Hedging Insurance Contracts in Incomplete Markets

M. R. Grasselli and E. Alexandru-Gajura

Mathematics and Statistics McMaster University

Mathematics in Finance Kruger National Park, September 3, 2008

► Traditionally, the actuarial and investment legs of an insurance company are kept separate.

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:
 - hegde independent insurance risks;

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:
 - hegde independent insurance risks;
 - hedge equity-linked insurance products;

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:
 - hegde independent insurance risks;
 - hedge equity-linked insurance products;
 - design new insurance insurance contracts (e.g: flood insurance).

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:
 - hegde independent insurance risks;
 - hedge equity-linked insurance products;
 - design new insurance insurance contracts (e.g: flood insurance).
- The presence of insurance risks render the markets generally incomplete.

- ► Traditionally, the actuarial and investment legs of an insurance company are kept separate.
- ▶ By combining the two, one can use the financial market to:
 - hegde independent insurance risks;
 - hedge equity-linked insurance products;
 - design new insurance insurance contracts (e.g: flood insurance).
- The presence of insurance risks render the markets generally incomplete.
- ▶ Our approach to pricing and hedging is to use risk preferences induced by an exponential utility $U(x) = -e^{-\gamma x}$.

Optimal Hedging and Indifference Pricing

▶ We assume that, after selling an insurance contract B_T maturing at a future time T, the insurance company tries to solve the stochastic control problem

$$u^{B}(x) = \sup_{H \in \mathcal{A}} E\left[U\left(X_{T}^{H,x,B}\right)\right],$$

where $X_t^{H,x}$ is value of a self–financing portfolio with initial wealth x, a short position in the contract B_T , and H_t units of the stock, with the remaining value invested in the bank account.

Optimal Hedging and Indifference Pricing

▶ We assume that, after selling an insurance contract B_T maturing at a future time T, the insurance company tries to solve the stochastic control problem

$$u^{B}(x) = \sup_{H \in \mathcal{A}} E\left[U\left(X_{T}^{H,x,B}\right)\right],$$

where $X_t^{H,x}$ is value of a self–financing portfolio with initial wealth x, a short position in the contract B_T , and H_t units of the stock, with the remaining value invested in the bank account.

▶ The sellers indifference price for the claim B is the solution π^s to the equation

$$u^0(x) = u^B(x + \pi^s)$$

▶ Consider a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.

- ▶ Consider a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.
- ▶ Here τ is the arrival time of the first jump of an inhomogeneous Poisson process with intensity $\lambda(t)$, that is

$$P(\tau > t) = e^{-\int_0^t \lambda(s)ds}.$$

- ▶ Consider a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.
- ▶ Here τ is the arrival time of the first jump of an inhomogeneous Poisson process with intensity $\lambda(t)$, that is

$$P(\tau > t) = e^{-\int_0^t \lambda(s)ds}.$$

ightharpoonup Crucially, we assume that au is independent of the market.

- ▶ Consider a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.
- ▶ Here τ is the arrival time of the first jump of an inhomogeneous Poisson process with intensity $\lambda(t)$, that is

$$P(\tau > t) = e^{-\int_0^t \lambda(s)ds}.$$

- ightharpoonup Crucially, we assume that au is independent of the market.
- ▶ In this case, we have

$$u^{s}(x + \pi^{s}) = \sup_{H \in \mathcal{A}} E\left[-e^{-\gamma(x + \pi^{s} + \int_{0}^{T} H_{s} dS_{s} - B_{T})}\right]$$
$$= e^{-\gamma \pi^{s}} E\left[e^{\gamma B_{T}}\right] \sup_{H \in \mathcal{A}} E\left[-e^{-\gamma(x + \int_{0}^{T} H_{s} dS_{s})}\right]$$
$$= e^{-\gamma \pi^{s}} E\left[e^{\gamma B_{T}}\right] u^{0}(x).$$

