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Abstract

In this thesis, we study problems related to the reconstruction (up to bi-interpretability)
of first-order theories from various functorial invariants: automorphism groups, endo-
morphism monoids, (categories of) countable models, and (ultra)categories of mod-

els.
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Chapter 1

Introduction

Let T be a first-order theory. Any formula ¢(z) of T (so a definable set of T
quotiented by a definable equivalence relation of T') induces a “functor of points”
eV, (z) on the category Mod(7') of models of T with maps the elementary embeddings,
by sending M +— @(M). In this way the category Def(T") of O-definable sets of
T embeds into the category of functors [Mod(T'), Set]|, via the “evaluation map”
ev:T — [Mod(T), Set].

Here is the motivating problem: how do we recognize, up to isomorphism, the image of
ev inside [Mod(T'), Set]? This would give a way of reconstructing the theory 7" from
its category of models Mod(T'). That is, given an arbitrary functor X : Mod(7T) —
Set—some way of attaching a set to every model of T, functorial with respect to
elementary embeddings—how can we tell if X was isomorphic to some functor of

points evi(,) for some formula ¢(x) € 717 We call such functors X definable.

A necessary condition for definability is compatibility with ultraproducts. Los’ the-
orem tells us that evaluation functors ev,,) commute with ultraproducts, that
is,

o (]_[ Mi) = [ [w(01).

i—U i—U
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Strong conceptual completeness for first-order logic, as proved by Makkai in [12], pro-
vides a sort of converse to Los’ theorem, and says that the definable functors are
precisely the ones which preserve ultraproducts and certain formal comparison maps
between ultraproducts, called ultramorphisms, which generalize the diagonal embed-
dings of models into their ultrapowers. This recovers T" up to bi-interpretability. To
precisely state Makkai’s result, we must formalize what it means for an arbitrary
functor X : Mod(T) — Set to “preserve ultraproducts” and “preserve” these ul-

tramorphisms. This motivates the formalism of ultracategories, which we review in

Any general framework which recovers theories from their categories of models should
be considerably simplified for Ny-categorical theories, whose definable sets are excep-
tionally easy to understand (being precisely the finite disjoint unions of orbits of the
automorphism group) and in fact are determined up to bi-interpretability by the auto-

morphism group of the unique countable model topologized by pointwise convergence.

We will show (Theorem [4.3.2)) that when 7" is Nj-categorical, we can check definabil-
ity by checking compatibility with ultraproducts and just diagonal embeddings into
ultrapowers, so that for Ng-categorical theories, the definability criteria provided by

strong conceptual completeness can indeed be simplified.

By modifying our techniques, we will deduce the full statement of strong concep-
tual completeness for Ny-categorical 7' (Theorem from just the preservation of
diagonal embeddings into ultrapowers. This will follow as a corollary of a general
definability criterion (Theorem for recognizing the evaluation functors of de-
finable sets among the evaluation functors for objects in the classifying topos of any

first-order theory T

Finally, in [chapter 8§, we construct counterexamples to Theorem when the as-

sumption of Ng-categoricity is removed.



Chapter 2

Basic model theory and categorical

logic

2.1 Introduction

In this chapter, we develop the necessary categorical logic (and some model-theoretic
consequences) for our main results. We assume familiarity with the basics of first-
order logic and model theory, e.g. the first few chapters of [I14]. We also assume

familiarity with basic category theory, e.g. the first few chapters of [9].

2.1.1 Notation and conventions

e Unless explicitly stated otherwise, we are always working in multisorted classical

first-order logic.

e Unadorned variables in formulas will generally stand for finite tuples of appropriately-

sorted variables.

e Similarly, when we say “sort” we mean a finite tuple of sorts. When we wish to
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stress that a sort is not a finite tuple of other sorts, we will say “basic sort”.

e [f we have already mentioned a tuple of variables x, then we will write S, for

the sort corresponding to z.
e . ¢ 1, and @ will usually mean first-order formulas.

o If £ is a first-order language, we write Functions(L), Relations(£), Constants(L),
and Formulas(£) to mean the collections of function symbols, relation symbols,

constant symbols, and first-order £-formulas, respetively.

o If X is a set, we write 2% for the power set {S ‘ Sc X}

2.2 Basic notions

2.2.1 The category of definable sets

The starting point for first-order categorical logic is the identification of a theory with

its category of definable sets.

Definition 2.2.1. Let 7" be a first-order £L-theory. The category of definable sets

comprises:

Objects: Formulas(L) /| where ¢(2) ~ ¥(x) < ¢(M) = (M) for all M =T,

Morphisms: Def(T)(¢p(z), ¥ (y)) & <{¢ e Formulas(£) | T' |= ¢ is a function o(z) — w(y)}/~>

Some remarks:

1. In the above, we are defining morphisms to be equivalence classes of graphs of
definable functions, where we are using the same equivalence relation as we did

for objects.

2. Everything so far is 0-definable, and will remain so unless stated otherwise.



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

3. By the completeness theorem for first-order logic, the notion of equivalence of
formulas used in defining the objects of Def(T') is the same as T-provable equiv-
alence: p(x) ~ Y(y) <= T+ p(r) < ¥(x). By the downward Lowenheim-
Skolem theorem, it also suffices to check ~-equivalence by seeing if two formulas
have the same points on models whose sizes are less than or equal to the size of

the theory.

4. T always has an empty product of sorts, which we think of as a generic singleton
set 1. If T interprets a constant in a sort S, then we think of it as a nullary

function 1 — S in Def(T).

Below, we collect some observations on how certain categorical operations and category-

theoretic properties of Def (T) correspond to first-order logic in models of T

Remark 2.2.2. To know that a formula ¢(z) lives in a sort B is to specify an
embedding of the definable set p(z) < B. If ¢(x) and 1(z) are two definable sets in
T both of the same sort B, then p(x) A ¥(zx) is the pullback

p(r) ——— B

I I

p(a) A p(x) —— Y(@).
Remark 2.2.3. Dually, ¢(x) v (x) is the pushout of p(z) and ¥ (z) over ¢(x) A)(x).

Remark 2.2.4. Def(T) has an initial object 0 = ¢J. It is also strict: any map into

0 is an isomorphism.

Remark 2.2.5. The existence of complements means that for every subobject p(x) —

B, there exists a unique (up to isomorphism) subobject —¢(x) < B such that:
1. The meet ¢(z) A —p(z) is 0.
2. The join p(z) v —¢(x) is B.

An immediate consequence of our definitions (and a basic sanity check) is that the

operations of first-order logic inside Def (7T') may be checked inside any model:

5
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Definition 2.2.6. Let M = T. Then M is the data of a functor M : Def(T) — Set
(“taking M-points”; “passage to a model”; etc.) Explicitly, it is given by
f f(M)
(@) = v(y)) — (p(M) "= (M),
where (M), f(M), and (M) are the interpretations of ¢, f, and ¢ in the model M.

We write Def (7)) to denote the image of this functor (“the category of O-definable
sets in M”.)

Lemma 2.2.7. The inclusion Def (T preserves and reflects finite limits (in fact

creates them.)

Proof. By the canonical product-equalizer decomposition (see [9], V.2.2.) for limits,
it suffices to check the preservation and reflection of limits on just products and

equalizers.

The usual construction of an equalizer of two maps f,¢g : X — Y in Set is always

definable: it is the subset of X consisting of those elements = such that f(z) = g(x).

Similarly, if X and Y are definable, then X x Y is definable, and the projections
X x Y1y X,Y are definable.

If J is a finite diagram in Def ,(T") and lim J its limit, and Z € Def,(T) is a definable
set in M equipped with a cone of definable maps to J, then Z has (in Set) a unique
mediating map to @ J, which is definable because it is definable in the cases when
J is a product or equalizer diagram, the limit is finite, and by the canonical product-
equalizer decomposition the mediating map for a general finite J is a composition of

finitely many mediating maps for products and equalizers. O]

2.2.2 Logical categories and elementary functors

One can try to isolate the categorical properties shared by those categories of the

form Def(T) for T' some first-order theory. This was done in Makkai-Reyes [13] and

6
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the resulting notion is that of a (Boolean) logical category.

Definition 2.2.8. A category C is a logical category if it has all finite limits

(equivalently, all binary products and equalizers), and furthermore:

1. C has images: if f: X — Y is amap in C, then there is a subobject im(f) of Y’
such that f factors through im(f) < Y which satisfies the following universal
property: whenever there is a commutative triangle

X/
| ™
then g factors uniquely through im(f).
2. C has finite sups of subobjects: given any finite collection of subobjects Sy, ..., .S,

of B, there exists a smallest subobject in the subobject poset of B among those

subobjects greater than all the .S;.

3. Images and sups of subobjects in C are stable under pullback (“images and

unions commute with taking preimages”):

We require that the image of a map f: X — Y satisfy the following property:
if g: Z — Y is another map, then in the following situation with the

pullback square

x —1 Ly

[ [

XXyZﬂ,—Z>Z,

the pullback of im(f) < Y along g is the same thing as im(my).

We require that for any finite collection of subobjects S, ..., .5, of B with sup
\/,;Si; — B and any map g : Z — B, then in the following situation with
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the pullback square
V8% — B

I [
\/i SZ X B A 7|'—Z> Z,
the subobject \/, S;x pZ of Z is the same thing as \/, {S1 x5 Z,..., S, x5 Z}.

Furthermore C is called Boolean if every subobject has a complement, in the sense

of 2.2.5

There is an obvious notion of maps between logical categories. In [I3] these are
called, aptly, logical functors, but after introducing pretoposes (Definition [2.6.16|) we
will work with pretoposes almost exclusively, and so we follow the terminology of [12],

wherein logical functors between pretoposes are called elementary.

Definition 2.2.9. Let C and C’ be logical categories. An elementary functor
C — (' is a functor which preserves finite limits, finite sups of subobjects, and

images.

Before we proceed, we verify, as claimed, that Def(T') is always a Boolean logical

category.

Proposition 2.2.10. Let T be a first-order theory. Then Def(T') is a Boolean logical

category.

Proof. 1. Def(T) has all binary products and equalizers: if ¢(z) and ¥(y) are
formulas, then we form their product ¢(x) x ¥(y) as follows: replacing = and

y with identically-sorted variables as necessary so that x and y are disjoint, we
df
put () x ¥(y) = @(x) A P(y) S Say-

f
Similarly, if we have a pair of definable functions, ¢(z) =3 ¥ (y), their equalizer
g

is given by the formula ¢(z1) A @(22) A f(z1) = g(x2) (with z; and x5 distinct

variables.)
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2. Def(T') has images: given a definable function f with graph relation I'(f)(z, y),
the image im(f) of f is just the definable set 3zT'(f)(x,y).

3. Def(T) has finite sups: given any finite collection ¢1(z), ..., ¢,(x) of formulas
such that for all 1 <i <n, T = Yry;(x) — ¢¥(z) (so the ¢;(z) are subobjects
of 1(x) in Def(T')), their sup is just their join \/,_,_, wi(z) — ¥(z).

One checks that the monomorphisms in Def(7") are definable injections and
that the pullback of two definable functions () L, () <L @o(x) is the
subobject of the product ¢;(x) x ¢o(z) consisting of those pairs equalized by
f and ¢. In particular, the pullback of a subobject along f is the preimage of
the subobject along the definable function f. This implies that finite sups and

images are pullback-stable.

[]

In the next section, we will review the non-categorical notions of interpretation be-
tween theories and structures in model theory, and show the extent to which these
notions of interpretation are captured by logical categories and elementary functors

between them.

