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1 The Feynman-Kac formula

Suppose we want to solve the Cauchy problem associated with the heat
equation in n dimensions:{

ut − 1
2
∆u = 0 on (0,∞)× IRn

u(0, x) = f(x) on {t = 0} × IRn.
(1)

Then for bounded initial data f ∈ Cb(IR
n), the bounded solutions of (1)

are known to be given by

u(t, x) =

∫
IRn

p(t, x, y)f(y)dy, (2)

where

p(t, x, y) =
1√
2πt

n e−
|x−y|2

2t (3)

is the n–dimensional heat kernel.
A probabilistic interpretation of (2) goes as follows. Define the sample

space
Ω = {ω : [0,∞) → IRn, ω continuous}. (4)

∗Draft notes for a talk for the thematic year on PDE at The Fields Institute

1



Physicists call this the “path space”, because it can be thought as the path
followed by a particle whose position at time t ∈ [0,∞) depends on the result
of a random experiment with outcome ω and is given by the function

Xt(ω) := ω(t).

We now use Xt : Ω → IRn to endow Ω with a measurable space structure
by defining for each t ∈ [0,∞) the σ–algebras

Ft := σ–algebra generated by {X−1
s (A) : for all 0 ≤ s ≤ t, A ∈ B(IRn)}

and

F := σ–algebra generated by {X−1
s (A) : for all 0 ≤ s < ∞, A ∈ B(IRn)},

where B(IRn) denotes the Borel σ–algebra of IRn. These have the properties
that Ft ⊂ Fs and Ft ⊂ F whenever t ≤ s < ∞.

On each measurable space (Ω,Ft) we can define the probability

Px{X−1
t (A)} :=

∫
A

p(t, x, y)dy, A ∈ B(IRn), (5)

which can then be extended to the entire F (via the Kolmogorov extension
theorem) due to the semigroup property of the heat kernel:

p(t, x, y) =

∫
IRn

p(t− s, x, z)p(s, z, y)dz.

That is, for each x ∈ IRn, we have that (Ω,Ft,F , Px) is a filtered proba-
bility space on which the stochastic process Xt satisfies the properties

1. Px{X0 = x} = 1,

2. Px{Xt ∈ A} = Ex[PXs{Xt−s ∈ A}],∀A ∈ B(IRn),

3. Ex[Xt − x] = 0 and Ex[(Xt − x)2] = t.

These are the defining properties of a standard Brownian motion starting at
the point x ∈ IRn.

The last ingredient for the desired probabilistic interpretation of (2) is to
observe that, for a given measurable function f : IRn → IR, the composition
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f ◦ Xt : Ω → IR is a random variable on Ω whose expectation under the
measure Px is

Ex[f(Xt)] =

∫
Ω

f(Xt(ω))dPx(ω) =

∫
IRn

p(t, x, y)f(y)dy,

from which we can rewrite (2) as our first example of the Feynman–Kac
formula:

u(t, x) = Ex[f(Xt)]. (6)

To proceed further it is convenient to focus on the scalar problem. Let us
turn our ingredients around and start with an arbitrary filtered probability
space (Ω,Ft,F , P ) on which we define the standard Brownian motion Wt

as the unique (up to indistinguishability) process starting at W0 = 0 with
independent increments (Wt −Ws) distributed according to a Gaussian law
with variance (t− s). Then the process Xt used in the representation (6) of
the solution to (1) is the solution of the stochastic differential equation{

dXt = dWt

X0 = x.
(7)

As a rather trivial generalization, we might consider the scalar heat equa-
tion with a diffusion constant σ{

ut − 1
2
σ2uxx = 0 on (0,∞)× IR

u(0, x) = f(x) on {t = 0} × IR.
(8)

Then exactly the same construction leads to the representation of its
solution in the form of (6) but with Xt being the solution to the SDE{

dXt = σdWt

X0 = x
(9)

