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Abstract. This is a brief survey of the ultraproduct construction, which is

meant to provide background material for the readers of this volume.

1. Introduction

The ultraproduct construction is a uniform method of building models of first
order theories which has applications in many areas of mathematics. It is attractive
because it is algebraic in nature, but preserves all properties expressible in first order
logic. The idea goes back to the construction of nonstandard models of arithmetic
by Skolem [51] in 1934. In 1948, Hewitt [16] studied ultraproducts of fields. For
first order structures in general, the ultraproduct construction was defined by  Loś
[37] in 1955. The subject developed rapidly beginning in 1958 with a series of
abstracts by Frayne, Morel, Scott, and Tarski, which led to the 1962 paper [14].
Other early papers are [31] by Kochen, and [18] by the author. The groundwork for
the application of ultraproducts to mathematics was laid in the late 1950’s through
the 1960’s. The purpose of this article is to give a survey of the classical results on
ultraproducts of first order structures in order to provide some background for the
papers in this volume. Over the years, many generalizations of the ultraproduct
construction, as well as applications of ultraproducts to non-first order structures,
have appeared in the literature. To keep this paper of reasonable length, we will
not include such generalizations in this survey. For earlier surveys of ultraproducts
see [7], [12], [24]. For much more about ultraproducts see the books [9], [10], [49],
and [54].

We assume familiarity with a few basic concepts from model theory. For the
convenience of the reader we give a crash course here. The cardinality of a set X
is denoted by |X|. The cardinality of N is denoted by ω. The set of all subsets
of a set I is denoted by P(I), and the set of finite subsets of I by Pω(I). Given
mappings f : X → Y and g : Y → Z, the composition g ◦ f : X → Z is the
mapping x 7→ g(f(x)). A first order vocabulary L consists of a set of finitary
relation symbols, function symbols, and constant symbols. We use A,B, . . . to
denote L-structures with universe sets A,B, . . .. By the cardinality of A we mean
the cardinality of its universe set A. The notation A |= φ(a1, . . . , an) means that the
formula φ(x1, . . . , xn) is true in A when each xi is interpreted by the corresponding
ai. The notation h : A → B means that h is a homomorphism of A into B, that is, h
maps A into B and each atomic formula which is true for a tuple in A is true for the
h-image of the tuple in B. The notation h : A ⊆ B means that h is an (isomorphic)
embedding of A into B, that is, h maps A into B and each quantifier-free formula of
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L which is true for a tuple in A is true for the h-image of the tuple in B. h : A ∼= B
means that h is an isomorphism from A onto B, and A ∼= B means that A and B
are isomorphic. The set of all sentences true in A is called the complete theory of
A. A and B are called elementarily equivalent, in symbols A ≡ B, if they have
the same complete theory. The notation h : A ≺ B means that h is an elementary
embedding from A into B, that is, h maps A into B and each formula of L which
is true for a tuple in A is true for the h-image of the tuple in B. Clearly, h : A ≺ B
implies that A ≡ B. We say that B is an elementary extension of A and write
A ≺ B if A ⊆ B and the identity map is an elementary embedding of A into B. It
is easy to see that if h : A ≺ B, then B is isomorphic to some elementary extension
of A.

A fundamental result that is used very often in model theory is the compactness
theorem, which says that if every finite subset of a set T of sentences has a
model, then T has a model. One application of compactness is the construction of
extremely rich models called saturated models. An L-structure A is said to be κ-
saturated if every set of first order formulas with fewer than κ parameters from A
which is finitely satisfied in A is satisfied in A. A is saturated if it is |A|-saturated.
Morley and Vaught [39] proved that any two elementarily equivalent saturated
structures of the same cardinality are isomorphic, that each infinite structure A
has a saturated elementary extension in each inaccessible cardinal κ ≥ |A| + |L|,
and has a κ+-saturated elementary extension of cardinality 2κ whenever 2κ ≥ |A|
and κ ≥ |L|.

Given two vocabularies L1 ⊆ L2, the reduct of an L2-structure A2 to L1 is the
L1-structure A1 obtained by forgetting the interpretation of each symbol of L2\L1.
An expansion of an L1-structure A1 to L2 is an L2-structure formed by adding
interpretations of the symbols of L2 \ L1, that is, an L2-structure whose reduct to
L1 is A1.

2. Ultraproducts and ultrapowers

We begin with the definition of an ultrafilter over an index set I. An ultrafilter
over I can be defined as the collection of all sets of measure 1 with respect to a
finitely additive measure µ : P(I) → {0, 1}. Here is an equivalent definition in more
primitive terms.

Definition 2.1. Let I be a non-empty set. A proper filter U over I is a set of
subsets of I such that:

(i) U is closed under supersets; if X ∈ U and X ⊆ Y ⊆ I then Y ∈ U .
(ii) U is closed under finite intersections; if X ∈ U and Y ∈ U then X ∩ Y ∈ U .
(iii) I ∈ U but ∅ /∈ U .

An ultrafilter over I is a proper filter U over I such that:
(iv) For each X ⊆ I, exactly one of the sets X, I \X belongs to U .

Theorem 2.2. (Tarski [53]) Every proper filter over a set I can be extended to an
ultrafilter over I.

For an infinite set I, an important example of a proper filter over I is the Fréchet
filter, which is the set of all cofinite (complements of finite) subsets of I. An
ultrafilter that contains the Fréchet filter is called a free ultrafilter. By Theorem
2.2, the Fréchet filter can be extended to an ultrafilter over I, so free ultrafilters
over I exist.
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The only ultrafilters over I which are not free are the principal ultrafilters,
which are of the form U = {X ⊆ I : i0 ∈ X} for some i0 ∈ I. For a set I of
finite cardinality n, every ultrafilter over I is principal, and thus there are only n
ultrafilters over I.