We will then introduce the (—)®-construction and a special class of logical categories
called pretoposes, and show that pretoposes and elementary functors completely cap-

ture the notions of theories and interpretations.

2.3 Interpretations between theories and interpre-

tations between structures

In this section, we review the notions of interpretations (abstractly between theories,

and concretely between models) from model theory. We then show how these two



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

notions are related. We then show that models of 7" are the same thing as elementary
functors Def(T) — Set, and prove that strict interpretations 7" — 7" are the same

thing as elementary functors Def(7T") — Def(7").

2.3.1 Concrete interpretations

We will only define and work with concrete interpretations for one-sorted structures
(although with a little care to make sure arities are preserved, the notion can be
generalized to multi-sorted structures, by having functions f : Us — M (S) for each

sort S.)

Definition 2.3.1. Let M; be an L;-structure and let My be an Lo-structure. An
interpretation (f, f*) : M; — M, is a surjection f : U — M; where U < M},
some k € N, such that the pullback f* : 2M1 — 2M2 gends £;-definable sets of M; to
Lo-definable sets of M,.

We call such an interpretation a concrete interpretation.

Definition 2.3.2. If, in the above definition, the function f : U — Mj is also injective,

we say that (f, f*) is a strict concrete interpretation.

Definition 2.3.3. (c.f. [1]) Let (fi, f7),(91,97) : M = M’ be interpretations. We
say that (fi, ff) is homotopic to (fs, f3), written (fi, f7) ~ (g1,g7), if, writing U

for the domain of f; and V for the domain of f5, the equalizer relation

eq(f1, f2) = {(u,v) |ue U,v eV, fiu) = fa(v)}
is definable.

Definition 2.3.4. We additionally say that a homotopy is a strict homotopy if the
equalizer relation in the above definition is the graph of a definable bijection. Two
concrete interpretation are strict homotopic if and only if both concrete interpretations

are strict.

10
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Definition 2.3.5. (c.f. [1]) Let (f, f*) : M — M’ and let (g,9*) : M' — M" be

interpretations.

The composite interpretation (g, g*)o(f, f*) = (9= f, (g f)*) is defined as follows:
g * f has domain ¢*Uy where Uy is the domain of f, and is given by the composition

g o f where g is the canonical extension of g to ¢*Uy.

Definition 2.3.6. (c.f. [I]) A concrete bi-interpretation between two structures

M and M’ is a pair of interpretations
(f, f*): M= M :(g,9%)

such that (gf, g*f*) ~ 1a and (fg, f*g*) ~ 1asp.

On the other hand, one can also define interpretations purely syntactically, between

theories.

2.3.2 Abstract interpretations

The following definition seems to be folklore.

Definition 2.3.7. Let £; and £, be two languages, so each equipped with a set of

sorts, function, relation, and constant symbols with arities taken from the set of sorts.
Let Symb(L) comprise all the nonlogical symbols of L.
An interpretation of languages I of £y in £, is an assignment comprising:

A map Iy : Sorts(L,) — Formulas(L,), and

a map I; : Symb(L) — Formulas(L,),

(where we view the equality symbol of each sort as a definable relation) such that the

11
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maps are compatible with arity, i.e. the following diagram commutes:

Sorts(L,) o, Formulas(L,)

W

arity Sorts(Ls)

Symb(L,) — Formulas(L5)
where we define the arity of a formula to be the sorts of its tuple of free variables.

Remark 2.3.8. Each interpretation of languages I : £; — L, induces a map(by
induction on complexity of formulas) I : Formulas(£;) — Formulas(£,), in particular

a map I : Sentences(L;) — Sentences(L5).

So far, an interpretation of languages only requires that arities and sorts need to make

sense. The following definition ensures that symbols are interpreted in a sensible way.

Definition 2.3.9. Let 77 and T5 be £1- and La-theories. An interpretation of theories

I : Ty — Ty is an interpretation of languages I : £; — L5 such that

TiEyY = T, E 1)

Remark 2.3.10. If 7} < 75 is an inclusion of L-theories, then the identity interpre-

tation of £ induces an interpretation of theories 77 — T5.

It follows that when 7] < T} is an inclusion of theories, any interpretation 7} — 15

restricts to an interpretation 7] — 5.

In particular, any interpretation of an Li-theory T} in an Ly-theory T, extends an
interpretation of the empty Li-theory in T5. Since the empty theory in any lan-
guage always proves that equality is an equivalence relation, equality must always be

interpreted as an equivalence relation.

Example 2.3.11. Every theory has the identity interpretation with itself; more gen-

erally, every theory can be n-diagonally interpreted in itself: send each sort S to the

12
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diagonal of

S xS...(ntimes)--- xS

and induce the rest of the interpretation by restricting from sorts to the definable sets

they contain. An explicit description in terms of a concrete interpretation of models
is given at [2.3.21]

Definition 2.3.12. If an abstract interpretation interprets equality as equality, we
say the interpretation is a strict abstract interpretation (in the literature, this is

often called a definition of one theory inside another.)

In keeping with the traditional Ahlbrandt-Zeigler ([1]) treatment of bi-interpretations,
which avoids imaginaries (for the definition of imaginaries and what it means to elim-

inate them, see|2.6.5)), we define the abstract analogue of a concrete bi-interpretation

(Definition [2.3.6)).

Definition 2.3.13. An abstract bi-interpretation between two theories 7" and 1"

is a pair of abstract interpretations F': T — T" and G : 7" — T such that:

For any definable set X of T there exists a definable surjection nx : GF(X) —»
X whose kernel relation is equal to GF(=), the definable equivalence relation
interpreting equality (on the definable set X). Furthemore, the collection of
nx must satisfy the following naturality condition: for any definable function

XLvyin T, the square

commutes, and dually

for any definable set X’ of 7" there exists a definable surjection ex: : FG(X') — X’
in 7" whose kernel relation is equal to F'G(=), the definable equivalence relation

interpreting equality on Y, such that for any definable function X’ Lytin T )

13
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the square
FG(X') =X X!
FG(f’)l lf’
FG(Y") o Y’

commutes.

We furthemore say that an abstract bi-interpretation is strict if all the maps ny and
€y are bijective, not just surjective. An abstract bi-interpretation is strict if and only

if its constituent abstract interpretations are strict.

2.3.3 Comparing abstract and concrete interpretations

Now we explicate the relationship between abstract and concrete interpretations.
Proposition 2.3.14. (f, f*) is a strict concrete interpretation My — My if and only
if f* also restricts to an elementary functor Defy, (Th(M;)) — Defyr, (Th(M)).
Proof. We only have to show that an interpretation (f, f*) always induces an elemen-

tary functor Def(Th(M;)) — Def(Th(My)).

Since the morphisms in these categories are already definable sets and the source and
target maps the projections (which correspond to existential quantification), functo-

riality will follow from the preservation of the elementary operations.

Since f* was induced by taking preimages along a function f, it preserves products

(i.e. arity), conjunction, and negation.

Since f was surjective, f* takes nonempty sets to nonempty sets, so existential state-

ments continue to have witnesses, i.e. existential quantification.

Finally, if R(¢) is an atomic sentence in M;, then ¢e R and since f was a function,

f*ce f*R, so f* preserves atomic sentences.

14
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Hence f* induces an interpretation Th(M;) — Th(M;), and therefore must restrict
to an elementary functor Def y, (Th(M;)) — Def,, (Th(M;)). O

Proposition 2.3.15. Let M =T, and N = T, be structures, and let (f, f*): M —
N, U < NF, f:U — M be a strict concrete interpretation of M in N. Then f*

induces an elementary functor Def(T;) — Def(T3).

Proof. 1t suffices to see that f* preserves A,— and 3. The first two are preserved
because f* is given by taking preimages along a function. 7 is preserved because
f is assumed surjective: if M = ¢(a,b), then f*p is satisfied by the pair of imag-
inaries f*{a} and f*{b}, so f*{a} satisfies Jxf*p(z,y) if and only if f*{a} satisfies

f* Qzp(x,y)) if and only if a € Jzp(x,y). O

Combining the previous proposition with Theorem [2.4.1] we get:

Corollary 2.3.16. Strict concrete interpretations restrict to strict abstract interpre-

tations.

Remark 2.3.17. In the previous two propositions, strictness was necessary to even
define a functor (resp. abstract interpretation) because we needed the preimage of
a graph of a function to again be a graph of a definable function (resp. provably

equivalent in the interpreting theory to the graph of a function), c.f. remark [2.4.2

We now answer the question: given a concrete interpretation (f, f*) : My — M, for
f U — M, which other concrete interpretations (g, ¢*) induce the same abstract
interpretation as (f, f*)? The next proposition says that any two concrete interpre-
tations which restrict to the same abstract interpretation must be conjugate by an

automorphism.

Proposition 2.3.18. Let M, N, and U be as before. If (f, f*) and (g, g*) are both
interpretations of M in N such that the domain of f and g are both U and f* and

*

g* induce identical elementary functors Def (1) — Def (1), then there exists an
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automorphism o of M such that g = o f.

Proof. Since f and g are surjective, we just need to show that

f(u) = g(u)

satisfies p(f(u)) <= ¢(g(u)) for all tuples v € U and formulas o(x). This works if
the preimage of any 0-definable set in M under f is the same as its preimage under
g, and this is precisely the assumption that f* and g* induce the same elementary

functor. O

Proposition 2.3.19. An abstract interpretation F : T7 — Ty can be realized as a

concrete interpretation (f,f ) : M — N for some M =T, and N = Tj.

Proof. By and the discussion in Remark [2.5.6] given any model N = T5, we can
take reducts along the interpretation F' and obtain a model M = T;. O

Proposition 2.3.20. Let M =T and M' = T' be Xy-categorical. Then, there exists
a strict abstract bi-interpretation between T and T' if and only if there exists a strict

concrete bi-interpretation between M and M'.

Proof. 1f there exists a strict concrete bi-interpretation of the countable models, then
by the previous proposition the constituent concrete interpretations (f, f*) and
(g, ¢*) induce abstract interpretations F': T'< T" : G. Since the concrete homotopies
are strict, there are definable bijections GFX ™5 X and FGY = Y for all X € Def(T)
and Y € Def(7”), and these with " and G form an abstract bi-interpretation between
T and T".

Conversely, if we know that T" and 1" are abstractly strict bi-interpretable, then by
Theorem [2.4.1], the abstract strict bi-interpretation 7' ~ T” induces a pair of elemen-
tary functors Def(T") < Def(7”). Since the constituent abstract interpretations of

the bi-interpretation are strict, the families of surjective definable functions {nx} and
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{ey'} in the definition of an abstract bi-interpretation must be definable bijec-
tions. Now, if we take points in M’, by taking reducts we have the data of a strict
interpretation (f, f*) : M — M’', and similarly by taking points in M and taking
reducts we have the data of a strict interpretation (g, g*) : M’ — M, and the graphs
of the definable bijections {nx} and {ey} are precisely the definable equalizer relations
needed to make (g * f,g*f*) ~ 1y and (f = g, f*g*) ~ 1pp, which gives a concrete
strict bi-interpretation between M and M’. O

Here is an example of a bi-interpretation neither of whose constituent interpretations

are invertible.
Definition 2.3.21. Let M be an L-structure. Let n > 1.

