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Abstract. In this paper we calibrate chaotic models for interest rates to market data using a
polynomial–exponential parametrization for the chaos coefficients. We identify a subclass of one–
variable models that allow us to introduce complexity from higher order chaos in a controlled way
while retaining considerable analytic tractability. In particular we derive explicit expressions for
bond and option prices in a one–variable third chaos model in terms of elementary combinations of
normal density and cumulative distribution functions. We then compare the calibration performance
of chaos models with that of well–known benchmark models. For term structure calibration we find
that chaos models are comparable to the Svensson model, with the advantage of guaranteed positivity
and consistency with a dynamic stochastic evolution of interest rates. For calibration to option data,
chaos models outperform the Hull and White and rational lognormal models and are comparable to
LIBOR market models.
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1. Introduction. The purpose of this paper is to investigate the calibration
performance of interest rate models based on the Wiener chaos expansion. Chaotic
models were introduced in [16] as an axiomatic framework for interest rates satisfying
both no arbitrage and positivity conditions, following the line of research initiated by
[11], where zero–coupon bond prices are modeled as

PtT =

∫∞
T
Mtsds∫∞

t
Mtsds

, (1.1)

for a parametrized family of positive martingales Mts. It was then shown in [24] and
[26] that one can focus instead on modeling a supermartingale Vt which is related to
the martingales Mts through

Vt =

∫ ∞
t

Mtsds, (1.2)

The chaotic approach is derived from the observation that Vt can itself be written as
the conditional variance of a terminal random variable X∞. This square integrable
random variable then has a unique Wiener chaos decomposition, and studying the
way its expansion coefficients affect the corresponding interest rates model becomes
the subject of the theory.

Notice the successive simplifications in the class of objects that one needs to
model: from an entire family of martingales Mts in the Flesaker–Hughston framework,
to the process Vt in the potential approach, and finally the single random variable
X∞ in chaotic models. Arguably, each step of the way reduces the arbitrariness in the
modeling exercise, with presumed advantages for calibration to real data. In particu-
lar, the chaos expansion allows one to successively introduce randomness in the model
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in a way that can, in principle, be made to correspond to the increased complexity of
financial instruments under consideration. Such are the types of statements that we
propose to put to test in this paper.

Models in the Flesaker–Hughston framework have been implemented and cali-
brated, for example, in [5] and [14], whereas implementations of the potential ap-
proach can be found in [19] and [25]. To our knowledge, we present here the first
practical implementation and calibration to market data of chaotic interest rate mod-
els. We adopt the day-by-day calibration methodology used in [12], [18], and [23].
The motivation for this is to capture the prices of liquid interest rate derivatives such
as caps and swaptions by a model as parsimonious as possible, which can then be
used for pricing and hedging of exotic options, such as the Chooser flexible cap and
Bermudan Swaption.

After reviewing the chaotic approach in Section 2, we implement to two separate
calibration exercises. In Section 3 we consider the calibration of chaotic models to
the observed term structure of interest rates. For comparison, we use the Nelson–
Siegel [21] and Svensson [28] models for forward rates as benchmarks. These so
called descriptive models [4] are examples of a general exponential–polynomial class
of models analyzed in [1], which we use as motivation for the parametric form we
adopt for the chaos coefficient functions. We find in this section that chaotic models
perform comparably to descriptive models with the same number of parameters, with
the advantage of avoiding problems with positivity and consistency.

We then move to a full calibration to yields and option prices in Section 4. We
recall known expressions for option prices in a second chaos model, derive the corre-
sponding formulas in a third chaos model, and calibrate them to two separate data
sets in three different ways. For comparison, we also calibrate the Hull and White
model [17], the rational lognormal proposed in [11] and a lognormal LIBOR market
model [12]. We find that chaos models generally perform much better than the Hull
and White and rational lognormal models and have fitting errors comparable to those
obtained with a LIBOR model. When we apply an information criterion that takes
into account the different number of parameters in the models, we find that one of
our third chaos models consistently outperforms the LIBOR market model. Section
5 concludes the paper by summarizing the results and pointing to future research in
the area.

2. The chaotic approach. We review the framework proposed in [16], whereby
a general positive interest rate model with no arbitrage opportunities is associated
with a square integrable terminal random variable X∞, which can then be modeled
using a Wiener chaos expansion.

2.1. Basic definitions. Let (Ω,F , P ) be a probability space equipped with the
standard augmented filtration (Ft)0≤t<∞ generated by a k–dimensional Brownian
motionWt and suppose that X∞ ∈ L2(Ω,F , P ) is a random variable with the property
that X∞ is not Ft–measurable for any finite value of t and E[X∞] = 0. Using the
martingale representation theorem, we can write

X∞ =

∫ ∞
0

σsdWs (2.1)

for an adapted process σt. Denoting the conditional variance of X∞ with respect to
the σ–algebra Ft by

Vt = E
[
(X∞ − Et[X∞])2

∣∣Ft] , (2.2)
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it follows from the Itô isometry that

Vt = E

[(∫ ∞
t

σsdWs

)2
∣∣∣∣∣Ft
]

= E

[∫ ∞
t

σ2
sds

∣∣∣∣Ft] . (2.3)

Defining the increasing adapted process

At =

∫ t

0

σ2
sds. (2.4)

we have that

Vt = E[A∞ −At|Ft], (2.5)

from which it follows that Vt is a potential, that is, a positive supermartingale satis-
fying E[Vt]→ 0 as t→∞. It is then well–known (see, for example, [24]) that Vt can
be used as a state–price density for an arbitrage–free interest rate model in which the
price of a zero–coupon bond with maturity T is given by

PtT =
E [VT |Ft]

Vt
=
ZtT
Ztt

, 0 ≤ t ≤ T <∞, (2.6)

where

ZtT = E[VT |Ft], 0 ≤ t ≤ T <∞. (2.7)

It follows from (2.5) that for each fixed t the processes ZtT , and consequently the
bond prices PtT , are decreasing functions of the maturity T , which in turn implies
that all instantaneous forward rates

ftT = − ∂

∂T
logPtT (2.8)

are automatically positive in this framework. Furthermore, the short–rate rt and the
market price of risk vector λt are determined by the dynamics of Vt as follows:

dVt = −rtVtdt− λtVtdWt, V0 > 0. (2.9)

For later use, we introduced the family of positive martingales

Mts = E[σ2
s |Ft], 0 ≤ t ≤ s <∞, (2.10)

so that Vt can be written as in (1.2) and bond prices as in (1.1).
Returning to the squared integrable random variable X∞, the Wiener chaos de-

composition (see [22] and [31]) says that it can be written as the L2–convergent sum

X∞ =

∫ ∞
0

φ1(s)dWs +

∫ ∞
0

∫ s

0

φ2(s, s1)dWs1dWs

+

∫ ∞
0

∫ s

0

∫ s1

0

φ3(s, s1, s2)dWs2dWs1dWs + · · · , (2.11)

for deterministic square–integrable functions φ1(s), φ2(s, s1), φ3(s, s1, s2), . . . called
the chaos coefficients of X∞. We say that an interest rate model is an n-th chaos
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model if the decomposition for the random variable X∞ can be completely determined
by its first n coefficient functions.

The basic insight of the chaotic approach is that the decomposition above pro-
vides a way to add complexity to an interest rate model in a controlled manner. For
example, as we will see in the next section, the first order chaos correspond to deter-
ministic interest rate models, whereas the second order chaos give rise to stochastic
interest rate models with randomness governed by a parametric family of Gaussian
processes.

More importantly for calibration purposes, the increased complexity in the inter-
est models should be related to the instruments that are available in the market. In
what follows, we propose a systematic way to calibrate chaotic interest models start-
ing with bond prices alone and then gradually increasing the complexity of market
instruments included in the calibration. Our general strategy will consist of choosing
general parametric forms for the deterministic functions φi, i = 1, 2, . . . and then fit
the parameters to market data according to the bond and option pricing formulas
emerging from the models.

2.2. Option Pricing. We now describe how the prices of the most common
interest rate options can be written in terms of the quantities defined in Section 2.1.
Since Vt is a state–price density, it follows that the price at time t of a derivative with
payoff HT is given by

Ht =
E[VTHT |Ft]

Vt
. (2.12)

We see that expression (2.6) for bond prices is simply a special case of (2.12) with
HT = PTT = 1. We apply this general expression to European put options, caplets
and swaptions, since these will be the only ones needed in our calibration section,
although similarly results also hold for other interest rate derivatives, notably call
options and floors (see [30]). We follow the standard definitions and notations in [2].