The following result of Posṕı̌sil [41] shows that there are as many ultrafilters over
an infinite set I as there are sets of subsets of I.

Theorem 2.3. For each set I of infinite cardinality κ, the set of ultrafilters over
I has cardinality 22

κ

.

We now define the ultraproduct operation on sets. Let U be an ultrafilter over I,
and for each i ∈ I let Ai be a nonempty set. The ultraproduct

∏
U Ai is obtained by

first taking the cartesian product Πi∈IAi and then identifying two elements which
are equal for U -almost all i ∈ I. Here is the formal definition.

Definition 2.4. Let U be an ultrafilter over I. Two elements f, g of the cartesian
product

∏
i∈I Ai are said to be U-equivalent, in symbols f =U g, if the set {i :

f(i) = g(i)} belongs to U . The U -equivalence class of f is the set fU = {g : f =U g}.
The ultraproduct

∏
U Ai is defined as the set of U -equivalence classes∏

U

Ai = {fU : f ∈
∏
i∈I

Ai}.

In the above definition, it is easily checked that =U is an equivalence relation on∏
i∈I Ai. Given a nonempty set A, the ultrapower of A modulo U is the defined

as the ultraproduct
∏

U A =
∏

U Ai where Ai = A for each i ∈ I. The natural
embedding is the mapping d : A →

∏
U A such that d(a) is the U -equivalence

class of the constant function with value a. It is easily seen that d is injective.
We now introduce the ultraproduct operation on first order structures. For each

i ∈ I, let Ai be an L-structure with universe set Ai. Briefly, the ultraproduct∏
U Ai is the unique L-structure with universe

∏
U Ai such that each basic formula

holds in the ultraproduct if and only if it holds in Ai for U -almost all i. Here is
the formal definition.

Definition 2.5. Given an ultrafilter U over I and L-structures Ai, i ∈ I, the
ultraproduct

∏
U Ai is the unique L-structure B such that:

• The universe of B is the set B =
∏

U Ai.
• For each atomic formula φ(x1, . . . , xk) which has at most one symbol from

the vocabulary L, and each f1, . . . , fk ∈
∏

i∈I Ai,

B |= φ(f1U , . . . , fkU ) iff {i : A |= φ(f1(i), . . . , fk(i))} ∈ U.

Using the properties of ultrafilters, one can check that there is a unique L-
structure B with the above properties, so the ultraproduct is well-defined. The
details are tedious but routine. As with sets, the ultrapower of an L-structure A
modulo U is defined as the ultraproduct

∏
U A =

∏
U Ai where Ai = A for each

i ∈ I.

3. The theorem of  Loś

We now prove the fundamental theorem of  Loś, which makes ultraproducts useful
in model theory. It shows that a formula holds in an ultraproduct

∏
U Ai if and

only if it holds in Ai for U -almost all i.
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Theorem 3.1. ( Loś [37]) Let U be an ultrafilter over I, and let Ai be an L-structure
for each i ∈ I. Then for each formula φ(x1, . . . , xn) of L and each f1, . . . , fn ∈∏

i∈I Ai, we have∏
U

Ai |= φ(f1U , . . . , fnU ) iff {i : Ai |= φ(f1(i), . . . , fn(i))} ∈ U.

Proof. We argue by induction on the complexity of φ. The definition of ultraprod-
uct gives the result when φ is an atomic formula of the form F (x1, . . . , xn) = y.
An induction on the complexity of terms gives the result for atomic formulas of the
form t(x1, . . . , xn) = y, and then the definition of ultraproduct gives the result for
arbitrary atomic formulas of L. The steps for logical connectives are easy.

To complete the proof we give the step for existential quantifiers. Suppose the
result holds for the formula φ(f1U , . . . , fnU , gU ) where f1, . . . , fn, g ∈

∏
i∈I Ai. We

prove the result for the formula ∃y φ(f1U , . . . , fnU , y). Using the inductive hypoth-
esis and the fact that U is closed under supersets, we see that the following are
equivalent: ∏

U

Ai |= ∃y φ(f1U , . . . , fnU , y)

(∃g)
∏
U

Ai |= φ(f1U , . . . , fnU , gU )

(∃g) {i : Ai |= φ(f1(i), . . . , fn(i), g(i))} ∈ U

{i : Ai |= ∃y φ(f1(i), . . . , fn(i), y)} ∈ U.

This completes the induction. �

Corollary 3.2. For each set of sentences T in L, every ultraproduct of models of
T is a model of T .

Corollary 3.3. For each L-structure A and ultrafilter U over I, d : A ≺
∏

U A.
If A is finite, d : A ∼=

∏
U A.

In applications, it is often convenient to rename the elements of an ultrapower.
We say that an isomorphic embedding h : A → B is an ultrapower embedding
if h = j ◦ d for some isomorphism j :

∏
U A ∼= B. The natural embedding d : A →∏

U A is an ultrapower embedding. We say that B is an ultrapower extension
of A if A ⊆ B and the identity map ι : A → B is an ultrapower embedding. Note
that every ultrapower embedding is an elementary embedding, every ultrapower
extension is an elementary extension, and every ultrapower of A is isomorphic to
an ultrapower extension of A.