We define the n-diagonal interpretation (f,, f¥) : M — M as follows: write A, (M)
for the diagonal of M™, which is definable, and put f,, to be the bijection A, (M) ~ M
by (m,...,m) — m. Then f* pulls back every definable set X = M* to the obvious
definable subset f*X < A, (M)x (k times) xA,(M).

Example 2.3.22. The n-diagonal interpretations T’ A T for n > 1 are pseudo-
inverse to themselves, but do not admit inverses. This is because if (g,¢9*) : M — M
were an inverse to the n-diagonal interpretation (f,, f¥), ¢* would need to pull back
A, (M) to M. However, if X is a definable set in the k-sort, then ¢*X lives in a
K'-sort, where k" is a positive integer multiple of k. Therefore, since A, (M) lives in
the n-sort, and there is no positive integer multiple of n which is 1, there is no inverse

interpretation.

In what follows, we always work with abstract interpretations and multisorted lan-

guages unless otherwise specified.

17



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

2.4 Interpretations as elementary functors

The aim of this subsection is to prove the following theorem, which lets us inter-
change strict abstract interpretations between theories with elementary functors be-

tween their logical categories of definable sets.

Theorem 2.4.1. [ : L1 — L5 is a strict abstract interpretation Ty — Ty if and only

if I induces an elementary functor Def(T7) — Def(T3).

Proof. By the above discussion, we just need to show that an elementary functor

induces an interpretation. We proceed by an induction on complexity of formulas.

Since finite limits are preserved, I preserves meets of formulas (since the intersection

of two subsets of a sort is a pullback).
Since finite sups are preserved, I preserves joins of formulas.

I also preserves negations: () and —(z) are characterized by their pullback being
empty and their sup being all of the ambient sort S,. Since I preserves pullbacks
and finite sups (in particular, the empty sup is the empty set), I(¢(x)) and I(—¢(x))
satisfy that their pullback is empty and their join is I(.S;).

I preserves existential quantification since I preserves images and existential quan-

tification is the same as projecting to the sort of the remaining free variables.

Since binding under the existential is the same as projecting to remaining free vari-
ables, when we bind all the free variables we are projecting to the empty tuple of
variables, which corresponds to the empty product, which is the terminal object 1.
So now suppose we have a sentence ¢ = Jz)(x). Since T' = Jxp(z), the image of
the corresponding projection to 1 is all of 1. Since I preserves images and terminal
objects, the image I(3zy(x)) of the projection I(i(z)) — I(1) is again 1, and so
I(¢(z)) cannot be the empty subobject 0, since then its unique map to the terminal

object would have image 0.
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Therefore, I preserves sentences formed by existentially quantifying a formula.

It remains to provide the base for the induction on positive atomic sentences. But
these are relations (including equality) evaluated at non-variable terms, say R(c). In
Def(T7) this is the pullback of R(x) along the inclusion {c¢} < S,. If T} = R(c), then
there is a definable function 1 — S, picking out ¢; this factors through the inclusion

of R(x) into S,, giving a pullback square

— R(z)

|

— S,

— e =

Since I preserves finite limits (and hence the terminal object), applying I we get

1 —— I(R(x))
1 —— I(S,).
Since I was a functor, the horizontal map 1 — I(S,) picks out I(c). Therefore

Ty = I(R(c)), which provides the base for the induction on complexity of formulas
and completes the proof. n

Remark 2.4.2. In the previous proof, strictness is needed to even form a functor,
because we need the interpretation I(f) of a definable function f to be a Ts-definable

function.

However, I being an abstract interpretation of theories and f being a Tj-definable
function is not enough to ensure that I(I'(f)) is the graph of a Ty-definable function.
This is because equality in 77 may be interpreted as a non-equality equivalence relation
E, so that I(f) is only a function after quotienting out its domain and codomain by

E. Because of this, T, does not necessarily prove that I(f) is a function.

If T, contains a quotient for E, then one could try replacing E by the equality relation

on that quotient set, which would provide a natural way of replacing the non-strict
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interpretation I by a strict intepretation homotopic to I. A priori, a first-order theory
need not contain quotients for all definable equivalence relations. However, we will
show in that up to abstract bi-interpretability, we can replace any first-order
theory T with another first-order theory 7°? which does contain all quotients for all

definable equivalence relations.

2.5 Models as elementary functors

A model M of T an L-theory is an assignment of the symbols of £ onto sets which
preserves the truth of sentences: if T |= ¢, then M |= 1. Set is easily seen to be a
logical category, we will see that up to isomorphism of functors, elementary functors

Def(T) — Set are precisely the models.

Proposition 2.5.1. Every model of T' corresponds to an elementary functor Def(T) —

Set.

Proof. How every model M of T corresponds to a functor Def(7T") — Set was de-
scribed in2.2.6) (“taking points in M”). That taking points in models preserves finite
limits is the content of 2.2.7]

To check preservation of finite sups, let {¢1(x),...,¢,(x)} be a finite collection of
formulas of the same sort. Then their sup is given by \/, ¢;(z), and the sup of
{o1(M),...,0n(M)} is precisely |, ¢i(M). The empty sup is the empty formula,
represented in Def(7') by the T-provable equivalence class of “r # z”, and this is

interpreted by M as the empty set, which is the empty sup for any set in Set.

To check preservation of images, let f be a definable function. The image of f in
Def(T') is just the formula which describes the image of f, and M interprets this

formula as the image of f(M).

We have shown that every model M induces a functor, which by an abuse of notation
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we'll also call M, from Def(T) — Set. This completes the proof of the first part of
the proposition. Now we’ll show that for any elementary functor F' : Def(T) — Set

is, up to isomorphism of functors, a model.

For every basic sort B, there are canonical isomorphisms F(B*) ~ F(B)*. Up to
isomorphism of functors (where the isomorphism of functors is given by conjugating

by these canonical isomorphisms), we can assume therefore that F(B*) = F(B)*.

Furthermore, for every sort B = By x -+ x B, there are canonical isomorphisms
F(By x -+ x B,) ~ F(B;) x -+ x F(B,). Again, up to isomorphism of functors, we
can assume that F(B) = F (E) Furthermore, if p(z) is a formula of sort B, then there
is a canonical definable injection ¢(z) < B such that the image of F(p(z) < B)is a

subset of F'(B); arguing as before, we can assume up to an isomorphism of functors

that F(p(z)) € F(B). Similarly, we can assume up to an isomorphism of functors

that if T' = Vz(p(x) — (x)), then F(p(z)) € F(i(x)).

The canonical isomorphisms described so far induce isomorphisms of Boolean algebras

2B ~ oF(B), Therefore, up to isomorphism of functors, we can assume that F(¢(x) v

W(z)) = F(e(x)) u F((x)) (resp. A and negations).

Since F' preserves images, then for every definable function f, F'(im(f)) ~ im(F(f)).
Then up to isomorphism of functors, F(im(f)) = im(F(f)).

Now we have, up to isomorphism, completely “strictified” F. It remains to show that
an elementary functor which strictly preserves products, finite sups, and images is a

model.

Indeed, let ¢ be a tuple of terms such that R(¢) is an atomic sentence. Then by our

previous reductions, F(z = ¢) € F(R(z)), so F' = R(7).

It is obvious that if ¢ and ¢ satisfy that (T ¢ = FlEg¢)and (T ¢ = F
V), then (T E @A) = FE o).

If p(x) is a formula, then T' = Jxp(x) if and only if the image of the projection of
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() to the empty sort (which is the empty product, so is the terminal object 1) is all
of 1. Since F' is a logical functor, it preserves the terminal object and all maps into
the terminal object, so F' of the image of the projection of ¢(x) to the empty sort
is still 1. Then F(p(x)) cannot be empty, since if it were, the image of its canonical

map to 1 would be the empty set. So F' = Jzp(z).

Similarly, if T = —, then if ¢ is quantifier-free it is easy to see that F' = —i. If ¢
is of the form Jp(x), then as a subobject of the terminal object 1, Jzp(z) = & the
empty sup. Since F' is logical, it preserves empty sups, so again Jzp(xr) = ¢ as a

subobject of the terminal set 1, and therefore, F' = —3zp(z).

This concludes the induction on complexity of formulas. O]

2.5.1 Elementary embeddings as natural transformations of

elementary functors
If elementary functors are models, what do the natural transformations between these
elementary functors correspond to at the level of models?
Let us recall the various notions of maps between two L-structures.

Definition 2.5.2. Let M; and M, be L-structures. An L£-homomorphism is a

Sorts(L)-indexed collection of functions

{ns : Mi(S) = M2(S)} sesors(c)

which preserve the interpretations of the nonlogical symbols of £ in M; and M.

Remembering our convention that our collections of sorts are closed under formation

—

of finite tuples, we also require, for every finite tuple of sorts S = (S,...,Sy),

Ng = 1sy X MNsy X =+ XT]g,.

Now, “preserving the interpretations of nonlogical symbols in £” means:
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1. For each constant c € £ of sort S, ng sends ¢ s M2,

2. For each relation symbol R € L of sort S, for any T € M(S), M, E RM(7) =
My |= RY(ns(T)).

3. For each function symbol f € L of sort S; — Sy, whenever f*1(Z) = 7, then
fM2 (7781 (E» = 1S, (y)

An L-homomorphism is called strict if it preserves inequality and the complements of
the relation symbols. If n : My — M is strict, it preserves the truth of all quantifier-

free L-formulas in M; and M,: for all quantifier-free ¥ (xq, ..., x,),

M, ): w(a17"'7an) = M, ): ¢(77<a1)7---ﬂ7(an))-

If one is able to remove the quantifier-free stipulation above, so that n preserves the

truth of all L-formulas, then 7 additionally reflects the truth of all £-formulas: for

every ¥(x1,...,%,),

M, = (ay,. .. a,) < My k= v(n(ay),...,n(a,)).

In this case, n is called an elementary embedding. By an easy induction on the
complexity of formulas, two models connected by an elementary embedding necessarily

have the same theory.

An L-homomorphism M — M is called an L-automorphism if it admits an in-
verse L-homomorphism; it is easy to see that any L-automorphism is an elementary

embedding.
Lemma 2.5.3. A natural transformation f between models My — M of an L-theory

T is precisely an elementary embedding.

Proof. Since a model is an elementary functor, the components of a natural trans-
formation are induced by restricting its components at all (finite products of) sorts;

naturality requires f to send tuples T inside a definable set X! to inside X™2. (In
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particular, natural transformations preserve types: tp(xz/A) = tp(f(z)/f(A)).) Hence
(because we have complementation) M; = ¢(z) < My | o(f(x)). O

Remark 2.5.4. More generally, in coherent (i.e. positive existential fragments of
first-order) logic, natural transformations are just £-homomorphisms; every finitary

first-order theory is bi-interpretable with its Morleyization, which is coherent.

Remark 2.5.5. Now that we have shown that natural transformations between ele-
mentary functors correspond to elementary embeddings of the corresponding models,
it is clear that the correspondence between elementary functors Def(7) — Set and

models M = T described in implements an equivalence of categories between:
1. The category of models of T', and
2. the category of strict elementary functors Def(7") — Set.

Remark 2.5.6. Since we have shown (Proposition [2.5.1]) that models of T are ele-
mentary functors Mod(7T) — Set, and that interpretations T3 — Ty are elementary
functors Def(T;) — Def(T3) (Theorem [2.4.1)), it follows that any interpretations

I : Ty — T5 induces via precomposition a functor
I* : Mod(T3) — Mod(Ty), by (M :Def(T3) — Set) — (Mol : Def(T}) — Def(13) — Set).