- ▶ Consider a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.
- ▶ Here τ is the arrival time of the first jump of an inhomogeneous Poisson process with intensity $\lambda(t)$, that is

$$P(\tau > t) = e^{-\int_0^t \lambda(s)ds}.$$

- ightharpoonup Crucially, we assume that au is independent of the market.
- ▶ In this case, we have

$$u^{s}(x + \pi^{s}) = \sup_{H \in \mathcal{A}} E\left[-e^{-\gamma(x + \pi^{s} + \int_{0}^{T} H_{s} dS_{s} - B_{T})}\right]$$
$$= e^{-\gamma \pi^{s}} E\left[e^{\gamma B_{T}}\right] \sup_{H \in \mathcal{A}} E\left[-e^{-\gamma(x + \int_{0}^{T} H_{s} dS_{s})}\right]$$
$$= e^{-\gamma \pi^{s}} E\left[e^{\gamma B_{T}}\right] u^{0}(x).$$

▶ Therefore, the indifference price in this case is given by

$$\pi^{s} = \frac{1}{\gamma} \log E \left[e^{\gamma B_T} \right].$$

▶ Products design to combine traditional insurance guarantees with investment opportunities in financial markets.

- ▶ Products design to combine traditional insurance guarantees with investment opportunities in financial markets.
- Typical contract features include guaranteed maturity/death/accumulation/income benefits.

- ▶ Products design to combine traditional insurance guarantees with investment opportunities in financial markets.
- Typical contract features include guaranteed maturity/death/accumulation/income benefits.
- Segregated Funds in Canada: over \$60bn total assets by 2000, both GMMB and GMDB.

- ▶ Products design to combine traditional insurance guarantees with investment opportunities in financial markets.
- Typical contract features include guaranteed maturity/death/accumulation/income benefits.
- Segregated Funds in Canada: over \$60bn total assets by 2000, both GMMB and GMDB.
- Variable Annuities in US: around \$100bn per year in recently, mostly GMDB.

- ▶ Products design to combine traditional insurance guarantees with investment opportunities in financial markets.
- Typical contract features include guaranteed maturity/death/accumulation/income benefits.
- Segregated Funds in Canada: over \$60bn total assets by 2000, both GMMB and GMDB.
- Variable Annuities in US: around \$100bn per year in recently, mostly GMDB.
- Unit-linked Insurance in UK: over \$3bn in 2010, moved from GMMB to GMDB.

Stochastic Volatility Markets

▶ We consider two factor stochastic volatility models where the financial asset satisfies:

$$dS_t = \mu S_t dt + \sigma(Y_t) S_t dW_t^1$$

$$dY_t = a(Y_t) dt + b(Y_t) [\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2]$$

Stochastic Volatility Markets

We consider two factor stochastic volatility models where the financial asset satisfies:

$$dS_t = \mu S_t dt + \sigma(Y_t) S_t dW_t^1$$

$$dY_t = a(Y_t) dt + b(Y_t) [\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2]$$

▶ Here μ and $-1 < \rho < 1$ are constants, $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ are deterministic functions, and W_t^1 and W_t^2 are independent one dimensional P-Brownian motions.

Stochastic Volatility Markets

We consider two factor stochastic volatility models where the financial asset satisfies:

$$dS_t = \mu S_t dt + \sigma(Y_t) S_t dW_t^1$$

$$dY_t = a(Y_t) dt + b(Y_t) [\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2]$$

- ▶ Here μ and $-1 < \rho < 1$ are constants, $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ are deterministic functions, and W_t^1 and W_t^2 are independent one dimensional P-Brownian motions.
- ▶ In addition, we assume the existence of a risk-free bank account paying a constant interest rate r = 0.

GMDB contracts

▶ Consider now an insurance contract that pays $B(S_{\tau})$ at time τ for some deterministic function $B(\cdot)$, say $B(x) = \min(G, x)$.