4. Some consequences of  Loś’ Theorem

An important property of the ultraproduct construction is that it behaves well
when new symbols are added to the vocabulary. The following simple observation
is quite powerful when combined with  Loś’ Theorem.

Proposition 4.1. (Expansion Property) Suppose L1 ⊆ L2, and for each i ∈ I, Ai

is an L1-structure and Bi is an expansion of Ai to L2. Then for every ultrafilter U
over I,

∏
U Bi is an expansion of

∏
U Ai.
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Given an ultrafilter U over a set I and a mapping h : A → B, define
∏

U h
to be the mapping fU 7→ (h ◦ f)U from

∏
U A into

∏
U B. The next result is a

consequence of the Expansion Property and  Loś’ Theorem.

Proposition 4.2. Let U be an ultrafilter over I. The mapping h 7→
∏

U h is a
functor on the category of all homomorphisms h : A → B between L-structures. If
h : A → B then

∏
U h :

∏
U A →

∏
U B. If h is surjective, then so is

∏
U h. If h is

an isomorphic embedding, then so is
∏

U h. If h is an elementary embedding, then
so is

∏
U h.

The initial interest in ultraproducts in the late 1950’s was sparked by the discov-
ery of a proof of the Compactness Theorem for first order logic via ultraproducts
(see [14]). This proof was attractive because it gave a direct algebraic construction
of the required model.

Theorem 4.3. (Ultraproduct Compactness) Let S be an infinite set of sentences
of L and let I be the set of all finite subsets of S. For each i ∈ I let Ai be a model
of i. Then there is an ultrafilter U over I such that the ultraproduct

∏
U Ai is a

model of S.

Proof. For each i ∈ I, let Xi be the set of all j ∈ I such that i ⊆ j. Let F be
the set of all X ⊆ I such that X ⊇ Xi for some i ∈ I. Note that i ∈ Xi, and
Xi∪j = Xi ∩ Xj . It follows that F is a proper filter over I. By Theorem 2.2, F
can be extended to an ultrafilter U over I. For each φ ∈ S and j ∈ X{φ}, Aj is a
model of φ. Moreover, X{φ} ∈ U . Therefore by  Loś’ Theorem,

∏
U Ai is a model

of φ. Hence
∏

U Ai is a model of S as required. �

The compactness theorem is an easy corollary of this result. For this reason, the
ultraproduct construction can be used as a substitute for the compactness theorem
with an algebraic flavor.

Another important property of ultraproducts is that an ultraproduct of ultra-
products is isomorphic to a single ultraproduct. This property was also proved in
[14] by applying  Loś’ Theorem. To avoid complicated notation, we will state the
result only for ultrapowers.

Definition 4.4. Let U, V be ultrafilters over sets I, J . The product U × V is the
set

U × V = {Y ⊆ I × J : {j ∈ J : {i ∈ I : ⟨i, j⟩ ∈ Y } ∈ U} ∈ V }.

The following result shows that the product of two ultrafilters produces an ul-
trapower of an ultrapower.

Proposition 4.5. (See [14]) Let U be an ultrafilter over I and V be an ultrafilter
over J , and let A be any L-structure. Then:

(i) U × V is an ultrafilter over I × J .
(ii)

∏
U×V A ∼=

∏
V (

∏
U A).

(iii) Each of the ultrapowers
∏

U A and
∏

V A is elementarily embeddable in∏
U×V A.

The order in the product U × V matters. See [9], Exercise 6.1.19, for examples
where

∏
U×V A is not isomorphic to

∏
V×U A.
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5. Uniform and countably incomplete ultrafilters

From now on, we will confine our attention to ultrafilters which are uniform and
countably incomplete. In this section we explain why.

Definition 5.1. An ultrafilter U over I is uniform if every X ∈ U has cardinality
|X| = |I|.

If I is a singleton I = {i0}, then {I} is a uniform ultrafilter over I. But if I is a
finite set of cardinality |I| > 1, then every ultrafilter over I is principal, so there is
no uniform ultrafilter over I.

If I is infinite, then the set F = {X ⊆ I : |I \ X| < |I|} of subsets with small
complements is a proper filter over I, and an ultrafilter U over I is uniform if and
only if U contains F . By Theorem 2.2, F can be extended to an ultrafilter over I,
so there exist uniform ultrafilters over I.

For ultraproducts, we can always replace a non-uniform ultrafilter by a uniform
ultrafilter. Suppose U is a non-uniform ultrafilter over I, and let J be an element
of U of minimum cardinality. Then the set V = U ∩ P(J) is a uniform ultrafilter
over J , and every ultraproduct

∏
U Ai is isomorphic to the ultraproduct

∏
V Aj by

the mapping gU 7→ (g � J)V .

Definition 5.2. An ultrafilter U is countably complete if U is closed under
countable intersections. U is countably incomplete if U has a countable subset
V such that

∩
V = ∅.

It is an easy exercise to show that an ultrafilter U is countably incomplete if and
only if it is not countably complete.

Every principal ultrafilter is countably complete. However, the hypothesis that
there exists a non-principal countably complete ultrafilter is a very strong axiom of
infinity that is not provable from ZFC. The first cardinal κ such that there is a non-
principal countably complete ultrafilter over a set of cardinality κ is called the first
measurable cardinal. This cardinal, if it exists, is exceedingly large (for example,
κ must be the κ-th inaccessible cardinal, and even the κ-th Ramsey cardinal; see
[29]). Countably complete ultraproducts satisfy an analogue of  Loś’ Theorem for
the infinitary logic with conjunctions and quantifiers of length < κ (see [19]). It
follows that when U is a countably complete ultrafilter and the cardinality of A
is less than the first measurable cardinal, the ultrapower

∏
U A is trivial, that is,

d : A ∼=
∏

U A. For this reason, the study of countably complete ultrapowers
belongs to the theory of large cardinals. It is an large and active area of research,
but is outside the scope of this article.