A put option with maturity t and strike price K written on a bond with maturity
T ≥ t correspond to the following payoff

(K − PtT )+. (2.13)

Using (2.12), we see that the price of the a bond option at time s ≤ t ≤ T is given by

p(s, t, T,K) =
E[Vt(K − PtT )+|Fs]

Vs
=
E[(KZtt − ZtT )+|Fs]

Vs
. (2.14)

A caplet is a call option with strike K and maturity T written on a spot LIBOR
rate L(t, T ) for the time interval [t, T ], that is, it is defined by the payoff

N (T − t)(L(t, T )−K)+, (2.15)

where N is a fixed notional amount. Recalling that the spot LIBOR rate is defined
as

L(t, T ) :=
1

T − t

(
1

PtT
− 1

)
=

1

T − t

(
Vt
ZtT
− 1

)
(2.16)

we see from (2.12) that the value of a caplet at time s ≤ t is

Cpl(s, t, T,N ,K) =
E [VTN (T − t)(L(t, T )−K)+|Fs]

Vs

=
N
Vs
E
[(
Ztt − ZtT (1 +K(T − t))

)+∣∣∣Fs] (2.17)
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Comparing (2.17) and (2.14) it is easy to deduce the following well–known relation
[2, page 41]:

Cpl(s, t, T,N ,K) = N (1 +K(T − t))p
(
s, t, T,

1

1 +K(T − t)

)
, (2.18)

which allows us to obtain prices for caplets provided we know how to calculate the
prices of bond put options.

Observe that the payoff (2.15) can be rewritten as

N (T − t)(F (t, t, T )−K)+, (2.19)

where the forward LIBOR rate F (s, t, T ) is defined as

F (s, t, T ) :=
1

T − t

(
Pst
PsT
− 1

)
, 0 ≤ s ≤ t ≤ T <∞. (2.20)

Using this, we can define the caplet implied volatility as the value vt,T satisfying

Cpl(0, t, T,N ,K) = NP0T (T − t)Black
(
K,F (0, t, T ), vt,T

√
t
)
, (2.21)

where

Black(K,F, v) := FΦ

(
log(F/K) + v2

2

v

)
−KΦ

(
log(F/K)− v2

2

v

)
, (2.22)

is the Black formula and Φ(·) denotes the standard normal cumulative distribution
function. We say that a caplet is at-the-money (ATM) at time t = 0 if K = F (0, t, T ).
Given a set of maturities Ti, the so–called term structure of caplet volatility is the
implied volatility curve obtained from ATM caplets of consecutive maturities, that is,
a function of the form Ti → vTi−1,Ti .

A payer Swaption with maturity t is defined by the payoff(
N

n∑
i=1

(Ti − Ti−1)PtTi
(F (t, Ti−1, Ti)−K)

)+

, (2.23)

where T = (T0, T1, . . . , Tn) is a set of future dates with T0 = t and N is the notional.
The total length of the time interval (Tn − T0) is called the tenor of the swaption.

Recalling the definition of the forward LIBOR rate in (2.20), we obtain from
(2.12) that the value of the payer swaption at time s ≤ t is given by

Swp(s, T ,N ,K) =
1

Vs
E

Vt(N n∑
i=1

(Ti − Ti−1)PtTi
(F (t, Ti−1, Ti)−K)

)+
∣∣∣∣∣∣Ft


=
N
Vs
E

(Ztt − ZtTn
−K

n∑
i=1

(Ti − Ti−1)ZtTi

)+
∣∣∣∣∣∣Ft
 . (2.24)

Observe that the payoff in (2.23) can be rewritten as(
N

n∑
i=1

(Ti − Ti−1)PtTi
(S(t, t, Tn)−K)

)+

, (2.25)
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where the forward swap rate S(s, t, Tn) is defined as

S(s, t, Tn) :=
Pst − PsTn∑n

i=1(Ti − Ti−1)PsTi

, 0 ≤ s ≤ t ≤ Tn <∞. (2.26)

Similarly to caplets, we can use this to define the swaption implied volatility as the
value vt,Tn

satisfying

Swp(0, T ,N ,K) = N
n∑
i=1

(Ti − Ti−1)P0Ti
Black

(
K,S(0, t, Tn), vt,Tn

√
t
)
. (2.27)

The swaption is said to be at-the-money (ATM) at time t = 0 if K = S(0, t, Tn).
This concludes our general overview of chaotic models. We will have a chance to

explore these formulas in more detail after we introduce specific models of different
chaos orders in the calibration sections that come next. For simplicity, we will assume
from now on that the underlying Brownian motion Wt is one dimensional, although
extensions to the multidimensional case should be relatively straightforward.

3. Term structure calibration. We first consider the calibration of the chaos
models to the bond prices P0T observed at time t = 0, or equivalently, to the corre-
sponding forward rates

f0T = − ∂

∂T
logP0T .

Historically, the problem of characterizing the term structure of interest rates
implied by bond prices at time t = 0 has been extensively tackle by so–called descrip-
tive models, which consists of choosing a parametric form for the forward rates f0T
and then fit the relatively small number of parameters to the observed yield curve.
Popular examples of this approach are:

f0T =


b0 + [b1 + b2T ]e−c1T (Nelson and Siegel)

b0 + [b1 + b2T ]e−c1T + b3Te
−c2T (Svensson)

b0 +
∑4
i=1 bie

−ciT (Cairns),

(3.1)

introduced respectively in [21], [28] and [4]. All of these examples fall within the
exponential-polynomial family of forward rates analyzed in [1]:

f0T = L0(T ) +

n∑
i=1

Li(T )e−ciT where Li(T ) =

ki∑
j=0

bijT
j . (3.2)

As explained in [4], descriptive models provide a snapshot, but not a movie.
That is to say, they do not provide a model for the stochastic evolution of interest
rates. Nevertheless, they can be used to price simple instruments such as forward rate
agreements and swaps, which do not depend on the dynamics of interest rates. They
have also been widely used by central banks for the purposes of monetary policy (see
the table presented in [10]).

For more complicated interest rate derivatives, it becomes necessary to embed
such static descriptions into a fully dynamic model. For example, one can use the
fitted forward rate curve f0T as the initial term structure for a model within the
Heath–Jarrow–Morton framework [15], supplementing it with the specification of the
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volatility structure. In other words, the specification of the initial term structure used
as an input is done separately from its stochastic evolution.

By contrast, instead of focusing on the forward rates f0T , we propose to use the
observed term structure at time t = 0 to calibrate the deterministic functions φi(T ),
which then completely specify the stochastic evolution of interest rates. Since these
are markedly different procedures, their performance need to be compared using real
observed data, as we do later in this section. Before that we need to describe the term
structure of interest rates for chaotic models of different orders in mode detail.

3.1. Term structure in first chaos models. In a first chaos model we have

X∞ =

∫ ∞
0

φ1(s)dWs (3.3)

where φ1(s) is a deterministic function of one variable. Comparing this with (2.1) we
conclude that σs ≡ φ1(s), so that

Vt = E

[∫ ∞
t

σ2
sds

∣∣∣∣Ft] =

∫ ∞
t

φ1(s)2ds, (3.4)

which implies that

dVt = −φ1(t)2dt.

Comparing this with (2.9) then gives

rt =
φ21(t)

Vt
=

φ21(t)∫∞
t
φ21(s)ds

(3.5)

λt = 0. (3.6)

In other words, in first chaos models the state–price density is a deterministic function,
implying that the interest rates associated with it are themselves deterministic. In
particular, Mts = φ21(s) constitutes a family of constant martingales for each value of
s and bond prices are given by

PtT =
E [VT |Ft]

Vt
=

∫∞
T
Mtsds∫∞

t
Mtsds

=

∫∞
T
φ21(s)ds∫∞

t
φ21(s)ds

= e−
∫ T
t
rsds. (3.7)

It follows that instantaneous forward rates in first chaos models have the form

ftT = − ∂

∂T
logPtT =

φ21(T )∫∞
T
φ1(s)2ds

=
φ21(T )

VT
= rT , (3.8)

which are manifestly positive, as they should be in any chaotic model. Moreover,
because they represent market expectations at time t for what the (deterministic)
short–rate will be at time T , instantaneous forward rates in first chaos models are
independent of t and always equal to rT .

