either

1. $\lambda \eta_1(\lambda)$ is bounded below as $\lambda \to 0$, or
2. $\eta_2(0) > r$.

Proposition 2: Assume $g_2(0) > 0$ and $\tau_2(0) = 0$, then the system (17) is λ-UWP if either of the following three conditions is satisfied:

1. $\lambda \eta_1(\lambda)$ is bounded below as $\lambda \to 0$, or
2. $\eta_2(0) > \max\{r, \alpha + \beta\}$, or
3. $r < \eta_2(0) \leq \alpha + \beta$ and $-r(\kappa(x) - x) + (1 - x)\gamma(x) + \eta_1(0) - \Theta_1(x) > 0$ for $\gamma(x) \in [\eta_2(0), \alpha + \beta]$.
Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction

Keen model without government

Persistence theory

Introducing government

Examples

Example 3: Good initial conditions

\[\omega(0) = 0.85, \lambda(0) = 0.85, d(0) = 0.5, g_{S_1}(0) = 0.05, g_{S_2}(0) = 0.05, g_{T_1}(0) = 0.05, g_{T_2}(0) = 0.05, d_g(0) = 0, r = 0.03, \eta_{\text{max}}^{(2)} = 0.02 \]
Example 4: Bad initial conditions

$$\omega(0) = 0.8, \lambda(0) = 0.8, d(0) = 0.5, g_{S_1}(0) = 0.05, g_{T_1}(0) = 0.05, g_{S_2}(0) = 0.05, g_{T_2}(0) = 0.05, d_g(0) = 0, r = 0.03, \eta_{max}^{(2)} = 0.02$$
Example 5: Really bad initial conditions with timid government
Example 6: Really bad initial conditions with responsive government

ω(0) = 0.15, λ(0) = 0.15, d(0) = 3, g_{S_1} (0) = 0.05, g_{T_1} (0) = 0.05, g_{S_2} (0) = 0.05, g_{T_2} (0) = 0.05, d_g (0) = 0, r = 0.03, η^{(2)}_{max} = 0.2
Example 7: Austerity in good times: harmless

\[\omega(0) = 0.8, \lambda(0) = 0.8, d(0) = 0.5, g_{S_1}(0) = 0.05, g_{T_1}(0) = 0.05, g_{S_2}(0) = -0.05, g_{T_2}(0) = 0.05, d_g(0) = 0, r = 0.03, \eta_{(2)}^{(2)} = 0.02 \]
Example 8: Austerity in bad times: a really bad idea

\[\omega(0) = 0.15, \lambda(0) = 0.15, d(0) = 4, g_{S_1}(0) = 0.05, g_{T_1}(0) = 0.05, g_{S_2}(0) = +0.05, g_{T_2}(0) = 0.05, d_g(0) = 0, r = 0.03, n_{max}^{(2)} = 0.2 \]
Hopft bifurcation with respect to government spending.
Next steps

- Introduce equities and household wealth effects in the consumption function (portfolio choices, etc)
- Extend to a stochastic model (stochastic interest rates, monetary policy, correlated market sectors, etc)
- Extend to an open economy model (exchange rates, capital flows, etc)
- Calibrate to macroeconomic time series
Austerity versus deficit spending: the mathematics of government intervention in macroeconomics

M. R. Grasselli

Introduction
Keen model without government
Persistence theory
Introducing government
Examples

Jedi economics