We conclude this section with some results which hold for all countably in-
complete ultrafilters. The following easy result shows that countably incomplete
ultrapowers of infinite structures are always non-trivial.

Proposition 5.3. Let U be a countably incomplete ultrafilter over I and let A be
infinite. Then d maps A properly into the ultrapower

∏
U A, and hence

∏
U A is

isomorphic to a proper elementary extension of A.

Here are some results about cardinalities of ultraproducts.

Theorem 5.4. (Frayne, Morel and Scott [14]) Let U be a countably incomplete
ultrafilter. Then

∏
U Ai is either finite or of cardinality ≥ 2ω. Thus an ultraproduct∏

U Ai is never countably infinite.
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The following improvement was given in Keisler [21] for ultraproducts of infinite
sets, and in Shelah [46] for ultraproducts of finite sets.

Theorem 5.5. Let U be a countably incomplete ultraproduct. If
∏

I Ai is infinite,
then |

∏
U A| = |

∏
U A|ω.

Here is a property of countably incomplete ultraproducts which is used in many
applications, such as the Loeb measure in probability theory, and the nonstandard
hull of a Banach space.

Theorem 5.6. (Keisler [18]). Suppose L is countable and U is a countably incom-
plete ultrafilter over I. Then every ultraproduct

∏
U Ai is ω1-saturated.

6. Complete embeddings

One advantage of ultrapowers is that they always produce complete embeddings
in the following sense.

Definition 6.1. We say that mapping h : A → B is a complete embedding of
A into B if for every expansion of A′ of A there is an expansion B′ of B such that
h : A′ ≺ B′. B is a complete extension of A if A ⊆ B and the identity mapping
ι : A → B is a complete embedding.

Note that every complete embedding is an elementary embedding. By Proposi-
tion 4.1, the natural embedding d : A →

∏
U A is a complete embedding, and hence

every ultrapower embedding is a complete embedding. The converse of this fact is
false—there are complete embeddings which are not ultrapower embeddings (see
[9], Exercise 6.4.6). However, the next result shows that each complete embedding
is locally an ultrapower embedding.

Theorem 6.2. Suppose h : A → B is a complete embedding. Then for each finite
subset S of B there is a C ≺ B such that S ⊆ C and h : A → C is an ultrapower
embedding.

This is a consequence of a stronger result in [20], which states that h : A → B
is a complete embedding if and only if it is a limit ultrapower embedding (we will
not define limit ultrapowers here, but mention only that they are generalizations
of ultrapowers which share many of their properties).

The following two results do not mention ultrapowers but are proved using ul-
trapowers.

Theorem 6.3. (Rabin [43] and Keisler [20]; see also [9]) Suppose κ is infinite and
less than the first measurable cardinal. Then the following are equivalent

(i) κ = κω.
(ii) Every structure of cardinality κ (with any number of relations) has a proper

elementary extension of cardinality κ.
(iii) Every structure of cardinality κ has a proper complete extension of cardi-

nality κ.

The next result improves the classical upward Löwenheim-Skolem-Tarski theo-
rem when the vocabulary L is large.

Theorem 6.4. ([9], Corollary 6.5.12) Suppose κ is infinite and less than the first
measurable cardinal. Then every structure of cardinality κ (with any number of
relations) has an elementary extension of cardinality λ if and only if λ ≥ κω.
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7. Nonstandard universes

In applications of the ultrapower, one often picks an ultrafilter U and simultane-
ously takes the ultrapower of everything in sight modulo U . An efficient way to do
this is to begin with a superstructure and use the ultrapower to build a nonstandard
universe. We will briefly sketch how this is done, and then point out a connection
between nonstandard universes and complete embeddings. For more details, see
[9], or Chapter 15 of [28]. Ultrapowers are also used to construct models of vari-
ous nonstandard set theories, such as Nelson’s internal set theory and Hrbaček set
theory, showing that they are conservative over ZFC (see [33] for a full treatment
and references).

Given a set X, the n-th cumulative power set of X is defined recursively by

V0(X) = X, Vn+1(X) = Vn(X) ∪ P(Vn(X)).

The superstructure over X is the union of the cumulative power sets and is
denoted by V (X),

V (X) =
∞∪

n=0

Vn(X).

The superstructure V (X) has a membership relation ∈ between elements of Vn(X)
and Vn+1(X), n = 0, 1, 2, . . .. We treat the elements of X as atoms, and always
assume that ∅ /∈ X and that no x ∈ X contains any elements of V (X). We then
consider the structure V(X) = ⟨V (X),∈⟩ whose vocabulary has the single binary
relation ∈.

Definition 7.1. A function f : I → V (X) is called bounded if f : I → Vn(X) for
some n, so

∪
n(Vn(X))I is the set of all bounded functions. Given an ultrafilter U

over I, the bounded ultrapower
∏b

U V(X) of V(X) modulo U is the substructure
of the ordinary ultrapower

∏
U V(X) whose universe is the set

b∏
U

V (X) = {gU : g ∈
∪
n

(Vn(X))I}

of U -equivalence classes of bounded functions. The interpretation of ∈ in
∏b

U V(X)
is denoted by ∈U .