The Feynman–Kac formula provides a probabilistic representation of so-
lutions of PDEs whose generators are associated with general SDEs and,
given its far reaching consequences, is surprisingly easy to prove once the
technicalities involved in the definition of stochastic integrals are properly
overcome. We state it as a theorem and outline its proof making reference to
the necessary technical steps while avoiding any lengthy explanation about
them. To conform with applications to mathematical finance, we henceforth
consider a backward parabolic problem for the time interval [0, T ].
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Theorem 1.1 (Feynman–Kac) Let (Ω,Ft,F , P ) be a filtered probability
space and Wt be a standard Brownian motion. Assume that u is a solution
to the Cauchy problem{

ut(t, x) + µ(t, x)ux(t, x) + 1
2
σ2(t, x)uxx(t, x) = 0 on [0, T )× IR

u(T, x) = f(x) on {t = T} × IR,
(10)

where the µ : [0, T ] × IR → IR and σ : [0, T ] × IR → IR are measurable
functions satisfying

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); t ∈ [0, T ], x ∈ IR

for some constant C and

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; t ∈ [0, T ], x, y ∈ IR

for some constant D. Let X be the unique solution to the SDE{
dXs = µ(t,Xs)ds + σ(s, Xs)dWs

Xt = x
(11)

and assume further that
∫ t

0
E[σ2(s, Xs)u

2
x(s, Xs)]ds < ∞ for all t ∈ [0, T ].

Then
u(t, x) = E[f(XT )|Ft]. (12)

Proof: Consider the process Ys = u(s, Xs). It follows from Ito’s formula
that

dYs =

[
ut(s, Xs) + µ(s, Xs)ux(s, Xs) +

1

2
σ2(s, Xs)uxx(s, Xs)

]
ds

+σ(s, Xs)ux(s, Xs)dWs,

which when integrated on the interval (t, T ) gives

u(T,XT ) = u(t,Xt) +

∫ T

t

σ(s, Xs)ux(s, Xs)dWs

+

∫ T

t

[
ut(s, Xs) + µ(s, Xs)ux(s, Xs) +

1

2
σ2(s, Xs)uxx(s, Xs)

]
ds.
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Now notice that the second integrand above vanishes, since u is a solution
to the PDE. Moreover, because of the integrability condition we imposed on
σ(t,Xt)ux(t,Xt), its stochastic integral with respect to the Brownian motion
is a martingale. To conclude the proof we take expectations with respect to
the law of the process Xs satisfying (11) evaluated at s = t, obtaining

Et,x[u(T, XT )] = Et,x[u(t,Xt)] = u(t, x).

2 The Black–Scholes equation

Consider a financial market consisting of a risky asset with price St and a
risk-free bank account Bt whose dynamics on the filtered probability space
(Ω,Ft,F , P ) is governed by

dBt = rBtdt, B0 = 1, (13)

dSt = µ(t, St)Stdt + σ(t, St)StdWt, S0 = s0, (14)

where the risk-free interest rate r is assumed to be constant.
Let us introduce in this market a contingent claim of the form Φ(ST ),

that is, a financial instrument whose pay-off depends on the terminal value
of the risk asset. The celebrated result by Black, Scholes and Merton is that
the only price process of the form πt = F (t, St), for some smooth function
F : [0, T ] × IR+ → IR, which is consistent with the absence of arbitrage in
the extended market (Bt, St, πt) is (P–almost surely) the unique solution of
the following boundary value problem on [0, T ]× IR+:{

Ft(t, s) + rsFs(t, s) + 1
2
s2σ2(t, s)Fss(t, s)− rF (t, s) = 0

F (T, s) = Φ(s).
(15)

Now observe that the boundary value problem above is closely related to
the Cauchy problem of theorem 1.1, the only significant difference being the
term rF (t, s). A straightforward modification of the argument presented in
the previous section shows that, under technical conditions on the function
σ(t, s), the solution of (15) admits the following Feynman-Kac representa-
tion:

F (t, s) = e−r(T−t)EQ
t,s[Φ(S(T ))], (16)

where St is the solution of{
dSu = rSudu + Suσ(u, Su)dWQ

u

St = s,
(17)
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for a Brownian motion WQ
t on the filtered probability space (Ω′,F ′

t,F ′, Q).
We have used the same letter S to denote both the original stock price process
under the initial measure P and the process appearing in the Feynman-Kac
formula, which is primarily just a technical tool. The important step now is to
realize that we are free to choose Ω′ = Ω, F ′

t = Ft and F ′ = F , as long as WQ

is a Brownian motion under Q. We then view the two different dynamics for S
as realizations of the same stochastic process under two equivalent measures.
The advantage of such interpretation is that it provides an ansatz for an
explicit connection between the Brownian motions Wt and WQ

t , namely

dWQ
t = dWt + λdt, (18)

where λ = µ−r
σ

is called the market price of risk. Moreover, we can now
use Girsanov’s theorem (provided that λt satisfies the so called Novikov con-
dition) to explicitly obtain the measure Q in terms of the measure P by
putting

dQ

dP
= ρT , (19)

where ρT is the final value of the exponential P -martingale

ρt = exp

(
−

∫ t

0

λsdWs −
1

2

∫ t

0

λ2
sds

)
. (20)

That is, Q turns out to be equivalent to P , with density given by the stochas-
tic exponential of −λt. Finally, it is easy to show that the discounted price
process B−1

t St is a Q–martingale, from which Q is called the equivalent mar-
tingale measure for the market (Bt, St).

After the work of Harrison, Pliska and others, the main focus of deriva-
tive pricing has shifted from the Black-Scholes equation to the paradigm of
“pricing by expectation”, as expressed by (16), with the concept of equiva-
lent martingale measures playing a central role. For instance, what is now
called the First Fundamental Theorem of Asset Pricing asserts that the exis-
tence of a (local) equivalent martingale measure is equivalent to a version of
absence of arbitrage (namely, “no free lunch with vanishing risk” – NFLVR).
In the same vein, the Second Fundamental Theorem of Asset Pricing tells us
that a market is complete, in the sense that every claim on the underlying
assets can be uniquely replicated a combination of the assets themselves, if
and only if the martingale measure is unique.
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3 Stochastic Control

Consider an n–dimensional Brownian motion Wt on a filtered probability
space (Ω,Ft,F , P ) and a system whose state is given by an m–dimensional
Ito process {

dZh
t = µ(t, Zh

t , ht)dt + σ(t, Zh
t , ht)dWt

Zh
0 = x0,

(21)

where µ : IR× IRm × B → IR, σ : IR× IRm × B → IRm×n and ht ∈ B ⊂ IRk.
The state process Zt is deemed to be “controlled” by the parameter ht

taking values on a Borel set B of IRk. A stochastic control problem consists
of solving

u(x0) = sup
h∈B

E[U(Zh
T )], (22)

where U : IRn → IR is a continuous function. That is, one tries to find
the optimal control parameter ĥt ∈ B that we stir the system through (28)
in order to produce the maximum expected value for the “utility” of the
terminal state ZT .

In the most general case, ht needs only to be a random variable adapted
to Ft. As a special case, we restrict ourselves to Markov controls, that is, we
assume that

ht = h(t, Zt). (23)

Under these circumstances, the technique used to solve the optimization
problem (22) is to embed it into the larger class of problems

u(t, x) = sup
h∈B

Et,x[U(Zh
T )], (24)

where Et,x[·] denotes expectation under the probability law of the solution
Zh

s to the SDE{
dZh

s = µ(s, Zh
s , h(s, Zh

s ))ds + σ(s, Zh
s , h(s, Zh

s ))dWs

Zh
t = x,

(25)

evaluated at s = t, where we assume that µ and σ are regular enough so that
Zh

s exists as a well defined stochastic integral. We then have the following
result from the theory of dynamic programming.

Theorem 3.1 (Hamilton–Jacobi–Bellman) Suppose that u(t, x) in (31)
is bounded and C1,2 on [0, T ] × IRm and assume that an optimal control ĥ
exists. Then
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1. The function u(t, x) satisfies the Hamilton–Jacobi–Bellman equation{
ut(t, x) + suph∈B Lhu(t, x) = 0
u(T, x) = U(x),

(26)

where Lh is the generator of (25), that is,

Lh(f) =
m∑

i=1

µh
i

∂f

∂xi

+
m∑

i,j=1

1

2
(σσ†)h

ij

∂2f

∂xi∂xj

. (27)

2. For each (t, x) ∈ [0, T ]× IR, the supremum above is attained by ĥ(t, x).

The above theorem has a convenient converse, namely that if u(t, x) is
a sufficiently integrable solution to the HJB equation and if the supremum
of Lh is attained at every (t, x) by a function ĥ(t, x), then u(t, x) is the
value function for the associated optimization problem with optimal Markov
control given by ĥ(t, x). We end this section with an even more comforting
observation: under further technical conditions (which are easy to check for
the financial markets considered in the literature), one can always obtain as
good a performance with a Markov control as with an arbitrary Ft–adapted
control, that is, the optimal solution obtained from the HJB equation is as
general as it can be expected.