As already noticed in [16], these observations show that first chaos models char-
acterize general arbitrage–free, positive, deterministic interest rate term structures,
which should not be immediately disregarded as trivial, since they constitute the
starting point for the majority of the applications of interest rate theory. Chaotic
models then provide a well–defined way to embed such deterministic models into their
stochastic generalizations, as we will demonstrate in the remainder of this paper.
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From the point of view of calibration, we can calibrate a first chaos model to the
term structure at time t = 0 by focusing on the equation

P0T =

∫∞
T
φ1(s)ds∫∞

0
φ1(s)ds

. (3.9)

Because of the deterministic nature of first chaos models, this is enough to characterize
bond prices at all times, since it follows from (3.7) that PtT = P0T /P0t.

3.2. Term structure in second chaos models. In a second chaos model we
have

X∞ =

∫ ∞
0

φ1(s)dWs +

∫ ∞
0

∫ s

0

φ2(s, u)dWudWs,

for deterministic functions φ1(s) and φ2(s, u). Comparing this with (2.1) gives

σt = φ1(t) +

∫ t

0

φ2(s, u)dWu. (3.10)

It then follows from the conditional Ito isometry that

Mts = E[σ2
s |Ft]

=

(
φ1(s) +

∫ t

0

φ2(s, u)dWu

)2

+

∫ s

t

φ22(s, u)du

= R2
ts −Qts +Qss (3.11)

where, for each fixed value s ∈ [t,∞), the process

Rts := φ1(s) +

∫ t

0

φ2(s, u)dWu (3.12)

is a martingale in the variable t with quadratic variation

Qts :=

∫ t

0

φ22(s, u)du. (3.13)

Setting t = 0 in (3.11) and using (1.1) we have that the initial term structure of
bond prices in second chaos models is generically given by

P0T =

∫∞
T

(
φ21(s) +

∫ s
t
φ22(s, u)du

)
ds∫∞

0

(
φ21(s) +

∫ s
0
φ22(s, u)du

)
ds
. (3.14)

Expression (3.14) looks uncomfortably complicated for the purpose of calibrating
a relatively simple object such as P0T . To achieve greater tractability, we now recall
the class of factorizable second chaos models introduced in [16], whereby

φ1(s) = α(s), φ2(s, u) = β(s)γ(u). (3.15)

for deterministic functions α, β and γ. In other words, factorizable second chaos
models correspond to random variables X∞ of the form

X∞ =

∫ ∞
0

α(s)dWs +

∫ ∞
0

∫ s

0

β(s)γ(u)dWudWs. (3.16)
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for 0 ≤ u ≤ s <∞. In this case we have that

Rts = α(s) + β(s)Rt, Qts = β2(s)Qt, (3.17)

where

Rt :=

∫ t

0

γ(u)dWu (3.18)

is a Gaussian martingale with quadratic variation Qt :=
∫ t
0
γ2(u)du. Inserting (3.17)

into (3.11) we obtain

ZtT =

∫ ∞
T

Mtsds

=

∫ ∞
T

[
(α(s) + β(s)Rt)

2 − β2
sQt + β2(s)Qs

]
ds

= A(T ) +B(T )Rt + C(T )(R2
t −Qt)

(3.19)

where

A(T ) =

∫ ∞
T

[α2(s) + β2(s)Qs]ds,

B(T ) =

∫ ∞
T

2α(s)β(s)ds,

C(T ) =

∫ ∞
T

β2(s)ds.

(3.20)

Using the fact that Vt = Ztt, it is easy to see that the state–price density in this
case is given by

Vt = A(t) +B(t)Rt + C(t)(R2
t −Qt), (3.21)

which is a simple quadratic polynomial in the Gaussian process Rt. Therefore bond
prices in a factorizable second chaos model are given by the following ration of
quadratic polynomials in Rt:

PtT =
A(T ) +B(T )Rt + C(T )(R2

t −Qt)
A(t) +B(t)Rt + C(t)(R2

t −Qt)
. (3.22)

In particular, the initial term structure is given by

P0T =
A(T )

A(0)
=

∫∞
T

[α2(s) + β2(s)Qs]ds∫∞
0

[α2(s) + β2(s)Qs]ds
. (3.23)

Despite being much simpler than (3.14), we observe that (3.23) still offers too
much freedom for the choice of parametric forms for the deterministic functions in-
volved. To make this point more explicitly, observe that from the strict point of view
of calibrating the initial term structure, we see that a factorizable second chaos model
behaves exactly like a first chaos model if we identify

φ1(s) = α2(s) + β2(s)

∫ s

0

γ2(u)du, (3.24)
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for arbitrary choices of α, β and γ. This is to be expected in all chaos models, since the
initial bond prices available for calibration correspond to the one–variable function
P0T , regardless of how many deterministic functions φi we wish to calibrate. Of
course, once calibrated, chaos models of different orders give rise to very different
future term structures: a deterministic one with PtT = P0T /P0t for first chaos models
and a fully stochastic one where PtT is given by (3.22) for factorizable second chaos
models, for example.

These remarks point to a general yet delicate feature of chaotic models: one can
achieve increased stochastic complexity in the form of higher order chaos at the ex-
pense of having to calibrate complicated expressions that are not necessarily supported
by the data available. Our approach to deal with this problem consists of increasing
the complexity of the models as gradually as possible, while carefully evaluating their
statistical performance when calibrated to real data.

Accordingly, we propose to investigate the subclass of factorizable second chaos
models with γ(u) ≡ 1 and β(s) satisfying∫ ∞

0

β(s)2sds <∞, (3.25)

that is, models corresponding to the terminal random variable

X∞ =

∫ ∞
0

α(s)dWs +

∫ ∞
0

β(s)

∫ s

0

dWudWs =

∫ ∞
0

α(s)dWs +

∫ ∞
0

β(s)WsdWs. (3.26)

As we can see, these one–variable second chaos models provide the simplest stochastic
extensions of first order chaos, for which we have that Rt = Wt and the initial term
structure of bond prices is given by

P0T =

∫∞
T

[α2(s) + β2(s)s]ds∫∞
0

[α2(s) + β2(s)s]ds
. (3.27)

3.3. Term structure in higher order chaos models. In a general chaos
model we that

Z0T =

∫ ∞
T

E

[(
φ1(s1) +

∫ s1

0

φ2(s1, s2)dWs2 + · · ·
)2
]
ds1

=

∫ ∞
T

(
φ21(s1) +

∫ s1

0

φ22(s1, s2)ds2 + · · ·
)
ds1.

Therefore

P0T =
Z0T

Z0t
=

∫∞
T
ψ(s)ds∫∞

t
ψ(s)ds

, (3.28)

where

ψ(s) =


φ21(s) (first chaos)

φ21(s) +
∫ s
0
φ22(s, u)du (second chaos)

φ21(s) +
∫ s
0
φ22(s, u)du+

∫ s
0

∫ u
0
φ23(s, u, v)dvdu (third chaos)

...

(3.29)
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In other words, as mentioned in the previous section, equation (3.28) shows that
from the strict point of view of calibrating the initial term structure P0T , all chaos
models behave like first order chaos models, albeit with a complicated choice of func-
tion ψ(s). The differences between chaos models will become apparent, however, when
we tackle the calibration to option prices in Section 4. For now, we find unnecessary
to consider fully general higher order chaos and restrict ourselves to the simplest pos-
sible third chaos models. That is to say, we start with factorizable third chaos models
of the form

X∞ =

∫ ∞
0

α(s)dWs +

∫ ∞
0

∫ s

0

β(s)γ(u)dWudWs +

∫ ∞
0

∫ s

0

∫ u

0

δ(s)ε(u)ζ(v)dWvdWudWs,

for 0 ≤ v ≤ u ≤ s < ∞. We then take γ ≡ ε ≡ ζ ≡ 1, β satisfying (3.25) and δ
satisfying ∫ ∞

0

δ(s)2s2ds <∞ (3.30)

to obtain the class of one–variable third chaos models of the form

X∞ =

∫ ∞
0

α(s)dWs +

∫ ∞
0

∫ s

0

β(s)dWudWs +

∫ ∞
0

∫ s

0

∫ u

0

δ(s)dWvdWudWs

=

∫ ∞
0

[
α(s) + β(s)Ws +

1

2
δ(s)(W 2

s − s)
]
dWs.