Thus, given an interpretation 77 — T5, every model of T, determines a model of T}
by “restricting to the image of I”. We call such functors between categories of models
reduct functors. The prototypical example is when the interpretation [ is induced
by an inclusion of languages; then the reduct functor is literally the reduct to the

smaller language.

For the rest of this document, when we say “reduct”, we will mean the more general

concept of a reduct functor induced by an interpretation.

Remark 2.5.7. Of course, the preceding discussion can be “relativized”: instead of

working with elementary functors into Set, we could look at all theories interpretable
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in another theory T, and consider instead of Mod(7”) the category of interpreta-
tions Int(7”,T'), and the preceding remarks about interpretations inducing “reduct”

functors apply equally well.

The analogy carries further: just as natural isomorphisms between strict elementary
functors (models) Def(7') — Set correspond precisely with isomorphisms of models,
natural isomorphisms between strict elementary functors (abstract interpretations)
F,GDef(T) — Def(1") correspond precisely to having a strict concrete homotopy
in the sense of Ahlbrandt and Ziegler (Definition between any two concrete

interpretations realizing F' and G.

2.6 Pretoposes and the (—)“-construction

One of the key insights in Makkai and Reyes [13] is that when T" uniformly eliminates
imaginaries, Def(T') is a small pretopos; pretoposes were defined independently by

Grothendieck in SGAIV [2] as sites canonically presenting coherent toposes.

Moreover, in [13] it is shown that every logical category C can be completed to a
pretopos (~3, and this pretopos completion is in a precise sense a categorification of

Shelah’s (—)®-construction: Dﬂeﬁf) ~ Def(7°9).

Remark 2.6.1. Another reason why pretoposes are desirable is that equivalences of
the Boolean logical categories Def (7)) ~ Def(75) do not quite correspond to abstract
bi-interpretations T} ~ 715, because abstract bi-interpretations are allowed to send
sorts to quotients of sorts by definable equivalence relations. For example, if T' does
not uniformly eliminate imaginaries, Def(7T’) is a Boolean logical category but not
a pretopos. However, the canonical interpretation 7" — 7Y induces an elementary
functor Def(T) — Def (7). While this canonical interpretation is part of a bi-
interpretation, the induced elementary functor between the categories of definable

sets cannot be part of an equivalence of categories, because Def(7°9) has quotients
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of equivalence relations while by assumption Def(T") is missing the quotient of some

equivalence relation.

However, abstract bi-interpretations do correspond to equivalences of categories be-

tween the pretopos completions of Def(T}) and Def (T5).

We will recall the (—)® construction from model theory. Before we do, we will spell

out the notion of being an equivalence relation object in a category.

Definition 2.6.2. An equivalence relation (or internal congruence) in a cate-

gory C with finite limits is the following data:
1. An object X and a subobject £ — X x X,

2. A reflexivity map r : X — E such that r is a section to both projections

m, Ty X x X > X,
3. A symmetry map s : E — E such that m 0 s = my and my 0 § = 7y,

4. A transitivity map v : E xx E — E, where E x x E is the pullback of 7 and
Ty, as in the following pullback square (where i : R <— X x X is the inclusion

map):
ExxE—">R

pll lm o1

R 201 X

such that my oiopy =m oiot,and myoiopy =m0t 0t.
Here is the (—)®l-construction.

Definition 2.6.3. Let T be a complete first-order £-theory. We define the expansion
L of L as follows: for each ¢p which becomes an internal congruence £ =3 X in
Def(T'), we add a sort S,, and a predicate symbol f,,(z,e), where z is in the sort
of x and e is in the sort of S,,. The theory T°¢ is T" expanded by sentences which
assert that for each ¢p, f,,(x,e) is the graph of a surjection X — S, which takes

each z € X to its E-class.

26



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Proposition 2.6.4. Def(7°%) has finite coproducts.

Proof. Let Ag be the diagonal relation on some sort S of 7. Then there is a 0-
definable equivalence relation En, =3 S x S by a ~ [ (@e Ag naeAg) v
(6 e -AgAnbe—A S). Passage to T°1 yields two definable constants. Taking binary
sequences of these two constants in powers of their imaginary sort S Eng yields arbi-
trarily large finite collections of constants, and this lets us take arbitrary finite disjoint

unions of definable sets. O

The reason why the (—)®-construction was introduced was to eliminate imaginaries.

Definition 2.6.5. T is said to eliminate imaginaries if for every E-class C' of E a
definable equivalence relation £ =3 X, there exists a formula p¢(z,y) such that for
every model M |= T, there exists a tuple b such that b uniquely satisfies pc(M,,b) =
C.

Note that there is a canonical interpretation (which sends equality to equality) of T

n 774,

Proposition 2.6.6. T eliminates imaginaries. Actually, we can do even better: T

will uniformly eliminate imaginaries, meaning that we can choose a pg(x,y) instead

of one for each C.

Proof. 1f E is a definable equivalence relation in 7', then the graph of fg uniformly
eliminates the imaginaries of E. If E is instead a definable equivalence relation in
T4, it suffices to see that E' is equivalent (in the sense of Def (7)) to an equivalence
already definable in 7. Indeed, let I : T°Y — T be the interpretation defined in
the previous remark. Then I(F) is an equivalence relation in 7', hence eliminated
in 79 by the graph of fig). Since I(E)-classes are, by definition, compatible with
the projections back to the imaginary sorts of the free variables of F, f;g) definably

extends to a definable function whose domain has the same sort as E, and the graph
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of this eliminates E. O

As the proof of Proposition demonstrates, if T interprets two constants, then
Def(T') has finite coproducts. We point out another consequence of T interpreting

two constants:

Lemma 2.6.7. If T interprets two constants, then the epimorphisms of Def(T) are

precisely the definable surjections.

Proof. A definable surjection f : X — Y is an epimorphism: if f equalizes g, go then

g1 and g, must agree everywhere on Y.

On the other hand, if f is not surjective and {cy, ¢} are two constants, then f equalizes
the maps ¢g; and g, where g; sends all of Y f to ¢; and g9 sends the image of f to ¢

and Y\ im(f) to cg, so is not an epimorphism. O
The proof of Proposition [2.6.4] shows that if 7" uniformly eliminates imaginaries, it
interprets two constants. Therefore:

Corollary 2.6.8. If T uniformly eliminates imaginaries, then the epimorphisms of

Def(T) are precisely the definable surjections.

Notation 2.6.9. For the remainder of this document, “elimination of imaginaries”

will mean uniform elimination of imaginaries in the above sense.

After this section, unless explicitly stated otherwise, we will replace T" with T° if T’

does not already eliminate imaginaries.

Here are corresponding concepts on the category-theoretic side. Recall that a category
C is said to be complete (resp. finitely complete) if it has all small limits (resp.

finite limits).

Definition 2.6.10. The kernel pair of a morphism f : X — Y in a finitely complete

category C is the internal congruence ker(f) =3 X, where the parallel maps are the
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projections from the pullback ker(f) X« ry.r X.

Definition 2.6.11. A category is regular if it is finitely complete and kernel pairs
of morphisms admit coequalizers. An epimorphism which arises as the kernel pair of

some morphism is called regular.

Definition 2.6.12. A category C is called Barr-exact if it is a regular category and
all internal congruences in C are effective: they arise as the kernel pair of some

morphism. This last condition is the analogue of elimination of imaginaries.
Lemma 2.6.13. Def(7T) is reqular for any first-order theory T

Proof. Indeed, the kernel pair of a morphism f is coequalized by f’, where f’ is just
f treated as a surjection to im(f). ]
Corollary 2.6.14. All definable surjections of T' are regular morphisms in Def(T).

Definition 2.6.15. A (finitary) pretopos is a Barr-exact logical category with finite

coproducts.
We give a more direct description, as given in [12].
Definition 2.6.16. A pretopos is a category C satisfying the following:

1. C has all finite limits (is finitely complete); equivalently, C has a terminal object
and all pullbacks.

2. C has stable finite sups.
3. C has stable images.

4. C has a stable disjoint sum of any pair of objects. A disjoint sum Au B of objects
A, B is a coproduct of A and B such that, for the canonical mapsi: A <— AuB
and j: B<— Au B, i and j are monomorphisms and the pullback A x 4,5 B is

isomorphic to 0.
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Stability for disjoint sums means that whenever we have a diagram of the form

A"y AUB

e

Al ——
[
B

with A" and B’ pullbacks, then C” is the disjoint sum of A" and B’.
5. C has quotients of equivalence relations.

Remark 2.6.17. The only difference between a pretopos and a Boolean logical cat-
egory is that pretoposes have quotients by all definable equivalence relations. If a
quotient by an equivalence relation exists in a logical category, then it is already
stable because it is the image of the quotient map and images are stable; by the
construction above involving the imaginaries coming from the diagonal and its com-
plement, one has a steady supply of finite disjoint unions of the terminal object, and

using these one can form finite disjoint unions of arbitrary objects (easily checked to

be stable).
Corollary 2.6.18. Def(7°%) is a pretopos.

Corollary 2.6.19. The natural notion of a pretopos morphism coincides with ele-
mentary functors between logical categories, since disjointness of a coproduct can be
checked using a pullback and the empty sup and the property of m : X — Q being a
quotient of an equivalence relation E < X x X is equivalent to the kernel relation
of ™ (definable from m) being the same as E: elementary functors preserve whatever
(fragments of the) pretopos structure are present in a logical category, so in particular

preserves all the pretopos structure between two pretoposes.

Remark 2.6.20. Now that we have introduced the (—)®-construction, we see that
the definition of an abstract bi-interpretation (Definition [2.3.13)) can be equivalently
defined as a pair of abstract interpretations F' : T'— T" and G : 7" — T such that
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For any definable set X of T there exists a T“I-definable bijection nx : X =~
GF(X)/GF(=) (where GF (=) is the definable equivalence relation interpreting
equality) such that for any definable function X Ly in T°4, the square

X 2 GF(X)/GF(=)

fl lGF(g)

Y —— GF(Y)/GF(

)

commutes, and dually

for any definable set X’ of T"°? there exists a definable bijection ex: : FG(X')/FG(=
) — X’ in T7"%9 such that for any definable function X’ Ly T 4. the square

FG(X')/FG(=) = X’

FG(f’)l lf/

FGY')/FG(=) —— Y’
comimutes.

Thus, to every abstract bi-interpretation of theories, we can associate an equivalence

of categories between the pretoposes Def (77) ~ Def(75") (and vice-versa).
This gives a nicer reformulation of Proposition [2.3.20}

Proposition 2.6.21. Two Ny-categorical structures are concretely bi-interpretable if

and only if they have abstractly bi-interpretable theories.

Remark 2.6.22. As remarked in Makkai-Reyes [13], if we change the “finite” in
“stability of finite sups” and “finite coproducts” to “small” (in the sense of the ambient

universe), we get a Grothendieck topos (c.f. Giraud’s theorem at the beginning
of IRt

Notation 2.6.23. For the rest of this document, unless explicitly stated otherwise,

we will assume 7' = T°9, and so Def(T") will always be a pretopos.
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2.7 The 2-category of structures and interpreta-

tions

In this section, we form the natural 2-categorical structure of structures and interpre-

tations and study the process of taking endomorphism monoids.

Roughly speaking, a 2-category is a category C all of whose hom-sets C(X,Y') are also
categories. This means that for any two morphisms F,G : X — Y, there is a notion
of a higher “2-morphism” 7 : F — G. The prototypical example for the concept is
the category of categories with objects categories and morphisms functors between
categories, and with 2-morphisms the natural transformations between functors. For
details, we refer the reader to ([9], XII.3).