A bounded quantifier formula is a first order formula in which each quantifier
has the form (∀u ∈ v) or (∃u ∈ v).

Definition 7.2. A nonstandard universe is a triple (V (X), V (∗X), ∗) such that:

• V (X) and V (∗X) are superstructures,
• ∗ : V (X) → V (∗X),
• N ⊆ X,
• ∗ maps N properly into ∗N, and
• (Transfer Principle) For each bounded quantifier formula φ(v1, . . . , vk) and
a1, . . . , ak ∈ V (X),

V(X) |= φ(a1, . . . , ak) if and only if V(∗X) |= φ(∗a1, . . . ,
∗ak).

The following basic result converts a bounded ultrapower of a superstructure
into a nonstandard universe in a canonical way. The advantage of doing this is that
it replaces the relation ∈U by the ordinary membership relation ∈. The Transfer
Principle is proved using  Loś’ Theorem.
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Theorem 7.3. (Mostowski Collapse) For each superstructure V(X) and countably
incomplete ultrafilter U , there is a unique nonstandard universe (V (X), V (∗X), ∗)

and mapping h :
∏b

U V(X) → V(∗X) such that:

• ∗X =
∏

U X, and h(gU ) = gU for each gU ∈
∏

U X, and

• For each gU ∈
∏b

U V (X) \
∏

U X, h(gU ) = {h(fU ) : fU ∈U gU}.

We now observe that each nonstandard universe harbors a whole tower of com-
plete embeddings.

Proposition 7.4. Let (V (X), V (∗X), ∗) be a nonstandard universe. For each n, let
Vn(X) = ⟨Vn(X) ∈⟩ and ∗(Vn(X)) = ⟨∗(Vn(X)),∈⟩. Then ∗ : Vn(X) → ∗(Vn(X))
is a complete embedding.

Proof. Since Vn(X) is an element of V (X) \X, ∗(Vn(X)) is an element of V (∗X) \
∗X. Therefore ∗(Vn(X)) is also a subset of V (∗X). We have ∗ : Vn(X) ≺ ∗(Vn(X))
because ∗ preserves bounded formulas in V(X). But any finitary function or relation
on Vn(X) is an element of Vm(X) for some m, and we also have ∗ : Vm(X) ≺
∗(Vm(X)). This shows that ∗ : Vn(X) → ∗(Vn(X)) is a complete embedding. �

Combining this with Theorem 6.2, we see that every nonstandard universe is
locally an ultrapower embedding.

Corollary 7.5. Let (V (X), V (∗X), ∗) be a nonstandard universe. For each n and
each finite set S ⊆ ∗(Vn(X)) there is a C ≺ Vn(∗X) such that S ⊆ C and ∗ :
Vn(X) → C is an ultrapower embedding.

Benci constructed a nonstandard universe with the nice property that ∗X = X,
so that only one superstructure in needed instead of two.

Theorem 7.6. (Benci [3]) For each set X such that N ⊆ X and |X|ω = |X|, there
is a nonstandard universe (V (X), V (X), ∗).

The first step in constructing (V (X), V (X), ∗) is to take a free ultrafilter U over

N and form the bounded ultrapower
∏b

U V(X). Then choose a bijection j from∏
U X onto X, and for x ∈ X define ∗x = j(d(x)). Finally, extend ∗ to a mapping

from V (X) into itself using the Mostowski collapse.

8. The Rudin-Keisler ordering

The ultrapower construction was the motivation for the so-called Rudin-Keisler
ordering (introduced by M.E. Rudin [44] and the author [25]). It is a pre-ordering
on the class of all ultrafilters. Heuristically, higher ultrafilters in the ordering pro-
duce larger ultrapowers with respect to elementary embeddings. This ordering has
been extensively studied in the literature, particulary for ultrafilters over N, because
it has a rich structure and leads to many attractive problems. The minimal ultra-
filters over N in this ordering ordering offer promising possibilities for applications,
because they give the “smallest” nontrivial ultrapowers.

Given a function f : I → J and an ultrafilter U over I, we define

f [U ] = {Y ⊆ J : f−1(Y ) ∈ U}.

It is easy to see that f [U ] is an ultrafilter over J .
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Definition 8.1. Given ultrafilters U over I and V over J , V ≤RK U means that
there exists a function f : I → J such that V = f [U ]. We write U ≡RK V if
[U ≤RK V and V ≤RK U ], and U <RK V if [U ≤RK V but not U ≡RK V ].

Note that if V ≤RK U then min{|Y | : Y ∈ V } ≤ min{|X| : X ∈ U}. It is
clear that ≤RK is transitive and symmetric. It is also upward directed— one can
check that whenever V,W are ultrafilters and U = V ×W , we have V ≤RK U and
W ≤RK U . It is not hard to see that an ultrafilter U is countably incomplete if
and only if there is a free ultrafilter V over N such that V ≤RK U .

The following result was found independently by several people (for a proof see
[10], Theorem 9.2).

Theorem 8.2. Let U be an ultrafilter over I and let f : I → J . Then we have
f [U ] ≡RK U if and only if the restriction of f to some X ∈ U is one to one.

The next result gives the connection between the pre-ordering ≤RK and ultra-
powers. It shows that higher ultrafilters with respect to ≤RK give bigger ultrapow-
ers with respect to elementary embeddability.

Proposition 8.3. ([25]; see also [4] and [9], Exercise 4.3.41). Let U be an ultrafilter
over I and V be an ultrafilter over J . Then V ≤RK U if and only if for every A,∏

V A is elementarily embeddable in
∏

U A. Also, V ≡RK U if and only if for every
A,

∏
V A ∼=

∏
U A.