(3.31)

We see from (3.31) that in this case

σs = α(s) + β(s)Ws +
1

2
δ(s)(W 2

s − s) (3.32)

Recalling that Mts = E[σ2
s |Ft], a direct calculation shows that

ZtT =

∫ ∞
T

Mtsds = Ã(T ) + B̃(T )Wt + C̃(T )
(
W 2
t − t

)
+ D̃(T )

(
W 3
t − 3tWt

)
+ Ẽ(T )

(
W 4
t − 6tW 2

t + 3t2
)
,

(3.33)

where the coefficients are

Ã(T ) =

∫ ∞
T

(
α2(s) + sβ2(s) +

s2δ(s)2

2

)
ds

B̃(T ) =

∫ ∞
T

2β(s)(α(s) + sδ(s))ds

C̃(T ) =

∫ ∞
T

(
β2(s) + α(s)δ(s) + δ2(s)s

)
ds

D̃(T ) =

∫ ∞
T

δ(s)β(s)ds

Ẽ(T ) =

∫ ∞
T

δ2(s)

4
ds

(3.34)

Using again the fact that Vt = Ztt, it follows that the state–price density is

Vt = Ã(t) + B̃(t)Wt + C̃(t)
(
W 2
t −t

)
D̃(t)

(
W 3
t −3tWt

)
+ Ẽ(t)

(
W 4
t −6tW 2

t +3t2
)
.

(3.35)
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Therefore bond prices in a one–variable third chaos model are given by the following
ratio of forth degree polynomials in Wt:

PtT =
Ã(T )+B̃(T )Wt+C̃(T )(W 2

t −t)+D̃(T )(W 3
t −3tWt)+Ẽ(T )(W 4

t −6tW
2
t +3t2)

Ã(t)+B̃(t)Wt+C̃(t)(W 2
t −t)+D̃(t)(W 3

t −3tWt)+Ẽ(t)(W 4
t −6tW

2
t +3t2)

(3.36)

In particular, the initial term structure is given by

P0T =
Ã(T )

Ã(0)
=

∫∞
T

(
α2(s) + sβ2(s) + s2δ(s)2

2

)
ds∫∞

0

(
α2(s) + sβ2(s) + s2δ(s)2

2

)
ds

(3.37)

3.4. Choices of the chaos coefficients. Inspired by the parametric forms
used in descriptive models, we propose to model the function φ1 itself in exponential–
polynomial form. Observe that setting

φ1(s) =

n∑
i=1

Li(s)e
−cis, Li(s) =

ki∑
j=0

bijs
j , (3.38)

where L0(s) = 0 and ci > 0 to guaranteed integrability, leads to a first chaos model in
which forward rates are ratios of functions in exponential–polynomial form. We regard
this rational exponential–polynomial family as a natural extension of the exponential–
polynomial class considered in [1], with added flexibility and potentially better cal-
ibration performance. In particular, this class allows us to reproduce all empirical
shapes commonly observed for forward rate curves, such as increasing, decreasing and
hump-shaped functions.

Having made this choice for the function φ1, equation (3.24) and its generaliza-
tion (3.29) naturally lead us to consider functions α, β, γ and δ all belonging to the
exponential–polynomial class as well.

3.5. Calibration results. We describe the details of the term structure cali-
bration in Appendix A. We calibrate 14 different chaos models using two distinct
data set from the UK bond market: observations of bonds of different maturities at
every other business day from January 1998 to January 1999 (a volatile market often
exhibiting an inverted yield curve) and weekly observations from December 2002 to
December 2005 (a more moderate market). For comparison, we also calibrate two of
the descriptive models specified in (3.1).

We summarize our calibration results for the two data sets in Tables 3.1 and 3.2.
The first column in each table labels the models, starting with the descriptive Nelson–
Siegel and Svensson models defined by the first two expression in (3.1), followed by
the models (A.1)–(A.14) in Appendix A. The second column characterizes the type
of model, whereas the third one gives the number of calibrated parameters. The
remaining columns show the average values for the negative log–likelihood function,
the Root-Mean-Squared Percentage Error and the Diebold-Mariano statistics with
respect to the Svensson model, as described in Appendix A.

Starting with the results in Table 3.1 for the volatile market, we first notice
that, as expected, the Svensson model, which has 6 parameters, outperforms all three
models that use a smaller number of parameters. On the other hand, out of five chaos
models with 6 parameters, three are outperformed by the Svensson model, while the
other two perform comparably. Finally, all chaos models with 7 parameters have
a performance that is comparable to the Svensson model. We are led to conclude

12



Table 3.1
Term structure calibration for 1998-1999 (Volatile Market)

Model N -L RMSPE (%) DM
Sv Svensson 6 160 0.70 -
NS Nelson–Siegel 4 2101 2.67 -4.45
1 1st chaos 3 4420 4.44 -11.46
2 1st chaos 5 250 0.86 -3.54
3 one-var 2nd chaos 6 162 0.82 -2.26
4 one-var 2nd chaos 7 160 0.69 0.22
5 one-var 2nd chaos 7 145 0.75 -1.05
6 factorizable 2nd chaos 6 335 0.88 -2.54
7 factorizable 2nd chaos 6 245 0.68 0.27
8 factorizable 2nd chaos 6 1245 1.26 -3.81
9 factorizable 2nd chaos 7 179 0.63 1.38
10 factorizable 2nd chaos 7 153 0.72 -1.07
11 one-var 3rd chaos 6 168 0.72 -1.24
12 one-var 3rd chaos 7 141 0.76 -1.16
13 one-var 3rd chaos 7 152 0.72 -1.19
14 one-var 3rd chaos 7 149 0.76 -1.43

Table 3.2
Term structure calibration for 2002-2005 (Moderate Market)

Model N -L RMSPE (%) DM
Sv Svensson 6 442 0.76 -
NS Nelson–Siegel 4 541 0.97 -1.76
1 1st chaos 3 8716 3.96 -3.50
2 1st chaos 5 438 0.99 -1.99
3 one-var 2nd chaos 6 388 0.89 -1.23
4 one-var 2nd chaos 7 388 0.80 -0.38
5 one-var 2nd chaos 7 329 0.66 1.26
6 factorizable 2nd chaos 6 437 1.04 -3.33
7 factorizable 2nd chaos 6 495 0.84 -0.68
8 factorizable 2nd chaos 6 421 1.19 -2.84
9 factorizable 2nd chaos 7 365 0.82 -0.78
10 factorizable 2nd chaos 7 323 0.72 0.36
11 one-var 3rd chaos 6 388 0.87 -1.06
12 one-var 3rd chaos 7 350 0.78 -0.11
13 one-var 3rd chaos 7 367 0.68 1.24
14 one-var 3rd chaos 7 325 0.69 0.60

that chaos models do not offer a significant advantage with respect to the Svensson
model under volatile market conditions, when yield curves can change from normal
to inverted to humped shapes quiet rapidly. Moving on to Table 3.2, we observe
smaller RMSPEs and higher DM statistics uniformly across all chaotic models, but
nevertheless not high enough to reject the null hypotheses that they have the same
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calibration performance as the Svensson model.
More interestingly, both tables confirm our previous remarks in Section 3.3 that

all chaos models behave similarly to a first chaos model from the point of view of
calibrating the initial term structure. Indeed, we do not find significant difference in
the calibration performances between chaos models of different orders. If anything, we
notice that factorizable second chaos models perform slightly worse than their one–
variable analogues, therefore justifying our assertion that one should avoid trying to
calibrate the initial term structure using a complicated expression such as (3.23).

We illustrate the results by plotting the RMSPE as a function of time in Figures
3.1 and 3.2. For comparison, we restrict ourselves to the chaotic models with 6
parameters in Tables 3.1 and 3.2, as well as the Svensson and Nelson-Siegel models.

Fig. 3.1. Error for term structure calibration in 1998-1999.

The basic overall conclusion of this section is that, as far as the daily calibration of
initial term structure is concerned, we cannot state that there exists a significant dif-
ference in the calibration performances between the Svensson and the chaotic models.
However, as we mentioned before, chaotic models specify the stochastic evolution of
interest rates, in addition to ensuring their positivity. In other words, the parameters
calibrated from yield data may be applied directly to the volatility term structure.
As we will see in the next section, this turns out to be greatly advantageous in the
joint calibration of yields and option prices.

4. Option calibration. In the previous section we showed that the chaotic and
descriptive models have comparable performances when calibrated to yield curves. In
this section, we take into account ATM European options, in particular caplets and
swaptions. Since descriptive models for yield curves are silent regarding the future
evolution of interest rates, we compare chaos models of different orders with other
popular interest rate models in the literature, including short–rate models, models
based on the potential approach and market models. But let us first analyze in
greater detail the expressions for option prices in chaos models of different orders.