Definition 2.7.1. A natural transformation v : (f, f*) — (g, g*) of two interpreta-

(fuf#)

tions A ( = | B is a specification of a 0-definable bijection f*(S) — ¢*(.9) for each sort
9,9%*

S of A so that restriction yields 0-definable bijections f*X — ¢*X for any definable

subset of A.

Definition 2.7.2. The 2-category of first-order structures and interpretations is given

by )
Objects: first-order structures A

df
Struct = 4 Morphisms: interpretations (f, f*): A — B

2-morphisms: natural transformations.

\

Proposition 2.7.3. Let TopMon be the 2-category of topological monoids. There is

a contravariant 2-functor (which only reverses 1-morphisms)

Structer ") TopMon
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given by
A — End(A)
ALY B s (Bna(p) " Ena(a))
* * (f:S7) xyy End *
(1592 0.9 for 475 B) o (Bna((7.£) ™ Bd((9,)).

where End(A) is the monoid of elementary self-maps A — A endowed with the topol-
ogy of pointwise convergence, End((f, f*)) is induced by restriction (elementarity of
an endomorphism ensures this restriction is well-defined) and End(v) is the endomor-
phism of A induced by vy, which satisfies (this is the definition of a 2-morphism in the
2-cat TopMon):

End(v) o End((f, f*))(0) = End((g,9%))(0) o End(y)
for all o € End(B).
Proof. This last statement follows from endomorphisms o being elementary: let x
be f*x in f*A, then
yoxg =oyry = vyo(ol ff*A)xs=(0c]g*A)oxy
— End(7)  End(f)(0)(z) = End(g)(0) © End(v)(x),
for all x € A. O

Proposition 2.7.4. Furthermore, if we discard all morphisms which are not iso-
morphisms and all natural transformations which are not natural isomorphisms, and
thus restrict to the underlying 2-groupoid core(Struct) of Struct, End(—) becomes a

contravariant 2-functor

core (Struct)” AU TopGrp

to the 2-category of topological groups. In particular, on 2-morphisms v : (f, f*) —
(g,9%) we have Aut(g)(o) = Aut(y) o Aut(f) o Aut(y)~! for all o € Aut(B).
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Remark 2.7.5. Note that End(—) reflects 2-isomorphisms: if f - g becomes an
isomorphism after applying End(—), then End(~) is invertible, so 4 must have been

invertible.

Remark 2.7.6. By the above remark, End(—) reflects equivalences: if we have a

mutual interpretation f : A <5 B : g and natural transformations 7 : id4 — ¢f and

Au Aut(e
€ : fg — idp such that idaue(a) NG Aut(gf) and idaw(m) N Aut(fg) then n and

e must have already been isomorphisms, so that A and B were bi-interpretable.

Remark 2.7.7. End(—) does not reflect 1-isomorphisms: if we have mutual interpre-
tations f : A < B : g with End(f) and End(g) forming an isomorphism of topological
monoids End(g) : End(A) < End(B) : End(f), it is not generally true that f and g
invert each other. This is because there are “homotopies” h in the sense of Ahlbrandt

and Ziegler such that End(h) = id.

2.8 More on Mod(T)

2.8.1 Equivalences of theories induce equivalences of cate-

gories of models
Notation 2.8.1. The symbol ~ between categories means equivalence, not strict
isomorphism.

Notation 2.8.2. If C and D are categories, we write [C,D] for the category of
functors C — D.

We spell out the purely formal fact that taking functor categories [—, —] preserves

equivalences in either argument

Lemma 2.8.3. Suppose C; ~ Cy and Dy ~ Dy. Then [Cy,D;] ~ [Cq, Dy].
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Proof. Name the functors in the equivalences above 1 : C; ~ Cy : jand k : D; ~ Dy :
0. Let F : C; — Dy. We induce a functor § : [Cy, Dy] — [Cy,Dsy]| by F +— kFj and
1 — knj for n a natural transformation. This is clearly functorial, and we’ll show it’s

full, faithful ,and essentially surjective.

Fullness: if n : kFj — kGj is a natural transformation in [Cy, Ds], we require an
n" : F — G such that kn”j = n. By the full faithfulness of k, we can lift n to an
n : Fj — Gj. So it suffices to show that precomposition by an equivalence is a
fully faithful functor between functor categories. To do this, we require the usual
construction, requiring the axiom of choice. 7’ is already a Cs-indexed collection
of maps in D; between objects in the image of F'j and Gj (which are subsets of the
images of F' and G, respectively), and we can (non-canonically) use the full faithfulness
and essential surjectivity of j to extend 1’ to an n” giving a C;-indexed collection of
maps between all objects in the full images of F' and G. To be precise: select for
each isomorphism class [b]~ of an object b € C; a representative cp). € Ca, such that
Jep). >~ b, and for each object b € Cy an isomorphism ¢ : J(cp).) — b. Then for all
be Cy, define 1 : Fb — Gb by

Meore Go1
Fb }E;b ch[b] L G]C[b]: ﬂ; Gb.

To see this is a transformation, see that in the naturality diagram

Fb —>F¢b F]-C[b]: —>n/ jS[b]: —>G¢b Gb

S

s Gf

/ / . . ’
b b W FI]C[[,/]2 ? C{]C[b/]2 W Gb

the squares on the left and right commute by assumption and the center one does as

well by the naturality of ’. Hence § is full.

Faithfulness: suppose that 7 # € as natural transformations from F' to G in [Cy, Dy].

So there is some b € C; such that n, # ¢,. By faithfulness of k. kn, # ke,. By
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the essential surjectivity of j, there is a ¢ € Cy such that there is an isomorphism

¢ : jc ~ b. Examining the naturality square for n at ¢ yields the identities
e =Gl omoFo ! and €j. = G ' oo Fo .

Since functors preserve isomorphisms, and in general isomorphisms x — ',y — ¢/
induce a bijection via conjugation Hom(z,y) ~ Hom(z',v'), my # €6 = njc # €je.

Hence § is faithful.

Essential surjectivity: for each functor H : C; — D,, we require some F' : C; —
D; such that there is a natural isomorphism §F = kFj ~ H. To do this, we
repeat the construction using the axiom of choice from the proof of fullness, this
time simultaneously to 7 and k, so that we have functions b — (c[b]:, ¢b) and e —

(d[e]z,we). Given a b — ' in Cy, we construct F via the following sequence of maps:

b —— jeu.

/ (f.£)
(b—1b) — l = (el = e
b —— jC[b/]

HC[b]: — kd[HC[b]:L

(£.£)
~ (e, = Hep) = | | = (e, = dae] )

HC[b/]z — kd[HC[b’]z]:
which is easily seen to be functorial. O
Corollary 2.8.4. If two theories Ty, Ty are bi-interpretable, then their categories of

models are equivalent.

Proof. A bi-interpretation 7} ~ T5 induces an equivalence of pretoposes Def (77) ~
Def(T,). A model of T is just an elementary functor from Def(7) into Set. Ele-
mentary functors are closed under composition, so the restriction of § as above to the

elementary functor categories is well-defined, and must be an equivalence. O]
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In light of this fact, it is natural to ask for a converse: if Mod(T') ~ Mod(7T"), then
is there a bi-interpretation 7" ~ T"? Can we find a bi-interpretation which induces

the original equivalence Mod(T") ~ Mod(71")?

Later, we will give an example which shows that the answer to the first question is
“no”. The conceptual completeness theorem of Makkai and Reyes [13] says that if
we are given an interpretation T — T’ to start with, then if the induced functor
Mod(7T") — Mod(T) is an equivalence, then the interpretation must have been a

bi-interpretation.

2.8.2 Accessibility of Mod(T)

Two important features of the category of models of a theory T are that it has all
filtered colimits, and any model can be written as a filtered colimit of elementary

submodels the size of the theory.

Proposition 2.8.5. Mod(T') has all filtered colimits.

Proof. Standard inductive construction. m

Proposition 2.8.6. Let T be a first-order theory. For every N € Mod(T), N is
either of cardinality |T|, or N is the filtered colimit over its elementary submodels
of smaller cardinality than N. In fact, N 1is the filtered colimit over its elementary

submodels of cardinality |T|.

Remark 2.8.7. Computing the filtered colimit of a diagram of countable models
actually yields that every uncountable model of a first-order theory is the union of a

proper infinite elementary chain of submodels:

1. By downward Lowenheim-Skolem, every element z of the uncountable model N

is contained in a countable elementary submodel M,. For cardinality reasons,

37



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

there must be at least |N| distinct countable elementary submodels that arise

this way.

2. Index the M,’s by « the first ordinal of length |N|. By downward Lowenheim-
Skolem, amalagate M, with M, then with M, taking the union at w. Then
amalgamate this union with M,,, etc.; continuing until «, we end up with an

elementary chain which covers V.
We record here some consequences of accessibility.

Lemma 2.8.8. Suppose there is an equivalence F' : Mod(T') ~ Mod(71") : G. Then
for all models M =T where M = |T|, |F(M)| = max(|T|, |T"]).

Proof. Write F(M) as a filtered colimit over distinct elementary submodels M/ of size
|T’|. Passing through the equivalence, write M ~ lim & (M}). Since M has cardinality
|T|, only |T'|-many of the G(M])s are required in the filtered colimit for M. Therefore,
only |T'|-many of the M/s are required in the filtered colimit for F'(M). Since each
M has size [T'|, |F(M)] is bounded from above by the size of the |T|-indexed disjoint
union of the M/’s, which has size |T| x |T"| = max(|T|,|T"]). By the construction in
2.8.7, F'(M) is actually a proper elementary chain of length |T'| and therefore |F'(M)|
is at least as big as M plus a single point for every model in the chain, so |F(M)] is

at least as big as |T'| + |T"| = max(|T,|1"]). O

Proposition 2.8.9. Suppose there is an equivalence F' : Mod(T) ~ Mod(T") : G.
Then for all models M =T, |F(M)| = max(|M|, |T"]).

Proof. The proof is the same as that of [2.8.8] O

Corollary 2.8.10. Let k be an infinite cardinal. Then for countable theories, k-

categoricity is invariant under bi-interpretation.

Proof. A bi-interpretation induces an equivalence of categories of models, and by the

proposition [2.8.9] this sends models of size k to models of size k. Since it is an
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equivalence, this induces a bijection between the isomorphism classes of models of

size k on either side. O

2.9 Ny-categorical structures and theories

In this section, we review the theory of Ng-categorical structures and prove some
lemmas which will be necessary for our main results. In the rest of the thesis, unless if
we say otherwise, an Ry-categorical theory will always mean (in light of our convention

2.6.23|) the (—)® of a one-sorted Ny-categorical theory.

2.9.1 The Ryll-Nardzewski theorem

There is a nice description of what the automorphism groups of Ny-categorical struc-
tures look like. As permutation groups on w, they must be oligomorphic; this is the

Ryll-Nardzewski theorem.

Definition 2.9.1. A group action G — X is oligomorphic if each of the product
actions

G~ X,G~X*G~X* .
has only finitely many orbits.
Theorem 2.9.2. (Ryll-Nardzewski) A structure M is Rg-categorical if and only if its

automorphism group action is oligomorphic.