A recurrent theme in the literature is to exploit the interplay between ultrafilters
V ≤RK U and elements of an ultrapower modulo U (see, for example, [3], [4],
[5],[6],[36],[40],[42]).

To explain the idea, we introduce some notation and state a result. Let U be an
ultrafilter over I and let B =

∏
U A. For each function f : I → A, let B[f ] be the

set of all elements (g ◦ f)U ∈ B where g : A → A.
We make several observations: If f : I → A then f [U ] ≤RK U . If f, h : I → A

and h[U ] ≤RK f [U ] then hU ∈ B[f ]. If f is a constant function, then f [U ] is
principal and B[f ] = d(A). If the structure A has a function symbol for every
g : A → A, then B[f ] is just the substructure of B generated by fU .

Proposition 8.4. Suppose U is an ultrafilter over I, B =
∏

U A, and f is a
function from I into A.

(i) B[f ] ≺ B.
(ii) B[f ] ∼=

∏
f [U ] A.

(iii) If f [U ] ≡RK U then B[f ] = B.
(iv) If |I| ≤ |A| and B[f ] = B, then f [U ] ≡RK U .

Proof. (i) is proved by induction on complexity of formulas.
(ii) f [U ] is an ultrafilter over A, and the isomorphism is given by the mapping

(g ◦ f)U 7→ gf [U ].
(iii) Suppose f [U ] ≡RK U . By Theorem 8.2, there is an X ∈ U such that the

restriction of f to X is one to one. Then for any h : I → A there exists g : A → A
such that (g ◦ f)U = hU , and hence B[f ] = B.

(iv) Suppose |I| ≤ |A| and B[f ] = B. Then there is a one to one function
h : I → A. Since B[f ] = B, hU = (g ◦ f)U for some g : A → A. Then h[U ] =
(g ◦f)[U ] = g[f [U ]], so h[U ] ≤RK f [U ]. Since h is one to one we have U ≡RK h[U ],
and f [U ] ≤RK U by definition, so f [U ] ≡RK U . �
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One can apply Proposition 8.4 to show that if V,W are free ultrafilters over J,K
and U = V ×W , then V <RK U and W <RK U . (Hint: We have already observed
that V ≤RK U . To show V <RK U , take A = J , let f be the projection from J×K
onto J , prove that B[f ] ̸= B, and apply Proposition 8.4 (iii)).

We now turn to the ultrafilters over N.
The Stone-Čech compactification of the discrete topology on N is denoted

by β(N), and can be defined as the topology on the set of all ultrafilters over N
which has as a closed base the family of all sets {U ∈ β(N) : X ∈ U} where X ∈
P(N). The Stone representation theorem ([52]) shows that β(N) is a compact totally
disconnected Hausdorff space. One can identify each n ∈ N with the principal
ultrafilter which contains the singleton {n}, so that β(N) \N is the space of all free
ultrafilters over N.

W. Rudin [45] first discovered that there are free ultrafilters over N with different
topological properties. Assuming the continuum hypothesis, he proved that the
space β(N) \N is not point homogeneous. Froĺık [15] later proved this fact in ZFC.

Ng and Render [40] used the Rudin-Keisler ordering on βN to prove the following
theorem about ultrapowers indexed by N.

Theorem 8.5. Let U be a free ultrafilter over N, let A be infinite, and let S
be the topology on

∏
U A whose closed basis is the family of all sets of the form

{fU : f ∈ CN} where C ⊆ A. Then S is not countably compact.

We say that a free ultrafilter U over N is minimal if there is no free ultrafilter
V over N such that V <RK U . Note that if U is minimal then there is no free
ultrafilter V over any set J such that V <RK U . Assuming Martin’s axiom, Booth
[6] proved that minimal ultrafilters exist, and Blass [4] proved that there are 22

ω

minimal ultrafilters. On the other hand, Kunen [35] proved that the existence of
minimal ultrafilters is independent of ZFC. There are several natural equivalent
conditions for a minimal ultrafilter.

Theorem 8.6. (Kunen, Rowbottom; see [10]) Let U be a free ultrafilter over N.
The following are equivalent:

(i) U is minimal;
(ii) U is selective (i.e., U contains a choice set for every partition of N into

infinitely many classes which are not elements of U);
(iii) U is Ramsey (i.e., U contains a homogeneous set for every partition of [N]k

into two classes, where [N]k is the set of unordered k-tuples from N)

There are also nice conditions which involve ultrapowers. Here is a condition
which is a variant of a theorem of Benci and Di Nasso [2]. It can be proved using
Theorem 8.6 (iii).

Theorem 8.7. A free ultrafilter U over N is minimal if and only if for each x ∈∏
U R there is a function g : N → R such that gU = x and g is either constant,

strictly increasing, or strictly decreasing.

The following theorem is a variant of results of Puritz [42] and Ng and Render
[40], and is a consequence of Proposition 8.4.

Theorem 8.8. Let A be an infinite structure, U be a free ultrafilter over N, and
B =

∏
U A.

(i) U is minimal if and only if for every f : N → A, either B[f ] = d(A) or
B[f ] = B.
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(ii) Suppose A has symbols for every function g : A → A. Then U is minimal if
and only if the only substructures of B are d(A) and B itself.

9. Regular ultrafilters

In this section we introduce the regular ultrafilters, which behave especially well
with respect to the ultrapower construction.

Definition 9.1. A free ultrafilter U over I is called regular if there is a set E ⊆ U
such that |E| = |I| and each i ∈ I belongs to only finitely many X ∈ E.