GMDB contracts

- ▶ Consider now an insurance contract that pays $B(S_{\tau})$ at time τ for some deterministic function $B(\cdot)$, say $B(x) = \min(G, x)$.
- ▶ In this case, the wealth process satisfies

$$\begin{cases} dX_s = \pi_s dS_s = \pi_s [(\mu - r)ds + \sigma(s, Y_s)dW_s] \\ X_\tau = X_{\tau-} - B(S_\tau), \quad \tau < T \\ X_t = x \end{cases}$$

GMDB contracts

- ▶ Consider now an insurance contract that pays $B(S_{\tau})$ at time τ for some deterministic function $B(\cdot)$, say $B(x) = \min(G, x)$.
- ▶ In this case, the wealth process satisfies

$$\begin{cases} dX_s = \pi_s dS_s = \pi_s [(\mu - r)ds + \sigma(s, Y_s)dW_s] \\ X_\tau = X_{\tau-} - B(S_\tau), \quad \tau < T \\ X_t = x \end{cases}$$

▶ To obtain the equation satisfied by u^s in this case, consider the interval [t, t + h) and observe that,

$$u^{B}(x, s, y, t) \ge E[u^{B}(X_{t+h}, S_{t+h}, Y_{t+h}, t+h)]p(h) + E[u^{0}(X_{t+h} - B(S_{t+h}), Y_{t+h}, t+h)]q(h)$$

where
$$p(h) = P(\tau > t + h | \tau > t)$$
 and $q(h) = 1 - p(h)$.

The HJB equation

▶ Using a function of the form $u^B(x, S, y, t) = -e^{-\gamma x}e^{\phi(S, y, t)}$ leads to

$$\begin{cases} \phi_{t} + \frac{1}{2}\sigma^{2}S^{2}\phi_{SS} + \rho\sigma bS\phi_{yS} + \frac{1}{2}b^{2}\phi_{yy} + \left(a - \frac{\mu b\rho}{\sigma}\right)\phi_{y} \\ + \frac{1}{2}b^{2}(1 - \rho^{2})\phi_{y}^{2} + \lambda(t)\left[e^{\gamma B + \psi - \phi} - 1\right] = \frac{\mu^{2}}{2\sigma^{2}} \\ \phi(y, S, T) = 0 \end{cases},$$
(1)

where, as it is well-known,

$$\psi(y,t) = \frac{1}{1-\rho^2} \log \widetilde{E}^{y,t} \left[e^{-\int_0^T \frac{(1-\rho^2)\mu^2}{2\sigma^2(Y_s)} ds} \right],$$

with $\widetilde{E}[\cdot]$ denoting an expectation with respect to the *minimal martingale measure* for this market.

Optimal hedge

▶ In terms of ϕ , the optimal portfolio is

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \phi_S S + \frac{b(y, t)\rho}{\sigma(y)} \phi_y \right]$$

Optimal hedge

▶ In terms of ϕ , the optimal portfolio is

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \phi_S S + \frac{b(y, t)\rho}{\sigma(y)} \phi_y \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \frac{b(y, t)\rho}{\sigma(y)} \psi_y \right]$$

Optimal hedge

▶ In terms of ϕ , the optimal portfolio is

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \phi_S S + \frac{b(y, t)\rho}{\sigma(y)} \phi_y \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \frac{b(y, t)\rho}{\sigma(y)} \psi_y \right]$$

Subtracting one from the other we obtain the excess hedge

$$\pi_t^B - \pi_t^0 = P_S(S, y, t)S_t + \frac{b(y, t)\rho}{\gamma\sigma(y)}P_y(S, y, t),$$

which has the form of a *delta* hedge plus a volatility correction.

Fast-mean reversion asymptotics

Let us now take

$$dY_t = \alpha(m - Y_t)dt + \beta(\rho dW_t + \sqrt{1 - \rho^2}dZ_t)$$

and consider the regime $\frac{1}{\alpha}=\varepsilon<<1$, with $\beta=\sqrt{2\nu}/\sqrt{\varepsilon}$ where ν^2 is a fixed variance for the invariant distribution of Y_t .