Proof. Suppose M is Ny-categorical. The omitting types theorem says that a non-
isolated type can be omitted, and every infinite compact space must have a non-
isolated point. So the type spaces of M in every tuple of sorts have to be finite, and

every type is isolated by a formula, so M is w-saturated. Then any two tuples of the
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same type are conjugate by an automorphism (via a back-and-forth argument; homo-
geneity follows from the fact that naming finitely many constants doesn’t change the
saturation), so Aut(M) is oligomorphic. Conversely, suppose towards the contrapos-
itive that M was not Nyp-categorical. Then a type space of M is infinite, since any
point of a finite Stone space (whence Hausdorffness) is isolated. The number of types
in a tuple of sorts is a lower bound on the number of Aut(M)-orbits on that tuple of

sorts, so Aut(M) is not oligomorphic. O

Here are some examples.

Example 2.9.3. (i) Consider the theory of a dense linear order, which at cardinal-

ity Ng has just one model: the rationals with the canonical ordering. The orbits

7

in higher powers are determined by how we fiddle with “<” and “=" relating

finitely many points picked from Q.
(ii) A theory with a single equivalence relation with infinitely many infinite classes.
(iii) The theory of equality on an infinite set.
(iv) The theory of the countable random graph.
(v) Relatedly to the above examples: the theory of any Fraissé limit.

(vi) Here is a nonexample, which we know is not Rg-categorical and hence not sat-
urated by Ryll-Nardzewski [2.9.2f (N, <). This does not realize the type of the
point at infinity.

Here is what an w-saturated extension of this looks like:

N+..Z+Z+---+7Z+...

where each Z is equipped with the usual ordering; we can think of those as points

at infinity. These copies of Z are actually dense, so the order type properly
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written is N + QZ.

(vii) For another non-example which is more purely model-theoretic, take the theory
of just equality in an infinite model and name infinitely many distinct con-
stants. Note that if we name just finitely many constants, we still have the
Ryll-Nardzewski theorem—the finitely many orbits are just those con-
stants and then the orbit which contains everything else—but as soon as we
name infinitely many, we can take a model which consists of just those con-

stants versus a model where we’ve added an unnamed element.

2.9.2 The Coquand-Ahlbrandt-Ziegler theorem

Definition 2.9.4. Given a group action G —~ M, we can canonically turn M into a
first-order structure Inv(G — M), called the invariant structure of G —~ M, in the
language where we name every G-invariant subset of any finite power M" of M with

a new predicate symbol.

Theorem 2.9.5. (Coquand, Ahlbrandt-Ziegler, [1]) Two Rg-categorical structures are
bi-interpretable if and only if their automorphism groups are isomorphic as topological

groups.

Proof. Let A and B be Ny-categorical, and let G; and G5 be their automorphism

groups. Suppose there is a topological isomorphism ¢ : G; — Gb.

Since our automorphism groups are topologized under pointwise convergence, open
subgroups are stabilizers of tuples. By the Ryll-Nardzewski theorem, there are only
finitely many orbits of Gy — B. Take representatives b df (b1,...,by,) of those or-
bits. Consider Stab(b) an open subgroup of Gy. This corresponds via the topo-

logical isomorphism to an open subgroup H of Gy, which we can assume is of the

form Stab(@ £ (ai,...,a)). The domain U of the interpretation will be all the
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(G1-conjugates of

and the interpretation

is given by
£

flo(a),o(a), ... o) £ p(o)(b;)

for 1 < i < k and 0 € (G;. Carrying out this process for the inverse topological
isomorphism ¢ : Gy — G and obtaining a V' 5 B, we see that (f, f*) and (g, g*)
form a concrete bi-interpretation Inv(G;) ~ Inv(G3). (To take care of the necessary
homotopies: since f and g will be bijections U ~ B and V ~ A and they were
defined by translating orbit representatives, the obvious isomorphisms ¢* f*B ~ B
and f*¢g*A ~ A gotten by chasing b € B and a € A through f and ¢ will be G-

invariant.) O

Remark 2.9.6. The conclusion of this theorem fails to hold as soon as we weaken
the w-categoricity assumption, if instead of looking at the topological automorphism
group of the unique countable model we look at the topological automorphism group

of a countable saturated model.

For example, let T" be the theory of an infinite set expanded by countably infinitely
many distinct constants. The saturated countable model M of this theory has in-
finitely many elements which are not constants (these are realizations of the omittable
type which says “I am not any of the constants.”). The Aut(M)-invariant structure
Inv(Aut(M) —~ M) (see on M recognizes this omittable type as an infinite

predicate which contains no constants.

Since no infinite definable set in M = T contains no constants, M is not bi-interpretable

with Inv(Aut(M) —~ M).
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2.10 Recovering Mod(T) from End(M)

In this section, we will prove (this appears without proof in a paper [I1] by Daniel

Lascar):

Proposition 2.10.1. Let 17 and Ty be w-categorical theories. Let End,(—) take an
w-categorical theory to the monoid of endomorphisms (in Mod(T)) of its countable
model. Then every isomorphism of monoids F' : End,(T1) — End,(T3) : G induces
an equivalence of categories F : Mod(T}) — Mod(T3) : G.

Proof. The functor is obtained by taking colimits of countable submodels. If N =T,
we write Age,(NN) for the diagram of countable elementary submodels of N with
inclusions between them (these inclusions are automatically elementary maps since

the countable models are elementary submodels of N).
Age,(N) is a filtered diagram in Mod(7'), and N ~ lim(Age,(N)).

Proof of claim. Filteredness is equivalent to every finite subdiagram admitting
a cocone in the diagram, and this follows from Lowenheim-Skolem: a finite sub-
diagram in this case is just a finite collection of countable elementary submodels
of N. Then N models the elementary diagram of the union of these countable
elementary submodels, and so by Lowenheim-Skolem admits a countable ele-

mentary submodel which is a cocone to the finite subdiagram.

Since every n € N is contained in some countable submodel M,, a cocone
M, M N7 under Age (N) extends uniquely to a map out of N by sending
n +— far,(n); the compatibility of the fy;, with the transition maps in the
diagram Age,(N) ensures that this map is well-defined. So N satisfies the

universal property of the colimit, hence is isomorphic to the colimit. O

Since every endomorphism of a countable model M = T} is an elementary embedding

of the form M < M, the isomorphism F' of endomorphism monoids tells us how to
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define F on Age_(N). We extend this to a true functor F' : Mod(T}) — Mod(T3) by
defining
F (N, = Ny) L Jim (F Age,(Ny)) = lim (F Age,(N2)) ,

where the induced map is the canonical comparison map between colimits, induced
by the natural inclusion of Age (N7) in Age_ (Ny). Functoriality follows from the
uniqueness of these comparison maps. G : Mod(T3) — Mod(T}) is defined entirely

analogously.

It now remains to show that F and G form an equivalence of categories when they
are induced by F and G forming an isomorphism of monoids. Since G inverts F
on countable models and elementary embeddings between them, there is already a

natural map, in fact a canonical comparison map
N =~ lim Age_(N) — GFN.

To see that this is in fact an isomorphism, it suffices to see that any copies of the
countable model M’ = T, that show up in F(N) is in fact of the form F'(M) for some
M — N.

Since filtered colimits in Mod(T) are unions of the models that appear in the underly-
ing diagram of the filtered colimit, any countable elementary submodel M’ - F(N)is
covered by countably many elementary submodels {F'(M,,)} e (since each element,

of M’ is contained in some F'(M;)).

By using Lowenheim-Skolem again, we can jointly embed the M,, into another count-
able elementary submodel M of N. Then the elementary embedding ¢ factors through
the inclusion of the countable elementary submodel 7(]\7 ) into F(N). Viewing the
map M' — 7(1\7 ) as an endomorphism M’ — M’ we apply the isomorphism to obtain
a corresponding endomorphism G(M') — M. Since the composition of elementary

embeddings is an elementary embedding, G(M’) is part of Age (N), so that M’ of
the form F(G(M")). O
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Chapter 3

Ultraproducts, ultracategories, and
Makkai’s strong conceptual

completeness

In this chapter we provide the necessary background on Makkai’s theory of ultracat-

egories.

3.1 Introduction

Definition 3.1.1. An ultraproduct of a family (A;);c; of non-empty sets with re-

spect to a non-principal ultrafilter & on I is the set
1_[ A 2 HieIAi/wu,
i—U

z; = y;} € U. Given a representative

where (z;)ier ~u (Yi)ies if and only if {j € [

(x;)ier of a U-class, we write [x;];_y for its ~y-class.
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Inside the category Set, this definition can be recast as the filtered colimit
iU 7 \ieP Peld
where the transition maps in the filtered diagram [[,.p, A;i — [ [,.pr 4 are the pro-

jections to the coordinates P n P’. This correctly handles the possibility that on a

U-small set of indices, the sets A; are empty.

However, it is safe to assume that for the remainder of this document, we will ignore
empty models, and so the definition of an ultraproduct of sets can be taken to be the

first one.

Definition 3.1.2. When computing an ultraproduct of sets [ [, ,; A;, we will follow

the conventions:

1. Whenever we form an /-indexed product [ [,.; A;, we will think of each sequence

(a;)ier as the set {(i,q;)} and we will always write [ [,.; A; as the set of those

sequences: {{(¢,a;)}}.

2. Whenever we have a set X and an equivalence relation £ = X, we will always

write the quotient X /E as the set of (literal) equivalence classes of X.

With these conventions in place, we know ezactly what set is the ultraproduct of
a given family of sets; by applying the ultraproduct construction to the graphs of
functions (X; — Y;)er, we also know exactly how to take ultraproducts of functions.
This all determines ultraproduct functors [U/] : Set’ — Set, for every I and every

ultrafilter ¢ on I.

Since Mod(T) is the category of elementary functors (which we think of as pretopos
morphisms) Pretop(Def(T"), Set), once we have specified how to take ultraproducts

in Set, this tells us how to define ultraproducts of models “pointwise”:

Definition 3.1.3. Let (M;);c; be an I-indexed sequence of models of T'. We define the

ultraproduct of models [ [, ,, M; to be the following elementary functor Def(T") —
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Set: on objects A € Def(T), put
df
(]_[ Mi) (A) = ] ] ((4)),
i—U i—U
so that we have defined where [ [, ,, M; sends the object A to be precisely the ultra-

product in Set of where each elementary functor M; sends A.

This determines where [, ,,(M;) sends maps f : A — B in Def(T'), by treating f

as its graph relation.

As pointed out by Makkai in [12], the content of the Los theorem (see is that
the previous definition of an ultraproduct of models is still an ultraproduct of models
(and this boils down to showing that the ultraproduct functors on Set are elementary
functors Set’ — Set). However, in Mod(T), ultraproducts of models admit no nice
definition in terms of a filtered colimit of infinite products as when we were computing

ultraproducts in Set—because infinite products of models might not exist.

However, since ultraproducts of models are still computed sort-by-sort (indeed, de-
finable set-by-definable set), one might believe that there is some residual “niceness”

from Set manifesting in how the ultraproducts of models interact with each other.

The purpose of the notion of ultracategory, modeled after Mod(T), is to formalize
this notion of a category equipped with extra structure coming from a “nice” notion
of taking ultraproducts of its objects. In particular, since in Set, ultraproducts are
a combination of products and filtered colimits, there are purely formal “comparison
maps” between ultraproducts arising from the universal properties of products and
filtered colimits, and we will see that part of the extra structure includes naming
these “comparison maps”. Functors which preserve this extra structure are called
ultrafunctors, and ultrafunctors between ultracategories X : K — K’ will generalize

the reduct functors Mod(7”) — Mod(T') induced by an interpretation T — T".