4.1. Option prices in second chaos models. Since in a first chaos model the
price at time 0 of an interest rate derivative with payoff HT reduces to the determin-
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Fig. 3.2. Error for term structure calibration in 2002-2005.

istic expression

H0 =
E[VTHT ]

V0
=
VT
V0
HT = e−

∫ T
0
rsdsHT , (4.1)

any nontrivial option pricing should start with at least a second chaos model. We
begin with bond put options in a factorizable second chaos, for which it has already
been observed in [16] that (3.19) implies that

KZtt −KZtT = P(2)
p (z), (4.2)

where z = Rt/
√
Qt is a standard normal random variable and

P(2)
p (z) := a0 + a1z + a2z

2 (4.3)

is a second degree polynomial with coefficients

a0 = −
(
A(T )−KA(t)

)
+
(
C(T )−KC(t)

)
Qt

a1 = −
(
B(T )−KB(t)

)
Q1/2(t)

a2 = −
(
C(T )−KC(t)

)
Qt.

(4.4)

Using (2.14), it then follows that

p(0, t, T,K) =
1

A(0)
√

2π

∫
P(2)

p (z)≥0
P(2)
p (z)e−

z2

2 dz. (4.5)

As shown in [16], once we calculate the roots of P(2)
p (z), we have that (4.5) reduces

to a simple expression given in terms of the standard normal cumulative distribution
function. Having calculated the price of a put option on a bond, we can easily find
the price of a caplet using expression (2.18).
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Regarding the price of a payer swaption, it was also observed in [16] that

Ztt − ZtTn
−K

n∑
i=1

(Ti − Ti−1)ZtTi
= P(2)

Swp(z) (4.6)

where z is the standard normal random variable defined above and

PSwp(z) := b0 + b1z + b2z
2 (4.7)

is a second degree polynomial with coefficients

b0 =

(
A(t)−A(Tn)−K

n∑
i=1

(Ti − Ti−1)A(Ti)

)

−

(
C(t)− C(Tn)−K

n∑
i=1

(Ti − Ti−1)C(Ti)

)
Qt

b1 =

(
B(t)−B(Tn)−K

n∑
i=1

(Ti − Ti−1)B(Ti)

)
Q1/2t

b2 =

(
C(t)− C(Tn)−K

n∑
i=1

(Ti − Ti−1)C(Ti)

)
Qt.

(4.8)

It then follows from (2.24) that the price of a payer swaption in a factorizable second
chaos model is

Swp(0, T ,N ,K) =
1

A(0)
√

2π

∫
P(2)

Swp(z)≥0
P(2)
Swp(z)e

− z2

2 dz. (4.9)

Once more, as shown in [16], having calculated the roots of P(2)
Swp(z), expression (4.9)

reduces to an explicit formula in terms of the standard normal cumulative distribution
and density functions.

4.2. Option prices in third chaos models. We focus on one–variable third
chaos models of the form (3.31). Recalling expression (3.33) for the process ZtT we
have that

KZtt − ZtT = P(4)
p (z) (4.10)

where z = Wt/
√
t is a standard normal random variable and

P(4)
c (z) := c0 + c1z + c2z

2 + c3z
3 + c4z

4 (4.11)

is a forth degree polynomial with coefficients

c0 = −
(
Ã(T )−KÃ(t)

)
+
(
C̃(T )−KC̃(t)

)
t− 3

(
Ẽ(T )− Ẽ(t)

)
t2

c1 = −
(
B̃(T )−KB̃(t)

)
t1/2 + 3

(
D̃(T )− D̃(t)

)
t3/2

c2 = −
(
C̃(T )−KC̃(t)

)
t+ 6

(
Ẽ(T )−KẼ(t)

)
t2

c3 = −
(
D̃(T )−KD̃(t)

)
t3/2

c4 = −
(
Ẽ(T )−KẼ(t)

)
t2

(4.12)
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We then have the the price of a bond put option is a one–variable third chaos model
is

p(0, t, T,K) =
1

Ã(0)
√

2π

∫
P(4)

p (z)≥0
P(4)
p (z)e−

z2

2 dz, (4.13)

which can then be used to obtain the price of a caplet according to (2.17). As before,

once we calculate the roots of the polynomial P(4)
p (z), both of these expressions reduce

to explicit formulas in terms of the standard normal cumulative distribution and
density functions (see [30]).

Regarding the price of a payer swaption, we have that

Ztt − ZtTn
−K

n∑
i=1

(Ti − Ti−1)ZtTi
= P(4)

Swp(z) (4.14)

where z = Wt/
√
t a standard normal random variable and

P(4)
Swp(z) := d0 + d1z + d2z

2 + d3z
3 + d4z

4 (4.15)

is a forth degree polynomial with coefficients

d0 =

(
Ã(t)− Ã(Tn)−K

n∑
i=1

(Ti − Ti−1)Ã(Ti)

)

−

(
C̃(t)− C̃(Tn)−K

n∑
i=1

(Ti − Ti−1)C̃(Ti)

)
t

+ 3

(
Ẽ(t)− Ẽ(Tn)−K

n∑
i=1

(Ti − Ti−1)Ẽ(Ti)

)
t2

d1 =

(
B̃(t)− B̃(Tn)−K

n∑
i=1

(Ti − Ti−1)B̃(Ti)

)
t1/2

− 3

(
D̃(t)− D̃(Tn)−K

n∑
i=1

(Ti − Ti−1)D̃(Ti)

)
t3/2

d2 =

(
C̃(t)− C̃(Tn)−K

n∑
i=1

(Ti − Ti−1)C̃(Ti)

)
t

− 6

(
Ẽ(t)− Ẽ(Tn)−K

n∑
i=1

(Ti − Ti−1)Ẽ(Ti)

)
t2

d3 =

(
D̃(t)− D̃(Tn)−K

n∑
i=1

(Ti − Ti−1)D̃(Ti)

)
t3/2

d4 =

(
Ẽ(t)− Ẽ(Tn)−K

n∑
i=1

(Ti − Ti−1)Ẽ(Ti)

)
t2

(4.16)

It then follows from (2.23) that the price of a payer swaption in a one–variable third
chaos model is

Swp(0, T ,N ,K) =
1

Ã(0)
√

2π

∫
P(4)

Swp(z)≥0
P(4)
Swp(z)e

− z2

2 dz. (4.17)
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Once more, after we find the roots of P(4)
Swp(z), expression (4.17) reduces to an explicit

formula in terms of the standard normal cumulative distribution and density functions
(see [30]).

4.3. Benchmark models. In this section we describe the models we use for
comparing the calibration performance of chaotic models to option prices.

We start with the simplest short–rate model for which the initial term structure
can be freely specified in order to match observed data, namely the Hull–White [17]
dynamics

drt = (θ(t)− κrt)dt+ ηdWt, (4.18)

where we choose the function θ(t) in such a way that the initial term structure for
forward rates has the Svensson form in (3.1), so that there are 8 parameters in total
to be calibrated for this model. The prices for bond options, caplets and swaptions
in a Hull–White model are given by well–known analytic expressions (see for example
[2, pages 76–77]).

Next we consider the rational lognormal model introduced in [11] (see related
literature in [14], [20] and [23]). This is one of the earliest examples of a model in the
potential approach and consists of setting

σ2
s = g1(s)Ms + g2(s), 0 ≤ s ≤ t, (4.19)

where g1, g2 are nonnegative deterministic functions of time and Mt is a strictly pos-
itive continuous martingale such that M0 = 1. We then see that

ZtT =

∫ ∞
T

Mtsds =

∫ ∞
T

E
[
σ2
s

∣∣Ft] ds = G1(T )Mt +G2(T ), (4.20)

where

G1(t) :=

∫ ∞
t

g1(s)ds, and G2(t) :=

∫ ∞
t

g2(s)ds. (4.21)

This implies that bond prices are represented in the following way:

PtT =
G1(T )Mt +G2(T )

G1(t)Mt +G2(t)
, for 0 ≤ t ≤ T <∞.

As shown in [11], caplets and swaptions can be priced analytically in a rational log-
normal model. Note however that, as also discussed in [11] and [6], for each fixed t
and T , bond prices in this model are bounded above and below by the determinis-
tic ratios G1(T )/G1(t) and G2(T )/G2(t). As shown in [6], it follows that the short
rate rt is also bounded above and below by the deterministic ratios G′1(t)/G1(t) and
G′2(t)/G2(t). As a consequence, rational lognormal models are unable to accurately
price deep in the money and out of the money interest rate options.