Fast-mean reversion asymptotics

Let us now take

$$dY_t = \alpha(m - Y_t)dt + \beta(\rho dW_t + \sqrt{1 - \rho^2}dZ_t)$$

and consider the regime $\frac{1}{\alpha} = \varepsilon << 1$, with $\beta = \sqrt{2\nu}/\sqrt{\varepsilon}$ where ν^2 is a fixed variance for the invariant distribution of Y_t .

We then look for expansion of the form

$$\phi^{\varepsilon} = \phi^{(0)}(y, S, t) + \sqrt{\varepsilon}\phi^{(1)}(y, S, t) + \varepsilon\phi^{(2)}(y, S, t) + \dots$$

Main result

▶ The insurer's indifference price satisfy:

$$|P(y,S,t) - P^{(0)}(S,t) - \widetilde{P^{1}}(y,S,t)| = \mathcal{O}(\varepsilon)$$
 (2)

where

$$\widetilde{P^1}(y, S, t) = -(T - t)(V_3 S^3 P_{SSS}^{(0)} + V_2 S^2 P_{SS}^{(0)})$$

Main result

► The insurer's indifference price satisfy:

$$|P(y,S,t) - P^{(0)}(S,t) - \widetilde{P}^{1}(y,S,t)| = \mathcal{O}(\varepsilon)$$
 (2)

where

$$\widetilde{P^1}(y, S, t) = -(T - t)(V_3 S^3 P_{SSS}^{(0)} + V_2 S^2 P_{SS}^{(0)})$$

▶ Here P⁽⁰⁾ satisfies

$$\begin{cases} P_t^{(0)} + \frac{1}{2}\sigma_{\star}^2 P_{SS}^{(0)} + \frac{\lambda(t)}{\gamma} \left[e^{\gamma(g - P^{(0)})} - 1 \right] = 0 \\ P^{(0)}(S, T) = 0 \end{cases}$$
where $\sigma^2 = \langle \sigma^2 \rangle$ (3)

where $\sigma_{\star}^2 = \langle \sigma^2 \rangle$.

Example

Consider the contract

$$B(S) = \begin{cases} 4, & \text{if } 0 \le S \le 50\\ 0.8S, & \text{if } 5 \le S \le 20\\ 16, & \text{if } 20 \le S \le 100 \end{cases} \tag{4}$$

Example

Consider the contract

$$B(S) = \begin{cases} 4, & \text{if } 0 \le S \le 50\\ 0.8S, & \text{if } 5 \le S \le 20\\ 16, & \text{if } 20 \le S \le 100 \end{cases} \tag{4}$$

The mortality rate by Gompertz mortality,

$$\lambda_{\scriptscriptstyle X}(t) = rac{1}{b} e^{rac{x+t-m}{eta}}$$

with $\beta = 8.75$ and m = 92.63.

Example

Consider the contract

$$B(S) = \begin{cases} 4, & \text{if } 0 \le S \le 50\\ 0.8S, & \text{if } 5 \le S \le 20\\ 16, & \text{if } 20 \le S \le 100 \end{cases} \tag{4}$$

The mortality rate by Gompertz mortality,

$$\lambda_{\scriptscriptstyle X}(t) = rac{1}{b} e^{rac{x+t-m}{eta}}$$

with $\beta = 8.75$ and m = 92.63.

▶ The other model parameters are:

$$\alpha = 200, \ m = \log 0.1, \ \nu = \frac{1}{\sqrt{2}}, \ \rho = -0.2, \ \mu = 0.2.$$

Price correction

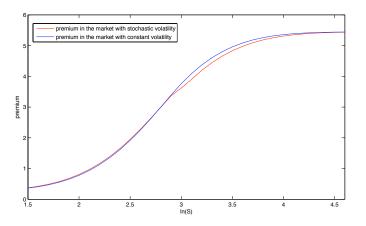


Figure: Premium for the equity linked contract in a market with constant volatility $\sigma=0.165$ and in the market with stochastic volatility for T-t=15 years and $\gamma=0.3$.