Makkai’s duality theorem [12] tells us that there is a dual adjunction between first-

order theories (pretoposes) and ultracategories, in fact given by taking appropriate

47



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

categories of Set-valued functors. Strong conceptual completeness says that the counit

of this adjunction is an equivalence, i.e. that a pretopos T is equivalent to the category

of ultrafunctors Ult(Mod(7), Set).

3.2 Basic notions

3.2.1 The Los theorem

To every non-principal ultrafilter i on an indexing set I, we have fixed an ultraproduct
functor

[U] : Setl - Set, (Xi)iej = H Xz
The starting point is the Los ultraproduct theorem, which we rephrase in terms of
the ultraproduct functors in Set:
Theorem 3.2.1. (Los theorem) Let I be an indexing set and U an ultrafilter on I.
Then the ultraproduct functor [U] : Set’ — Set is elementary.
Proof. An elementary functor preserves initial and terminal objects, pullbacks, dis-
joint sums, and quotients by equivalence relationf].

e Initial objects: a product of the empty set is the empty set, and a quotient of

the empty set is the empty set.

e Terminal objects: a product of terminal objects is terminal, and the quotient of

a singleton is a singleton.

e Pullbacks: a product of pullbacks is a pullback, and finite limits commute with

filtered colimits.

'Note that this implies that images are preserved: the image of any definable function f : X — Y
is the projection to Y of the graph I'(f) of f, and is therefore in definable bijection with the quotient
of T'(f) by the definable equivalence relation (z,y) ~ (2/,y') < y=1y'.
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e Disjoint sums: a product of disjoint sums is a disjoint sum of products, and

colimits commute with colimits.

e Quotients: a product of quotients X;/E; is a quotient of products [ [; X;/ [ [; Ei,

and colimits commute with colimits.

O

Corollary 3.2.2. Let (M;)ic; be an I-indexed family of L-structures. For each L-
formula p(z), each element @ of the ultraproduct [ Lier M u,

Miet Mi jy | pla] <= {ieI|M; ¢la]} U,

Proof. By the ultraproduct functor is elementary, so that the process of taking
points inside a model of a definable set commutes with taking ultraproducts. In

symbols,

(H Mz-/U> (X) =~ [ [Mma(x)u.

1€l 1€l
Since this is a filtered colimit, a sequence T satisfies that its germ [Z] isin [ [,., M;/U(X)
if and only if there is some J € U such that the restriction of T to J is in [ [, ; M;(X).

ie. if x; € M;(X) for each j € J. O

We recount the proof via regular ultraproducts of the compactness theorem for first-

order logic. This technique will be used in various arguments later on.

Fact 3.2.3. (Compactness theorem for first-order logic) Let T' be a first-order theory.

T has a model if and only if every finite subset Ty ﬁg T has a model.

Proof. Let I index the finite fragments of T" a first-order theory. For each ¢ € I, let
P; be the collection of all j € I such that viewed as finite fragments of T, j 2 4. The
collection F & {P;}icr has the finite intersection property: P, n Py = {j € I ‘ j 2

iandj 2 i’} = {j e I|j 2 iui} = Py. Now take a completion F' of F to an
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ultrafilter. Let M; model each finite fragment of T" given by ¢ € I, and consider the

ultraproduct

Then for every sentence ¢ € T, ¢ is supported on some subcollection belonging to F,

so is satisfied in M™. O

We also recount and prove the following useful ultraproduct characterization of ele-

mentary classes, due to Chang and Keisler:

Definition 3.2.4. Let M be an L-structure. An wultraroot of M is some structure N

such that NV ~ M for some non-principal ultrafilter /.

Fact 3.2.5. A class C of L-structures is an elementary class if and only if it is closed

under isomorphisms, ultraproducts, and ultraroots.

Proof. Suppose that C is the objects Mod(7T)y of Mod(T) for some L-theory T.
Then it closed under isomorphisms, ultraproducts (by the Los theorem [3.2.1)), and

ultraroots (since diagonal embeddings into ultrapowers are elementary).
On the other hand, suppose that C is a class of L-structures closed under isomor-
phisms, ultraproducts, and ultraroots. Let T" be the theory

TS () The(M).

MeC

It suffices to show that C = Mod(T"),. By definition, C < Mod(T"),, and the
inclusion C < Mod(T), reflects isomorphisms. By the Keisler-Shelah isomorphism
theorem the inclusion reflects elementary equivalences. Therefore, if there is an
M € Mod(T)o\C, its theory must not show up in {Th(N)|N € C}.

Since T' = ({Th(N)| N € C}, for every finite fragment % s Th(M), there exists an
Ny, € C such that Th(N) = 3. (Otherwise, there is a sentence ¢» € Th(M)\T such
that for all N € C, N |= —, so that —¢ € T, a contradiction).
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There is a regular ultrafilter ¢ such that H Ny, = Th(M). Since C was closed
) ﬁgE "F;;If{M)
under ultraproducts, this contradicts our assumption that M ¢ C. Therefore, C =

Mod(T)) is an elementary class.

O
Finally, we state the Keisler-Shelah isomorphism theorem (though much of the time,
special models arguments suffice to replace it.)

Theorem 3.2.6. (Keisler-Shelah isomorphism theorem) Two L-structures are ele-

mentarily equivalent if and only if they have isomorphic ultrapowers.

3.2.2 Frayne’s lemma and Scott’s lemma

In this subsection, we state Frayne’s lemma and the related Scott’s lemma, which will
be needed for some later results. We omit the proofs (somewhat-elaborate regular

ultraproduct arguments) and refer the interested reader to [3].

Lemma 3.2.7. Let N = M be elementarily equivalent. Then N elementarily embeds

into some ultrapower MY of M.

Lemma 3.2.8. Let M 5 N be an elementary map. Then there is an ultrapower MY

of M and an elementary embedding N 2 MY such that the diagram

commutes.
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3.2.3 The Beth definability theorem
In this subsection, we state and prove a version of the Beth definability theorem, due
to Bradd Hart.

Theorem 3.2.9. Let Ly < Ly be two languages, so that Ly has no new sorts. Let T
be a theory in Li. Let F' be the reduct functor

Mod(T}) - Mod(&y,)

(here Jr, is the empty theory in Lo, whose models are just all the Lo-structures.)
Suppose that we know any one of the following:

1. Thereis a theory Ty in Lo such that F' factors through Mod(1y) with Mod (1) —

Mod(Ty) an equivalence of categories.
2. F is fully faithful.
3. F' is injective on objects.
4. F s full and faithful just on automorphism groups.

5. For all M € Mod(Ty), every Lo-elementary map f : F(M) — F(M)* is
(uniquely lifts to) an Ly-homomorphism f = f: M — MY (between M and

MY viewed as Li-structures.)

Then: every Lq-formula is T -equivalent to an Lgo-formula.

Proof. 1 clearly implies 2.

2 is equivalent to 3: assume not 3. Then there are two distinct Li-expansions M and
N of the same Lg-structure K, and so the identity automorphism is not in the image
of F restricted to Homy, (M, N): M and N being different must be witnessed by a
single tuple k and some symbol R from L;\Lq such that = RM (k) and = —RM (k).

52



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Therefore, any automorphism of K which fixes £ cannot be L;-elementary, and this

negates 2.

Now assume not 2. Since taking reducts along an inclusion of languages is always
faithful, this must fail to be full, and so this must be witnessed by an Lg-elementary,
Lq-not-elementary map g : FM — F'N. But then the pushforward L;-structure of M

along g induces an Li-expansion of F'N distinct from N, which negates 3.
2 clearly implies 4.

4 implies 5: it suffices to show fullness, so let f : FM — (FM)¥. We use a special
models argument: by repeatedly invoking Scott’s lemma, start with FM — (FM)4

and obtain a diagram of iterated ultrapowers

FM ——— (FM}#* —— (FM)%)

fl/l/l/

(FMP s (P —s ()" ——

so that the vertical arrows become an isomorphism f, : M; — M, in the limit
which extends f. The diagonal arrows become an isomorphism g,Msy; — M; in the
limit, and from the commutativity of the diagram at every stage, g, o f., becomes an
automorphism of M; which extends f. Then g, o f, lifts to an Li-automorphism.

Restricting g, o f,, from M; to F'M, we get that f also lifts to an Li;-homomorphism.

Now, to show that 5 implies that every L;-formula is equivalent modulo T to an
Lo-formula: suppose not, so that there is an L; formula ¢(z) such that for all Lg-

formulas (), there exists an a and a b such that ¢(a) A ¢(b) for all p(x) € Ly, but
U(a) A —p(b).

This is saying that there exists a model M of T} on which the indicator function of

¥ (x) disagrees with the indicator functions of every p(x) € Ly.

Now, since a and b have the same Lg-type, there exists an ultrafilter &/ and a pair of
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maps
f
FM = (FM)Y
Apm
where f is some embedding which sends b — a.
Since b and a have distinct Li-types, fis not L;-elementary. Since f is a homomor-

phism lifting an elementary embedding, it is an embedding, so a and b have the same

quantifier-free Li-type. Therefore, 1) was not quantifier free.

This implies that every quantifier-free L; formula 1 is T-provably equivalent to an

Lo-formula.

Since interpretations commute with quantification, we conclude that every L;-formula
is T-provably equivalent to an Lg-formula. O
With a little more work, we can remove the stipulation that no new sorts are added.

Theorem 3.2.10. Let Ly S Ly be an inclusion of languages, possibly with new sorts.

Let T be an Ly-theory.

Suppose that whenever M =T and U is an ultrafilter, then every elementary map
Mg, — (M1,)"

has a unique lift to a homomorphism on M.

Then every definable set X of T is T-provably equivalent (i.e. equivalent modulo T )

to an Lg-imaginary sort.

Proof. The proof proceeds via the following steps:

1. Show that under our assumptions, in every model M = T, the points in M
of every Li-sort is contained in the definable closure of the points in M of the

Lo-sorts.

2. By a compactness argument (see proof of [3.2.11)), every L;-sort is the surjective

image of an Ly-imaginary sort.
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We will spell out the first item, and trust that the reader will be able to imitate the
identical compactness argument from [3.2.11] Suppose towards the contrapositive that
there exists a model M |= T such that there is an Lj-sort S such that M(.S) is not
in the definable closure of M(Lg). Then (possibly enlarging M) there are two points
x,y € M(S) with the same type over M(Lg). So, for some ultrapower MY of M,
Ap(z) and Ap(y) are conjugate by an automorphism o fixing M (Lg).

Then both Ay : M — MY and o0 Ay - M — MY ift A - M |, — (M 1,,)", which

violates the assumptions of the theorem. O

3.2.4 Conceptual completeness

In this subsection, we state the conceptual completeness theorem (7.1.8, [13]) from

Makkai-Reyes and give a proof, following (4.4, [§]).

Theorem 3.2.11. Let Ty and T5 eliminate imaginaries. Let J : Def(T}) — Def(T5)
be an interpretation of Ty in Ty. Let J* & (—oJ) be the induced functor Mod(13) —
MOd(Tl)

Then J is an equivalence of categories if and only iof J* is.

Proof. That J* is an equivalence of categories if J is is purely formal, c.f. the lemma

283

Towards the other direction, suppose J* is an equivalence of categories. We need to

show that J is full, faithful, and essentially surjective.

f

To see that J is faithful: if f; # f; for Y] ?’1 Y5 in Def(77), then their equalizer is
2

not all of Yj, which is to say that

EdyeY) st yé¢eq(fr, fa)
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Since J is an interpretation, as a functor it preserves finite limits, complementa-

tion, and existential quantification. Applying J to the above sentence, conclude that

J(f1) # J(f2)-

Claim. If J is essentially surjective, it is full.