To implement the rational lognormal model, we follow [20] and parametrize the
functions g1 and g2 as

g1(t) = −k1
∂P0t

∂t
(P0t)

k2 and g2(t) = −∂P0t

∂t
[1− k1(P0t)

k2 ], for t ≥ 0, (4.22)

for constants k1, k2 ∈ R, where we choose the function P0t is then chosen so that the
initial term structure of forward rates has the Svensson form in (3.1). Regarding the
process Mt, we follow [14] and represent is as an exponential martingale of the form

Mt = exp
[
ηWt −

1

2
η2t
]
, for t ≥ 0, (4.23)

18



for some constant η ∈ R. With this choices, there are 9 parameters in total to be
calibrated in this model.

The last benchmark that we consider are LIBOR market models. We first intro-
duce the following notation:

Fj(t) := FtTj−1Tj
, j = 1, 2, . . . ,

where {T0, T1, . . . , Ti−1, Ti, . . . , Tn} is an increasing set of dates and F (t, S, T ) is the
forward LIBOR rate defined in (2.20).

The lognormal forward market model (LFM), consists of specifying the dynamics:

dFj(t) = σj(t)Fj(t)dZ
j(t), (4.24)

where σj(t), t ≥ 0 is a deterministic process, and Zj is a Brownian Motion under
the forward measure Qj , that is, the pricing measure associated with the numeraire
P (·, Tj) (see [13]), with a correlation given by

dZi(t)dZj(t) = ρijdt. (4.25)

The motivation for introducing such models is that caplets can then be exactly priced
using the Black formula introduced in (2.22). Following [2, page 224], we parametrize
the volatilities as

σi(t) = b1 + (b2 + b3(Ti−1 − t))e−c1(Ti−1−t), (4.26)

for b1, b2, b3, c1 ∈ R. Using the Svensson form in (3.1) for the initial term structure
of forward rates, we see that there are 10 parameters to be calibrated to yield curves
and caplet prices alone.

To price a swaption maturing at t with tenor (Tn − t) we use the Rebonato
approximation (see [2, page 283]) for the implied volatility

vt,Tn
=

√√√√ 1

Tn

n∑
i,j=1

wi(0)wj(0)Fi(0)Fj(0)

S(0, t, Tn)2
ρij

∫ Tn

0

σi(t)σj(t)dt, (4.27)

where the forward swap rates are assumed to be expressed as a linear combination of
forward LIBOR rates as follows:

S(t, T0, Tn) =

n∑
i=1

wi(t)Fi(t) where wi(t) =
(Ti − Ti−1)PtTi∑n
k=1(Tk − Tk−1)PtTk

. (4.28)

For the correlations appearing in (4.27), we use the Schoenmakers and Coffey [27]
parametrization:

ρij = exp
[
− |j − i|
n− 1

(
− log ρ∞ + η1

i2 + j2 + ij − 3ni− 3nj + 3i+ 3j + 2n2 − n− 4

(n− 2)(n− 3)

− η2
i2 + j2 + ij − ni− nj − 3i− 3j + 3n+ 2

(n− 2)(n− 3)

)]
,

(4.29)

for i, j = 1, 2, . . . , n and constants η1, η2, ρ∞ ∈ R satisfying the conditions η2 ≥ 0
and 0 ≤ η1 + η2 ≤ − log ρ∞. As we can see, if we use either only yields and caplets,
we need to calibrate 10 parameters, whereas there are in total 13 parameters to be
calibrated to yields and swaptions or yields, caplets, and swaptions together.
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4.4. Calibration Results. We describe the details of the calibration to yields
and option prices in Appendix B. We calibrate 6 different chaos models using two
distinct data set from the UK interest rate market: weekly observations of yields
and implied volatilities for ATM caplets and ATM swaptions from September 2000
to August 2001 and from May 2005 to May 2006. For comparison, we also calibrate
the three benchmark models described in the Section 4.3: the Hull and White short
rate model, the rational lognormal model and the lognormal forward LIBOR market
model.

We can gain a first impression in Figures 4.1 and 4.2, which show the calibrated
implied volatility surfaces for ATM swaptions of different maturities and tenors at
two specific calibration dates, one from each of the data sets above. We can see that
neither the Hull and White nor the rational lognormal models have enough flexibility
to reproduce the market quotes, with the LIBOR and chaos models providing much
better fits. Figures 4.3 and 4.4 show similar results for the term structure of ATM
caplets. In particular, we observe that both the Hull and White and the rational
lognormal fail to capture the hump shaped term structure of caplet implied volatility,
whereas the LIBOR and chaos models are able to do so.

The quantitative calibration results are summarized results in Tables 4.1 to 4.6.
The first column in each table labels the calibrated chaos models as listed in Appendix
B and the benchmark models as listed in Section 4.3. The second column characterizes
the type of model, whereas the third one gives the number of calibrated parameters.
The remaining columns in each table show the errors defined in Appendix B averaged
across the different calibration dates. Specifically, the fourth column in each table
shows the average value for the objective function minimized in the calibration. We
plot this error across time for all calibration dates in Figures 4.5 to 4.10. The next
columns show the average contribution to this total error coming from yields and the
options used in each calibration. In the last column of Tables 4.1, 4.2, 4.4 and 4.5,
we also show the correspond to the pricing error obtained when we use the calibrated
parameters to forecast the prices of options that were not used in the calibration. For
example, in Table 4.1 we calibrate the model parameters to yields and caplets and
use them to forecast the prices of swaptions.

We can readily see that in general all chaos models that we consider fit the
observed data better than the Hull and White and the rational lognormal models,
as well as having smaller pricing errors for the options that were not used in each
particular calibration. When compared with the LIBOR model, however, we see that
only third chaos models have competitive performance.

For a more detailed comparison, we consider relative frequencies for model selec-
tion based on the Akaike Information Criterion described in Appendix B. For each of
our two data sets, we compared the relative performance of third chaos models with
7 and 9 parameters and the benchmark LIBOR model. The results are presented in
Tables 4.7 and 4.8. Whereas the relative performance of the third chaos model with 7
parameters is somewhat ambiguous and depends on which type of options are consid-
ered, we find that the third chaos model with 9 parameters consistently outperforms
the lognormal forward LIBOR market model with 13 parameters. For example, in the
first data set, it outperforms LIBOR in 36 out of the 53 calibration dates when we use
yields and caplets, 53 out of 53 calibration dates when we use yields and swaptions,
and 39 out of 53 calibration dates when we use yields, caplets and swaptions. For the
second data set, the corresponding number of dates are 52, 44 and 39 respectively.
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Table 4.1
Yield and ATM caplet calibration for 2000-2001

No. Model N TotalE1 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 5.1 2.0 4.6 14.9
2 one-var 2nd chaos 7 3.3 1.7 2.7 16.3
3 factorizable 2nd 6 3.8 2.1 3.1 26.5
4 one-var 3rd chaos 6 4.2 2.0 3.5 15.5
5 one-var 3rd chaos 7 3.2 1.3 2.9 15.7
6 one-var 3rd chaos 9 2.6 1.1 2.3 17.0
I Hull-White 8 8.7 0.6 8.7 25.8
II Rational-log 9 9.2 0.6 9.2 13.9
III LIBOR 10 3.0 0.6 3.0 -

Table 4.2
Yield and ATM swaption calibration for 2000 − 2001

No. Model N TotalE2 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 7.1 1.8 6.8 14.5
2 one-var 2nd chaos 7 7.1 2.0 6.7 14.6
3 factorizable 2nd 6 7.1 2.1 6.8 14.3
4 one-var 3rd chaos 6 5.3 2.9 4.1 10.2
5 one-var 3rd chaos 7 3.8 1.5 3.4 8.6
6 one-var 3rd chaos 9 3.5 1.5 3.1 9.1
I Hull-White 8 10.2 0.6 10.2 17.6
II Rational-log 9 8.4 0.6 8.4 15.3
III LIBOR 13 5.0 0.6 5.0 8.1

Table 4.3
Yield, ATM caplet and ATM swaption calibration for 2000 − 2001

No. Model N TotalE2 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 12.5 2.2 9.3 7.9
2 one-var 2nd chaos 7 12.1 2.4 9.3 7.3
3 factorizable 2nd 6 12.1 2.6 8.4 8.2
4 one-var 3rd chaos 6 8.2 4.3 4.4 5.2
5 one-var 3rd chaos 7 7.1 1.6 4.4 5.2
6 one-var 3rd chaos 9 5.9 2.2 4.1 3.4
I Hull-White 8 18.4 0.6 12.2 13.7
II Rational-log 9 14.6 0.6 10.0 10.6
III LIBOR 13 6.5 0.6 5.5 3.1
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Table 4.4
Yield and ATM caplet calibration for 2005 − 2006