We begin with some easy facts about regular ultrafilters.

Proposition 9.2. (i) If J is infinite, I = Pω(J), and {i ∈ I : j ∈ i} ∈ U for each
j ∈ J , then U is regular.

(ii) There exist regular ultrafilters over each infinite set I.
(iii) Every regular ultrafilter is countably incomplete and uniform.
(iv) Suppose U is a regular ultrafilter over I and V is an ultrafilter over J . If

|I| = |J | and U ≤RK V , then V is regular. If |J | ≤ |I| then U × V and V × U are
regular.

It is obvious that if U is an ultrafilter over I, then any ultrapower
∏

U A has
cardinality at most |AI |. The following result shows that when U is regular, this
maximum cardinality is attained.

Theorem 9.3. (Frayne, Morel and Scott [14]) If U is a regular ultrafilter over I
and A is infinite, then |

∏
U A| = |AI |.

It follows that each infinite set has ultrapowers of arbitrarily large cardinality.
Here is another consequence, whose statement does not mention ultrapowers. Sup-
pose L has at least a unary predicate symbol P , and let PA be the interpretation
of P in A. By a (κ, λ)-structure we mean a structure A such that |A| = κ and
|PA| = λ.

Corollary 9.4. Suppose κ, λ, and µ are cardinals such that ω ≤ λ ≤ κ. Then
every (κ, λ)-structure has an elementary extension which is a (κµ, λµ)-structure.

While Theorem 9.3 gives a simple formula for the cardinality of a regular ul-
trapower, cardinalities of regular ultraproducts are much more complicated. Given
a regular ultrafilter U over I, let Fin(U) be the set of infinite cardinalities of
ultraproducts

∏
U Ai where each Ai is finite. S. Koppelberg [32] showed that

|2I | ∈ Fin(U). Shelah ([49], page 357) showed that for each finite set of C car-
dinals κ such that κ = κω < |2I |, there is a regular ultrafilter U over I with
Fin(U) = C ∪ {|2I |}. Using the methods of [27] and [32] one can get various
examples where Fin(U) is infinite.

The next result shows that regular ultrapowers are large in a model-theoretic
sense. A structure A is called κ-universal if every structure B of cardinality
|B| < κ which is elementarily equivalent to A is elementarily embeddable in A.
Morley and Vaught [39] showed that every κ-saturated structure is κ+-universal.

Theorem 9.5. (Frayne, Morel and Scott [14]; Keisler [26]) Suppose U is an ultra-
filter over a set of cardinality κ. Then U is regular if and only if whenever |L| ≤ κ,
every ultrapower

∏
U A is κ+-universal.



THE ULTRAPRODUCT CONSTRUCTION 13

It is natural to ask: When is
∏

U A κ+-saturated? The next result shows that
the answer depends only on the complete theory of A.

Theorem 9.6. (Keisler [26]) Let U be a regular ultrafilter over a set of cardinality
κ. If |L| ≤ κ and A ≡ B, then

∏
U A is κ+-saturated if and only if

∏
U B is

κ+-saturated.

Let us say that a regular ultrafilter U over a set of cardinality κ saturates a
complete theory T if for every model A of T ,

∏
U A is κ+-saturated. By Theorem

9.6, it does not matter which model of T we take. Given two complete theories
S, T with countable vocabularies, we write S ▹ T if every regular ultrafilter which
saturates T saturates S. This relation can be used to classify complete theories.
Intuitively, higher theories in this ordering are more complex than lower ones. The
▹-class of T is the set of all S such that S ▹ T and T ▹ S. It is clear that ▹ is is
reflexive and transitive, so it induces a partial order on the ▹-classes. The paper
[26] showed that there are at least two ▹-classes, including a lowest and a highest
▹-class, and posed several questions which are still open, including: Is this partial
order linear? How many ▹-classes are there? Is there a syntactical characterization
of the ▹-classes? The following theorem gives some partial results.

Theorem 9.7. (Shelah [47]) There are at least four ▹-classes, including a lowest,
second lowest, and highest. There are syntactical conditions for the lowest (stable
theories without the finite cover property) and second lowest (stable theories with
the finite cover property).

Recently, Malliaris [38] has made further progress on this problem.

We conclude this section with a discussion of ultrafilters which are uniform and
countably incomplete but not regular. If there is a first measurable cardinal κ, one
can give an easy example of such an ultrafilter over κ. Any countably complete
free ultrafilter U over κ is uniform and not regular. Let V be a free ultrafilter
over N. Then both U × V and V × U are uniform and countably incomplete, and∏

U×V A ∼=
∏

V×U A ∼=
∏

V A whenever |A| < κ. Then in view of Theorem 9.3,
U × V and V × U are both non-regular.

In [9] we asked whether there are any uniform non-regular ultrafilters on an infi-
nite set of cardinality smaller than the first measurable cardinal. A related question
is whether a set A can have ultrapowers whose cardinality is not a power of |A|.
These questions have prompted a great deal of research. Ketonen [30] showed that
if there is a uniform non-regular ultrafilter over ω1, then O# exists, which implies
the consistency of various large cardinal axioms with ZFC. This suggested that one
may need large cardinal assumptions to get uniform non-regular ultrafilters. Donder
[11] proved that the statement “Every uniform ultrafilter is regular” is consistent
relative to ZFC. Foreman, Magidor and Shelah [13] have shown that the statements
“There exist uniform non-regular ultrafilters over each successor of a regular car-
dinal” and “There is a uniform ultrafilter U over ω1 such that |

∏
U ω1| = ω1” are

consistent relative to ZFC plus a large cardinal axiom. Jin and Shelah [17] have
shown that the statements “There is a uniform ultrafilter U such that the cardinal-
ity of

∏
U N is (1) inaccessible, (2) a singular strong limit cardinal” are consistent

relative to ZFC plus a large cardinal axiom. Such ultrafilters must be non-regular
by Theorem 9.3.
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10. Good ultrafilters and isomorphic ultrapowers

In this last section we introduce good ultrafilters, which are of interest because
they produce ultrapowers which are as saturated as possible. We then discuss
the well-known result that two elementarily equivalent structures have isomorphic
ultrapowers.