Risk aversion

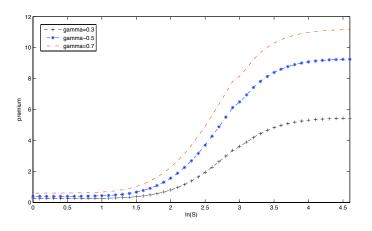


Figure: Dependence with risk aversion

Hedge

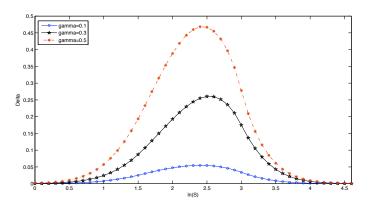


Figure: Hedge ratio for different risk aversion parameters

Stochastic Interest Rates

► Consider now the *discounted* price of a financial asset given by

$$\begin{cases} dS_s = (\mu - r_s)S_s ds + \sigma S_s dW_s^1 \\ S_t = S \end{cases}$$

Stochastic Interest Rates

Consider now the discounted price of a financial asset given by

$$\begin{cases} dS_s = (\mu - r_s)S_s ds + \sigma S_s dW_s^1 \\ S_t = S \end{cases}$$

We model the short rate as

$$\begin{cases} dr_s = (a_0(s)r_s + b_0(s))ds + \sqrt{c(s)r_s + d(s)}dZ_s \\ r_t = r \end{cases},$$

where
$$Z_t = \rho W_t^1 + \sqrt{1-\rho^2} dW_t^2$$
.

Stochastic Interest Rates

Consider now the discounted price of a financial asset given by

$$\begin{cases} dS_s = (\mu - r_s)S_s ds + \sigma S_s dW_s^1 \\ S_t = S \end{cases}$$

We model the short rate as

$$\begin{cases} dr_s = (a_0(s)r_s + b_0(s))ds + \sqrt{c(s)r_s + d(s)}dZ_s \\ r_t = r \end{cases},$$

where
$$Z_t = \rho W_t^1 + \sqrt{1-\rho^2} dW_t^2$$
.

▶ It then follows that the price of a zero-coupon bond with maturity T₁ is given by

$$F_{tT_1} = e^{A(t,T_1)-C(t,T_1)r_t},$$

for deterministic functions $A(\cdot, \cdot)$ and $C(\cdot, \cdot)$.

Portfolio choice

In this context, the insurance company can invest π_t dollars in the stock S_t and η_t dollars in the bond F_{tT_1} , with the remaining of its wealth in a bank account paying the interest rate r_t .

Portfolio choice

- In this context, the insurance company can invest π_t dollars in the stock S_t and η_t dollars in the bond F_{tT_1} , with the remaining of its wealth in a bank account paying the interest rate r_t .
- We assume the market for bonds of different maturities has a market price of risk of the form

$$q(r_s,s) = \frac{(a_0(s) - a(s))r_s + (b_0(s) - b(s))}{\sqrt{c(s)r_s + d(s)}}$$
(5)

Portfolio choice

- In this context, the insurance company can invest π_t dollars in the stock S_t and η_t dollars in the bond F_{tT_1} , with the remaining of its wealth in a bank account paying the interest rate r_t .
- We assume the market for bonds of different maturities has a market price of risk of the form

$$q(r_s,s) = \frac{(a_0(s) - a(s))r_s + (b_0(s) - b(s))}{\sqrt{c(s)r_s + d(s)}}$$
(5)

 Under this assumption, one can show that the dynamics of the discounted bond price is

$$\frac{d(e^{-\int_0^s r_u du} F_{sT_1})}{e^{-\int_0^s r_u du} F_{sT_1}} = -C(s, T_1) \left[(\Delta a(s) r_s + \Delta b(s)) dt + \sqrt{c(s) r_s + d(s)} dZ_s \right]$$