No. Model N TotalE3 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 6.3 1.6 6.1 9.4
2 one-var 2nd chaos 7 3.4 1.5 3.0 14.0
3 factorizable 2nd 6 4.3 2.4 3.4 20.0
4 one-var 3rd chaos 6 4.9 1.9 4.4 26.2
5 one-var 3rd chaos 7 3.6 1.4 3.2 14.2
6 one-var 3rd chaos 9 3.3 1.3 3.0 17.7
I Hull-White 8 8.4 0.4 8.4 16.3
II Rational-log 9 9.4 0.4 9.4 10.5
III LIBOR 10 3.5 0.4 3.5 -

Table 4.5
Yield and ATM swaption calibration for 2005 − 2006

No. Model N TotalE1 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 6.5 3.2 5.5 32.2
2 one-var 2nd chaos 7 5.0 1.5 4.8 11.9
3 factorizable 2nd 6 6.8 2.3 6.4 13.7
4 one-var 3rd chaos 6 4.5 2.2 3.8 21.2
5 one-var 3rd chaos 7 4.2 1.6 3.8 13.4
6 one-var 3rd chaos 9 3.1 1.3 2.8 14.2
I Hull-White 8 9.5 0.4 9.5 11.2
II Rational-log 9 8.2 0.4 8.2 10.9
III LIBOR 13 3.5 0.4 3.5 14.8

Table 4.6
Yield, ATM caplet and ATM swaption calibration for 2005 − 2006

No. Model N TotalE1 (%) YldE (%) CplE (%) SwpE (%)
1 one-var 2nd chaos 6 10.4 2.5 7.3 6.9
2 one-var 2nd chaos 7 8.6 1.5 6.3 5.6
3 factorizable 2nd 6 10.3 1.9 7.9 6.2
4 one-var 3rd chaos 6 9.1 3.3 5.8 6.1
5 one-var 3rd chaos 7 7.8 1.8 5.0 5.5
6 one-var 3rd chaos 9 5.9 1.4 4.1 4.0
I Hull-White 8 14.0 0.4 10.1 9.5
II Rational-log 9 13.0 0.4 8.4 9.9
III LIBOR 13 6.2 0.4 4.8 3.8

5. Concluding remarks. We proposed and implemented a systematic way to
calibrate chaotic models for interest rates to available term structure and option data.
The calibration performance to initial term structures is comparable to that of tra-
ditional descriptive models for forward rates with the same number of parameters,
with the advantages of guaranteed positivity and consistency with a fully stochastic
model for the time evolution of interest rates. When we include option data in the
form of at-the-money caplets and swaptions, we see that chaos models perform sig-
nificantly better than the benchmark Hull and White and rational lognormal models,
and comparably to a LIBOR market model with a higher number of parameters. If
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Table 4.7
AIC model selection relative frequency (first dataset)

Model Caplets Swaptions Joint

comparison 1
one-var 3rd chaos (7 par) 2/53 50/53 23/53

LIBOR (13 par) 51/53 3/53 30/53

comparison 2
one-var 3rd chaos (9 par) 36/53 53/53 39/53

LIBOR (13 par) 17/53 0/53 14/53

Table 4.8
AIC model selection relative frequency (second dataset)

Model Caplets Swaptions Joint

comparison 1
one-var 3rd chaos (7 par) 14/53 23/53 7/53

LIBOR 39/53 30/53 46/53

comparison 2
one-var 3rd chaos (9 par) 52/53 44/53 39/53

LIBOR 1/53 9/53 14/53

we take the number of parameters into account, a conservative information criterion
shows that one of our chaos models consistently outperforms the benchmark LIBOR
market model.

The underlying reason for the superior performance of LIBOR market models
when compared, for example, to Markovian short–rate models is the rich correlation
structure they provide for LIBOR forward rates at different dates. Similarly, in chaos
models the resulting short rate is in general not Markovian, and our calibration results
show that an equally rich correlation structure can be achieved without having to
model forward rates individually under each corresponding forward measure.

The next step in our program is to consider options that are not at-the-money.
The current industry standard for this is to use stochastic volatility models for either
forward or swap rates. In a paper in preparation we show that chaos models naturally
give rise to rates with stochastic volatility, and explore this fact to calibrate them to
the smile observe in interest rate data.

Expectedly, much work remains to be done, in particular on the interpretation of
the financial interpretation of the chaos coefficients, where techniques such as principal
components analysis might shed some additional light on the meaning of the most
relevant calibrated parameters. Extensions to other classes of financial products,
notably exchange rate derivatives, are also possible. We believe the analysis presented
in this paper demonstrates the viability of chaos models as serious contenders for
practical use in the financial industry and will stimulate further work in the area.
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Appendix A. Term structure calibration procedure.
We begin by listing our choices of chaos coefficients of different orders according

to the general parametric form in (3.38). We start with first chaos models directly
inspired by the Nelson–Siegel and Svensson parametric forms in (3.1), namely:

φ1(s) = (b1 + b2s)e
−c1s (A.1)

φ1(s) = (b1 + b2s)e
−c1s + b3se

−c2s. (A.2)

Moving up one chaos order, we consider next one–variable second chaos models with

α(s) = (b1 + b2s)e
−c1s, β(s) = (b3 + b4s)e

−c2s (A.3)

α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s + b4se
−c3s (A.4)

α(s) = (b1 + b2s)e
−c1s + b3se

−c2s, β(s) = b4se
−c3s (A.5)

as well as factorizable second chaos models with

α(s) = b1e
−c1s, β(s) = b2e

−c2s, γ(s) = (1 + b3)e−c3s (A.6)

α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, γ(s) = e−c3s (A.7)

α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, γ(s) = e−c3s (A.8)

α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, γ(s) = (1 + b4s)e
−c3s (A.9)

α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, γ(s) = (1 + b4s)e
−c3s. (A.10)

Finally, we consider the following one–variable third chaos models:

α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s (A.11)

α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = (b3 + b4s)e
−c3s (A.12)

α(s) = b1e
−c1s, β(s) = (b2 + b3s)e

−c2s, δ(s) = b4e
−c3s (A.13)

α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, δ(s) = b4e
−c3s (A.14)

We now describe in detail the steps we take to calibrate these chaos models to
observed yield curves, which we obtain from clean prices of treasury coupon strips in
the UK bond market from the United Kingdom Debt Management Office (DMO) 1

according to

y0T := − 1

T
logP0T , (A.15)

using an Actual/Actual day-count convention [2]. We consider the following two data
sets:

1http://www.dmo.gov.uk/index.aspx?page=Gilts/Daily
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1. Bond prices at 146 dates (every other business day) from January 1998 to
January 1999, with around 49 to 62 maturities for each date.

2. Bond prices at 157 dates (every Friday) from December 2002 to December
2005, with around 100 to 130 maturities for each date.

Note that the first dataset contains a volatile market including the period of the Long-
Term Capital Management (LTCM) crisis, whereas the second dataset corresponds
to more moderate market conditions.

We then apply the maximum likelihood estimation (MLE) method suggested
by Cairns in [4] [7] to each of the models (A.1)–(A.14) and each starting date in
the data sets above. This is done as follows: given a model with parameter vector
Θ = (b1, . . . , bN1

, c1, . . . , cN2
) and a starting date t0 = 0 with available maturities

Ti, i = 1, . . . , n, we denote the theoretical prices by P0Ti
(Θ) and the corresponding

observed bond prices by P 0Ti
. We then assume that

logP 0Ti ∼ N (logP0Ti(Θ), ν2(P0Ti(Θ), di)), (A.16)

where di is the Macaulay duration for the bond and

ν2(p, d) =
σ2
0(p)[σ2

∞d
2b(p) + 1]

σ2
0(p)d2b(p) + 1

, b(p) =
σ2
d

σ2
0(p)[σ∞ − σ2

0(p)]
, (A.17)

with the error parameters

σ0(p) =
1

3200p
, σd = 0.0005, σ∞ = 0.001, (A.18)

adopted in [4] for the UK bond market data between January 1992 and November
1996. As explained in [4], σ0(p) is based on the assumption that the published bond
prices have rounding error of around 1/32 per 100 nominal price, whereas σd corre-
sponds to the assumption that the difference between actual and expected yields have
independent errors of the order of five basis points. Finally, σ∞ places a limit on the
magnitude of price errors for long dated bonds.