4 Optimal Hedging in Incomplete Markets

As an application of stochastic control, we consider a financial market whose
state is given by {

dZh
t = µ(t, Zt)dt + σ(t, Zt)dWt

Zh
0 = z0,

(28)

where µ : IR × IRm → IR, σ : IR × IRm → IRm×n. Let us say that the state
decomposes as Zt = (S1

t , . . . , S
d
t , Y

1
t , , Y m−d

t ), where the first d components
are the prices of traded assets and the last (m − d) factors are non-traded
variables, such as market volatility, employment rates, inflation, etc. The
control parameters come into the problem once we introduce the portfolio
process Ht = (H1

t , . . . , Hd
t ) corresponding to an investor’s asset allocations.

We now let

Xt = x0 +

∫ t

0

HudSu (29)
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denoted the wealth process for a self–financing portfolio. Assume further
that at the terminal time T the agent is faced with a liability in the form of
a bounded FT –random variable B. The optimal hedging problem consists of
solving

u(x0) = sup
H∈A

E [U (XT −B)] , (30)

where U : IR → IR is an increasing, strictly convex, differentiable utility
function and H ranges through a convex set of admissible portfolios A.

The technique of dynamic programming for Markov controls can be ap-
plied, provided we also assume that the liability B is Markovian in the state
variables, that is B = Φ(ST , YT ). One then considers the optimization prob-
lems

u(t, x, s, y) = sup
h∈B

Et,x,s,y[U(Xh
T − Φ(ST , YT ))], (31)

where Et,x,s,y[·] now refers to expectations under the probability law of the
process (Xh

t , St, Yt), with Ht = h(t,Xh
t , St, Yt). Accordingly, the value func-

tion is now the solution of the modified HJB equation{
ut(t, x, s, y) + suph∈B Lhu(t, x, s, y) = 0
u(T, x, s, y) = U(x− Φ(s, y)),

(32)

where Lh is now the generator of the multidimensional process (Xh
t , St, Yt)

and the supremum above is attained at the optimal hedging portfolio ĥ.
The optimal hedging portfolio can be used to define a price for the liability

B as follows. Denote the optimal wealth process for problem (30) by X̂t. For
each t ∈ [0, T ], define the certainty equivalent process Bt for the liability B
by the relation

U(X̂t −Bt) = u(t, x, s, y). (33)

For the particular case B = 0, which corresponds to an optimal invest-
ment problem also known as Merton’s problem, let us denote the certainty
equivalent process by BM

t . Then the indifference price for the liability B is
defined to be the process

πt := Bt −BM
t . (34)
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5 Pricing with stochastic volatility

As a concrete example of the pricing concept introduced in the previous
section, consider the market

dSt = St[µ(t, Yt)dt + YtdW 1
t ]

dYt = a(t, Yt)dt + b(t, Yt)[ρdW 1
t +

√
1− ρ2dW 2

t ] (35)

for deterministic functions µ, a, b and |ρ| ≤ 1, where W 1
t and W 2

t are uncor-
related one–dimensional Brownian motions.

For an exponential utility of the form U(x) = −e−x, the indifference price
π = π(t, s, y) of a liability B = Φ(ST , YT ) satisfies

πt + L(π) +
1

2
(1− ρ2)b2(πy)

2 = 0 (36)

π(T, s, y) = Φ(s, y) (37)

where for any function f : [0, T ]×D → IR,

L(f) =
1

2

(
y2s2fss + 2ρbysfsy + b2fyy +

[
a− ρbµ

y
+ (1− ρ2)b2B0

y

]
fy

)
.
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