Path-dependent claims

▶ We consider path–dependent claims of the form $B_t = B(S_t, r_t, v_t)$, where

$$V_t = \int_0^t f(S_s, r_s, s) ds.$$

Path-dependent claims

▶ We consider path-dependent claims of the form $B_t = B(S_t, r_t, v_t)$, where

$$V_t = \int_0^t f(S_s, r_s, s) ds.$$

In this case, the wealth process satisfies

$$\begin{cases} dX_{s} = \pi_{s} \frac{dS_{s}}{S_{s}} + \eta_{s} \frac{d(e^{-\int_{0}^{s} r_{u} du} F_{sT_{1}})}{e^{-\int_{0}^{s} r_{u} du} F_{sT_{1}}} \\ dX_{s} = \left[\pi_{s} (\mu - r) - \eta_{s} C(s, T_{1}) (\Delta a(s) r_{s} + \Delta b(s))\right] ds \\ + \pi_{s} \sigma dW^{1} - \eta_{s} C(s, T_{1}) \sqrt{c(s) r_{s} + d(s)} dZ_{s} \\ X_{\tau} = X_{\tau -} - B(S_{\tau}, r_{\tau}, V_{\tau}), \quad \tau < T \\ X_{t} = x \end{cases}$$

The solution to Merton's Problem

▶ The Merton problem for the insurance company is now

$$u^{0}(x,r,t) = \sup_{\pi,\eta\in\mathcal{A}} E^{x,r,t} \left[U(X_{T}) \right].$$

The solution to Merton's Problem

▶ The Merton problem for the insurance company is now

$$u^{0}(x,r,t) = \sup_{\pi,\eta \in \mathcal{A}} E^{x,r,t} \left[U(X_{T}) \right].$$

▶ Using the same reasoning as before for the function $u^0(x, r, t) = -e^{-\gamma x}e^{\psi(r, t)}$ we arrive at the following PDE:

$$\psi_t + (ar+b)\psi_r + \frac{1}{2}\psi_{rr}(cr+d) - \left[\frac{1}{2}\left(\frac{\mu - r - \sigma\rho q}{\sqrt{1 - \rho^2}\sigma}\right)^2 + \frac{q^2}{2}\right] = 0,$$
 subject to $\psi(r, T) = 0$.

The solution to Merton's Problem

▶ The Merton problem for the insurance company is now

$$u^{0}(x,r,t) = \sup_{\pi,\eta \in \mathcal{A}} E^{x,r,t} \left[U(X_{T}) \right].$$

▶ Using the same reasoning as before for the function $u^0(x, r, t) = -e^{-\gamma x}e^{\psi(r, t)}$ we arrive at the following PDE:

$$\psi_t + (ar+b)\psi_r + \frac{1}{2}\psi_{rr}(cr+d) - \left[\frac{1}{2}\left(\frac{\mu - r - \sigma\rho q}{\sqrt{1 - \rho^2}\sigma}\right)^2 + \frac{q^2}{2}\right] = 0,$$
 subject to $\psi(r, T) = 0$.

Using Feynmann-Kac we obtain that

$$\psi(r,t) = -\int_t^T \widehat{E}^{t,r} \left[\left(\frac{\mu - r - \sigma \rho q}{2\sqrt{1 - \rho^2} \sigma} \right)^2 + \frac{q^2}{2} \right] dt,$$

where $\widehat{E}[\cdot]$ denotes expectation with respect to the (unique) martingale measure for bond prices defined by the market price of risk q.

The value function with the claim

 Similarly, the hedging problem for the insurance company is now

$$u^{B}(x, S, r, v, t) = \sup_{\pi, \eta \in \mathcal{A}} E^{x, S, r, v, t} [U(X_{T})].$$
 (6)

The value function with the claim

 Similarly, the hedging problem for the insurance company is now

$$u^{B}(x,S,r,v,t) = \sup_{\pi,\eta\in\mathcal{A}} E^{x,S,r,v,t} \left[U(X_{T}) \right]. \tag{6}$$

▶ For a function of the form $u^B(x,S,y,t) = -e^{-\gamma x}e^{\phi(S,r,v,t)}$, we obtain that ϕ satisfies the PDE

$$\begin{cases} \phi_t + (ar+b)\phi_r + \frac{1}{2}(cr+d)\phi_{rr} + \rho\sigma\sqrt{cr+d}S\phi_{Sr} + \frac{1}{2}\sigma^2S^2\phi_{SS} \\ + f(S,r,t)\phi_v - \left[\frac{1}{2}\left(\frac{\mu - r - \sigma\rho q}{\sqrt{1 - \rho^2}\sigma}\right)^2 + \frac{q^2}{2}\right] - \lambda(t)\left(1 - e^{\gamma B + \psi - \phi}\right) = \end{cases}$$
subject to $\phi(S,r,v,T) = 0$.