This leads to the log-likelihood function

L(Θ) = −1

2

n∑
i=1

[
log[2πν2(P0Ti(Θ), di)] +

(logP0Ti
(Θ)− logP 0Ti

)2

ν2(P0Ti(Θ), di)

]
. (A.19)

We then use a global search procedure to find the global maximum for the log–
likelihood function (A.19), that is, to avoid finding a local maximum, we repeat the
procedure using 1000 different random starting points and select the best maximiza-
tion result.

Having estimated the parameter vector Θ̂, we denote by y0Ti
(Θ̂) the fitted yield

for maturity Ti and by y0Ti
the corresponding observed yield. We then define the

fitting Root-Mean-Squared Percentage Error (RMSPE) as

RMSPE =

√√√√ 1

n

n∑
i=1

[y0Ti
(Θ̂)− y0Ti

ȳ0Ti

]2
. (A.20)

We then apply the Diebold-Mariano (DM) statistics [8] based on RMSPE to
compare fitting performances as is done in [18] and [29]. Here for the computation we
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use the program DMARIANO2 in the statistics package STATA, with a lag order of
thirteen in both of our two data sets. The null hypothesis, which is that two models
have the same fitting errors, may be rejected at 5% level if the absolute value of the
DM statistics is greater than 1.96. We compare the calibration performance of the
Chaos Models with a descriptive model for forward rates in Svensson form: the higher
the DM statistics, the more a chaotic model outperforms the Svensson model.

Appendix B. Option calibration procedure.
For option calibration, we consider one–variable second chaos models with

α(s) = (b1 + b2s)e
−c1s, β(s) = (b3 + b4s)e

−c2s (B.1)

α(s) = (b1 + b2s)e
−c1s + b3se

−c2s, β(s) = b4se
−c3s, (B.2)

factorizable second chaos models with

α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, γ(s) = e−c3s (B.3)

and one–variable third chaos models with

α(s) = b1e
−c1s, β(s) = b2e

−c2s, δ(s) = b3e
−c3s (B.4)

α(s) = (b1 + b2s)e
−c1s, β(s) = b3e

−c2s, δ(s) = b4e
−c3s (B.5)

α(s) = (b1 + b2s)e
−c1s, β(s) = (b3 + b4s)e

−c2s, δ(s) = (b5 + b6s)e
−c3s, (B.6)

as well as each of the three benchmark models described in Section 4.3.
Regarding the data, zero-coupon yields are bootstrapped from the LIBOR, Future

and Swap rates (see [9] for the detail of the bootstrapping technique) and interest rate
option prices from ICAP (Garban Intercapital - London) and TTKL (Tullett & Tokyo
Liberty - London) via the Bloomberg Database.3 We consider the following two data
sets from the UK interest rate market:

• Data between September 2000 and August 2001 at 53 dates (every Friday
closing mid price) consisting of

– zero-coupon yields with 17 maturities ranging from one month to 20
years,

– implied volatilities for ATM caplets with 37 maturities ranging from one
to 10 years,

– implied volatilities for ATM swaptions with 7 maturities ranging from
one month to 5 years and 6 tenors ranging from one to 10 years.

• Data between May 2005 and May 2006 at 53 dates (every Friday closing mid
price) consisting of

– zero-coupon yields with 22 maturities ranging from one month to 20
years.

– implied volatilities for ATM caplets with 77 maturities ranging from one
to 20 years,

– implied volatilities for ATM swaptions with 7 maturities ranging from
one month to 5 years and 6 tenors ranging from one to 10 years.

2http://ideas.repec.org/c/boc/bocode/s433001.html
3Here we would like to acknowledge helpfulness of the Bloomberg help desk staff, who have aided

greatly our understanding of the actual market data. We particularly wish to extend thanks David
Culshaw, from ICAP, for his assistance.
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Note here that the option data corresponds to a part of the data in [29], where data
was analyzed between August 1998 and January 2007. We obtain caplet implied
volatilities by bootstrapping ATM cap implied volatilities observed in the market
using the technique described in [12], where the ATM caplets implied volatilities
maturing at six months and nine months are obtained by constant extrapolation.
The extrapolation is necessary to bootstrap the other ATM caplet implied volatilities,
but when we calibrate the data, the extrapolated prices give us great errors. Hence,
although we follow [12] and implement the extrapolation, we do not use those two
short maturities for the calibration. Moreover, we observed some obvious outliers and
corrected them accordingly.

For each of the models and data sets above, we perform three distinct calibra-
tions: first to yields and caplets, then to yields and swaptions, and finally to yields,
caplets and swaptions. To define the objective function for each to these calibra-
tions, denote the observed yields and prices of ATM caplets and ATM swaptions by
y0Ti

, Cpl(Ti,KATM ) and Swp(Ti,KATM ), their theoretical counterparties by y0Ti
,

Cpl(Ti,KATM ) and Swp(Ti,KATM ), and the corresponding mean square percentage
errors by

YieldE =

√√√√ 1

n1

n1∑
i=1

[
y0Ti
− y0Ti

y0Ti

]2
, (B.7)

CplE =

√√√√ 1

n2

n2∑
i=1

[
Cpl(Ti,KATM )− Cpl(Ti,KATM )

Cpl(Ti,KATM )

]2
, (B.8)

and

SwpE =

√√√√ 1

n3

n3∑
i=1

[
Swp(Ti,KATM )− Swp(Ti,KATM )

Swp(Ti,KATM )

]2
. (B.9)

For the calibration to yields and caplets, we then minimize the objective function

TotalE1 =

√
(YieldE)

2
+ (CplE)

2
. (B.10)

Similarly, for the calibration to yields and swaptions, we minimize the objective func-
tion

TotalE2 =

√
(YieldE)

2
+ (SwpE)

2
. (B.11)

Finally, for the calibration to yields, caplets and swaptions we minimize the objective
function

TotalE3 =

√
(YieldE)

2
+ (CplE)

2
+ (SwpE)

2
. (B.12)

For each of these calibrations, we test the pricing performance of the calibrated mod-
els. For example, after calibrating to yields and ATM swaptions, we use the model
to price the ATM Caplets and compute the pricing error from market ATM Caplet
prices. Whenever possible, for example in the Hull-White model, we calibrate initial
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yield curves and options separately by minimizing their respective square errors, since
these involve distinct sets of parameters. Moreover, for the LFM model, we minimize
the square error in implied volatilities rather than actual prices.

To access the relative performance between the models, we use the Akaike In-
formation Criterion (AIC) and the model selection relative frequency described in
[3]. The AIC is formed with the maximized value of the likelihood function L for an
estimated model and the number of parameters k in the following way:

AIC = −2 log(L) + 2k. (B.13)

For the least squares method under the assumed normality of residuals, this reduces
to .

AIC = n log
(RSS

n

)
+ 2k + n log(2π) +

n

2
, (B.14)

where RSS is the fitted residual sum of squares. Since n log(2π) + n
2 is a constant, we

ignore this term and conclude that

AIC = n log
(RSS

n

)
+ 2k. (B.15)

To define the model selection relative frequency, let us suppose we have two models
and N calibration sets (for example the different calibration dates in our data). For a

data set j ∈ {1, · · · , N} we compute AIC denoted AIC
(1)
j for one model and AIC

(2)
j

for the other. Suppose the AIC of the first model is smaller than the AIC of the other
model l times. Then the model selection relative frequencies (MSRF) for the first
model and the second model are computed respectively by

MSRF(1) =
l

N
and MSRF(2) =

N − l
N

. (B.16)
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Fig. 4.1. Implied volatility for ATM swaptions on October 20th, 2000 (Blue: Market Quotes,
Green: Theoretical Values).

Fig. 4.2. Implied volatility for ATM swaptions on August 12th, 2005 (Blue: Market Quotes,
Green: Theoretical Values).
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Fig. 4.3. Implied volatility for ATM caplets on December 8th, 2000.

Fig. 4.4. Implied volatility for ATM caplets on February 10th, 2006.

31



Fig. 4.5. Total error for yields and ATM caplets in 2000–2001.

Fig. 4.6. Total error for yields and ATM swaptions in 2000–2001.

Fig. 4.7. Total error for yields, ATM caplets and ATM swaptions in 2000–2001.
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Fig. 4.8. Total error for yields and ATM caplets in 2005–2006.

Fig. 4.9. Total error for yields and ATM swaptions in 2005–2006.

Fig. 4.10. Total error for yields, ATM caplets and ATM swaptions in 2005–2006.
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