Definition 10.1. An ultrafilter U over I is good if for each f : Pω(I) → U such
that a ⊆ b implies f(a) ⊇ f(b), there exists g : Pω(I) → U such that a, b ∈ Pω(I)
implies g(a) ⊆ f(a) and g(a ∪ b) = g(a) ∩ g(b).

It is easily seen that every free ultrafilter over a countable set is good.

Proposition 10.2. Every countably incomplete good ultrafilter is regular.

Proof. This is stated as Exercise 6.1.3 in [9]. We give a proof here. Suppose U is a
countably incomplete good ultrafilter over I. Take sets X0 ⊇ X1 ⊇ · · · in U such
that

∩
n Xn = ∅. Define f : Pω(I) → U by f(a) = X|a|. Since U is good there

exists g : Pω(I) → U such that f and g are as in Definition 10.1. Then the family
E = {g({i}) : i ∈ I} makes U regular. �

The converse of Proposition 10.2 is not true. For example, let U be a regular
ultrafilter over I, V be a regular ultrafilter over J , and |J | ≤ |I|. Then V × U is
good if and only if U is good. If either |J | < |I| or V is not good, then U × V is
regular but not good.

Good ultrafilters were introduced in Keisler [18] and [23], where their existence
was proved under the assumption of the generalized continuum hypothesis. Kunen
later proved their existence outright.

Theorem 10.3. (Kunen [34]) For every infinite set I, there exist 22
|I|

countably
incomplete good ultrafilters over I.

For good ultrafilters, unlike regular ultrafilters in general, there is a simple for-
mula for the cardinality of an ultraproduct of finite sets.

Theorem 10.4. (Shelah [49], page 343). Let U be a good ultrafilter over I, and
suppose each Ai is finite. Then the cardinality of

∏
U Ai is either finite or |2I |.

The next result gives the main model-theoretic property of good ultrafilters.
Theorem 5.6 is the special case where κ = ω.

Theorem 10.5. (Keisler [22], [26]) Let U be an ultrafilter over a set of cardinality
κ. The following are equivalent:

(i) U is good.
(ii) Every ultrapower

∏
U A with a vocabulary of cardinality ≤ κ is κ+-saturated.

(iii) Every ultraproduct
∏

U Ai with a vocabulary of cardinality ≤ κ is κ+-
saturated.

(iv) Every ultraproduct
∏

U Ai with a vocabulary of cardinality ≤ κ is κ+-universal.

Under the generalized continuum hypothesis, this gives a first version of the
result that elementarily equivalent structures have isomorphic ultrapowers.

Theorem 10.6. (Keisler [18]) Assume that 2κ = κ+. Suppose that |L| ≤ κ, A,B
have cardinality ≤ 2κ, and A ≡ B. Then

∏
U A ∼=

∏
U B for some ultrafilter U over

a set of cardinality κ.
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Proof. We give a proof from Theorem 10.5. Let U be a good ultrafilter. By Theorem
10.5 and 2κ = κ+, the ultrapowers

∏
U A and

∏
U B are saturated structures of

cardinality κ+. By Corollary 3.3 they are also elementarily equivalent, so they are
isomorphic by the result of Morley and Vaught. �

A decade later, Shelah eliminated the generalized continuum hypothesis from
this theorem, but with an ultrafilter over a set of cardinality 2κ instead of κ.

Theorem 10.7. (Shelah [48]) Suppose that A,B have cardinality ≤ κ, and A ≡ B.
Then

∏
U A ∼=

∏
U B for some ultrafilter U over a set of cardinality 2κ.

Shelah [50] showed that it is not provable in ZFC that whenever A,B are
countable and A ≡ B, there is an ultrafilter U over a countable set such that∏

U A ∼=
∏

U B. Thus when κ = ω, Theorem 10.6 really needs the continuum
hypothesis, and in Theorem 10.7 one cannot always take U over a countable set.

Combining Theorem 10.7 with  Loś’s Theorem 3.1, we get algebraic characteri-
zations of elementary equivalence, elementary embeddings, and elementary classes.

Corollary 10.8. (Isomorphism theorem) A ≡ B if and only if there is an ultrafilter
U such that

∏
U A ∼=

∏
U B.

Corollary 10.9. h : A ≺ B if and only if there is an ultrafilter U and an iso-
morphism j :

∏
U A ∼=

∏
U B such that e ◦ h = j ◦ d, where d : A ≺

∏
U A and

e : B ≺
∏

U B are the natural embeddings.

Corollary 10.10. A class K of L-structures is the class of all models of some first
order theory if and only if K is closed under ultraproducts and isomorphisms, and
the complement of K is closed under ultrapowers.

Corollary 10.11. A class K of L-structures is the class of all models of some
first order sentence if and only if both K and its complement are closed under
ultraproducts and isomorphisms.
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