Optimal hedge

▶ In terms of ϕ , the optimizers for (6) are

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} + \phi_S S \right]
\eta_t^B = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d}\phi_r \right]$$

Optimal hedge

▶ In terms of ϕ , the optimizers for (6) are

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} + \phi_S S \right]$$

$$\eta_t^B = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d}\phi_r \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} \right]
\eta_t^0 = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d} \Psi_r \right]$$

Optimal hedge

▶ In terms of ϕ , the optimizers for (6) are

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} + \phi_S S \right]$$

$$\eta_t^B = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d}\phi_r \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rh\sigma^2)\sigma^2} \right]
\eta_t^0 = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d} \Psi_r \right]$$

▶ Subtracting one from the other we obtain the *excess hedge*

$$\pi_t^B - \pi_t^0 = P_S(S, r, v, t)S_t$$
 $\eta_t^B - \eta_t^0 = -\frac{1}{C}P_r(S, r, v, t)$

The pricing equation and integral representation

▶ Therefore, *P* satisfies the following nonlinear PDE:

$$\begin{cases} P_{t} + (ar+b)P_{r} + \frac{1}{2}(cr+d)P_{rr} + \rho\sigma\sqrt{cr+d}SP_{Sr} + \frac{1}{2}\sigma^{2}S^{2}P_{SS} \\ + f(S, r, t)P_{v} - \frac{\lambda(t)}{\gamma}(1 - e^{\gamma B - \gamma P}) = 0 \\ P(S, r, T) = 0 \end{cases}$$

The pricing equation and integral representation

▶ Therefore, *P* satisfies the following nonlinear PDE:

$$\begin{cases} P_{t} + (ar+b)P_{r} + \frac{1}{2}(cr+d)P_{rr} + \rho\sigma\sqrt{cr+d}SP_{Sr} + \frac{1}{2}\sigma^{2}S^{2}P_{SS} \\ + f(S, r, t)P_{v} - \frac{\lambda(t)}{\gamma}(1 - e^{\gamma B - \gamma P}) = 0 \\ P(S, r, T) = 0 \end{cases}$$

➤ This leads to an integral representation of the premium as follows:

$$P(S, r, V, t) = \frac{1}{\gamma} \sup_{y>0} \left[E_{t,S,r,V}^{Q} \left[\int_{t}^{T} g(S, V, r, t) e^{-\int_{t}^{s} \frac{y_{s} \lambda_{s}}{\gamma} du} y_{s} \lambda_{s} ds \right] - E_{t,S,r,V}^{Q} \left[\int_{t}^{T} \left(\frac{1}{y_{s}} - \frac{1}{\gamma} \left(1 - \ln \frac{y_{s}}{\gamma} \right) \right) y_{s} \lambda_{s} e^{-\int_{t}^{s} \frac{y_{s} \lambda_{s}}{\gamma} du} ds \right] \right]$$

$$(8)$$

▶ Implement the results with stochastic interest rates for GMAB contracts.

- ▶ Implement the results with stochastic interest rates for GMAB contracts.
- ► Extend to group insurance.

- ▶ Implement the results with stochastic interest rates for GMAB contracts.
- ► Extend to group insurance.
- ► Incorporate withdraw/surrender rates.

- ► Implement the results with stochastic interest rates for GMAB contracts.
- ► Extend to group insurance.
- ► Incorporate withdraw/surrender rates.
- ► Incorporate mortality/longevity shocks.