Proof of claim. 1f g : J(Y1) — J(Y3) is a definable function, then its graph I'(g)
is a definable set I'(g) — J(Y; x Y3). If J is essentially surjective, then there is
a corresponding I'(g) < (Y7 x Y3) such that J(g) = g. O

So, it suffices to see that J is essentially surjective.

First, we show that to prove this, it suffices to be able to place every object of Def (75)

inside an object coming from 77:

Claim. Let X € Def(T5). If there exists Y € Def(7}) with X — J(Y), then there
exists X € Def(T}) with J(X) = X.

Proof of claim. Let M and N be two models of T5. If J*M = J*N, then
M(X) = N(X) since M(X) — M(Y) = N(Y) <« N(X) and since J* is
an equivalence (consider a lift of the identity and the corresponding naturality

square for the inclusion X — J(Y)), M(X) = N(X). O

Next, we claim that if My is any model of T5, then any element a of M, is definable
over J*M,. Indeed, we can replace M, with a larger model such that there are two
elements a and b which are not definable over J*M, but which have the same type
over J*M,. Then there is an ultrapower *M? of M? and an automorphism of this
ultrapower which moves A(a) to A(b). This would yield two different embeddings of

M in * My; these agree on J* My, which would contradict that J* was an equivalence.

We will now use a compactness argument to show that, in Def(T3), any definable set

Y of T is the image of a definable map from a definable set J(X) coming from 77.

So, suppose that Y is not covered by any finite collection of functions whose domains
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lie in sorts coming from 7). This means that for any finite collection of such functions,
every model realizes a witness d € Y which lies outside the images of the functions.

That is, after introducing a generic constant symbol d, the theory
T LTy 0 {~3re(r,d) | ¢ is a function whose domain lies in a Tj-sort} U {d € Y}

is finitely consistent, therefore consistent. So 7" has a model. But in any model M of
T, the realization of d will not be Ty-provably definable over J*M (since otherwise the
formula ¢(z,y) which witnesses this can be restricted to a definable function whose
domain is in a sort coming from 7}), contradicting the previous claim. Therefore, there

exists some definable set J(X) such that there is a definable surjection J(X) — Y.

By the second claim of this proof, the kernel relation of the definable surjection
J(X) — Y is in the image of J. Therefore, Y is isomorphic to an imaginary sort of

T, and since T} eliminates imaginaries, Y is in the essential image of J. O]

3.3 Ultracategories and ultrafunctors

3.3.1 Pre-ultracategories and pre-ultrafunctors

Definition 3.3.1. ([12], Section 1) A pre-ultracategory S is a category S along with
specified ultraproduct functors [U] : S? — S for every set I and every non-principal

ultrafilter ¢ on I.

(Of course, this is not enough structure to nail down what it means to have a nice no-
tion of being able to form ultraproducts of families of objects; there are no restrictions
on what these ultraproduct functors might be, or how they interact. For example,
given an pre-ultracategory, we could replace [U] for each I with [V] for V some fixed

principal ultrafilter, and this would still be a pre-ultracategory.)

o7



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

The prototypical pre-ultracategory is Set; we have already described its ultraproduct

functors.
There is an obvious notion of a structure-preserving map between pre-ultracategories.

Definition 3.3.2. ([12], Section 1) A pre-ultrafunctor S — S’ is a functor X : S — S’

along with a specified transition isomorphism
dxy: Xo[U] S [UloX,
for each I and each U an ultrafilter on I. That is, we require all diagrams
s/ X! (S/)I
[U]S [U]S’

E—
S < S
to commute, where U ranges over all non-principal ultrafilters on I ranging over all

small indexing sets. (“Ultraproducts are preserved up to the transition isomorphism

CDX,U-” )

Remark 3.3.3. Every functor of points ev,(,) can be canonically viewed as a pre-
ultrafunctor with the transition isomorphisms ® just the identity maps (corresponding

to the equality signs in the above diagrams).

Remark 3.3.4. Because we only require our pre-ultrafunctors to commute with ul-
traproducts up to transition isomorphisms, one can have functors X : Mod(T') — Set
induced by taking certain (clearly non-definable) subsets of models which are isomor-
phic anyway by some natural transformation of functors to a definable functor. We

give an example below, which is the basis of the constructions in [8.1]

Example 3.3.5. Let T be the theory of equality on an infinite set expanded by de-
numerably many distinct constant symbols {¢;}ic,,. Then the functor X : Mod(T') —
Set which is induced by sending

M — {c|ieven} u (M\{¢;}i)
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is isomorphic to the functor ev_, which just takes the 1-sort of any model. The
isomorphism X ~ ev_ is given by on each model M by making it the identity on the
omittable type (M\{c¢;}iw); on constants, we use any bijection N — 2N, say k — 2- k.

We want to work with a category of pre-ultrafunctors, so we must describe what it

means to have a morphism of pre-ultrafunctors.

Definition 3.3.6. ([12], Section 1) Given two pre-ultrafunctors (X, ®) and (X', '),
we define a map between them, called an ultratransformation, to be a natural
transformation n : X — X’ which satisfies the following additional property: all
diagrams
@ (n1;)
771_[i—>z,{ Iwil ll_[z—»u 77Mi
X' (T Limge M) I [ Tim X' (M;)

must commute.

Definition 3.3.7. The category of pre-ultrafunctors PUlt(Mod(7), Set) com-

prises the following data:

4 | Objects: pre-ultrafunctors (X, ®) : Mod(7T') — Set

PUIt(Mod(T), Set) =
Morphisms: ultratransformations 7 : (X, ®) — (X, ®’).

3.3.2 Ultramorphisms

In Set ultraproducts are computed as certain filtered colimits, and so there are canon-
ical comparison maps between them induced by maps between their underlying dia-

grams (via their universal properties).

For example, consider the terminal map I — 1. This induces a diagonal map A —
[l,e;A by a — (a,a,a,...), and this induced map extends along ultraproducts to

give the diagonal map

A:M— MY

29



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

of a model into its ultrapower.

In Mod(T), these filtered colimits don’t usually exist because products of models of a
first-order theory don’t usually exist. For example, Mod(T") doesn’t see the diagonal
map A — [],.; A, only the diagonal map A : M — M it induces on models. So
the pure category Mod(T') does not distinguish (say) A : M < MY from any other
embedding M < MY, because there is no canonical way to obtain A. But once we
force Mod(T') to remember that ultraproducts of models are computed as certain
filtered colimits in Set, then A : M «— MY is distinguished by the ultracategory

Mod(T') because it arises in a canonical way.

The purpose of the notion of ultramorphisms is to name all the maps between ultra-
products in an pre-ultracategory which “should” arise in a canonical way. It turns out
that this is enough to correct for the laxness in the definition of a pre-ultracategory:
an ultracategory will be precisely a pre-ultracategory with as many ultramorphisms as

possible, and after that we get Makkai’s duality and strong conceptual completeness.

The definition of an ultramorphism

Definition 3.3.8. ([12], Section 3) An ultragraph I' comprises:

(i) Two disjoint sets I'/ and I'®, called the sets of free nodes and bound nodes,

respectively.

(ii) For any pair 7,7 € I, there exists a set E(v,7') of edges. This gives the data
of a directed graph.

(iii) For any bound node 3 € I'’, we assign a triple (“ultraproduct data”) {I,U, g) A
(I5,Us, gg)y where U is an ultrafilter on I and g is a function g : I — T'Y.

Definition 3.3.9. ([12], Section 3) An ultradiagram of type I' in a pre-ultracategory

S is a diagram A : I' — S assigning an object A to each node v € X, and assigning a
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morphism in S to each edge e € E(v,v’), such that

AB) = | [ Algsi)) /s

iEIﬁ

for all bound nodes 3 € I'®.

Given this notion of a diagram with extra structure, there is an obvious notion of
natural transformations between such diagrams which preserve the extra given struc-

ture.

Definition 3.3.10. ([12], Section 3) Let A,B : I' — S. A morphism of ultradia-

grams ¢ : A — B is a natural transformation ® satisfying

Oy = | oot

1—Ug

for all bound nodes 3 € I'".
Finally, we can define ultramorphisms.

Definition 3.3.11. ([12], Section 3) Let Hom(I',S) be the category of all ultradia-
grams of type I" inside S with morphisms the ultradiagram morphisms defined
above. Any two nodes k, ¢ € I' define evaluation functors (k),(¢) : Hom(I',S) =3 S,
by

(k) (A B) = A(k) ™5 B(k)
(resp. /).

An ultramorphism of type (I', k, {) in S is a natural transformation ¢ : (k) — (¢)f]

Examples of ultramorphisms

Let us unravel this definition for the prototypical example A : M < MY of an

ultramorphism.

2Note that in our terminology, an ultramorphism, singular, refers to a collection of possibly many

maps (the components of the natural transformation (k) — (¢)).

61



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Example 3.3.12. Given an ultrafilter ¢ on I, put:
. 1V = (k).
. I {1},
e E(v,7) = forall v,7 €T,
o (Iy,Up, g0y = {I,U,g) where g is the constant map to k from I.

By the ultradiagram condition [3.3.9] an ultradiagram A of type I" in S is determined
by A(k), with A(¢) = A(k)Y.

By the ultradiagram morphism condition [3.3.10, an ultramorphism of type (', k, ¢)

must be a collection of maps (5 v M — MY ) | which make all squares of the

MeMod(T

form

M L u

sl e

commute. It is easy to check that setting d5; = Ajs the diagonal embedding gives an

ultramorphism.

Definition 3.3.13. The next least complicated example of an ultramorphism are the
generalized diagonal embeddings. Here is how they arise: let ¢ : I — J be a
function between two indexing sets I and J. g induces a pushforward map g, : 51 —
BJ between the spaces of ultrafilters on I and J, by g & {PcJ|g ' (P)elU. Fix
UeBIand put VL g, U, Let (M;)jes be a J-indexed family of models.

Then there is a canonical “fiberwise diagonal embedding”

Ay [T M= T My

j—V i—U

given on [a;];_y by replacing each entry a; with g~!({a;})-many copies of itself.

In terms of the definition |3.3.11| of an ultramorphism, the free nodes are J, and there
are two bound nodes k and ¢. To k we assign the triple (J,V,id;) and to ¢ we assign
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the triple (I,U, g). Then A, induces an ultramorphism (k) — (¢).

3.3.3 What it means for a pre-ultrafunctor to preserve an

ultramorphism

Given the protytpical diagonal embedding ultramorphisms A,;, we can say what it

means that a pre-ultrafunctor (X, ®) preserves diagonal embeddings.

Definition 3.3.14. We say that a pre-ultrafunctor [3.3.2] (X, @) is a A-functor if for
every I, for every U, and for every M and the diagonal embedding M Ay , the

diagram
X (M)
X(W
X(M) D ()
Axm
X (M)™
commutes.

Analogously, we can define what it means for (X, ®) to preserve a general ultra-
morphism [3.3.11] Let (X,®) : K — S be a pre-ultrafunctor between the pre-
ultracategories K and S, and let 6 be an ultramorphism in K and 6" an ultramorphism

in S, both of type (I', k, £).

Recall that in the terminology of the definition [3.3.11], ¢ is a natural transformation

(k) 2, (¢) of the evaluation functors
(k), (¢) : Hom(I', K) — K.
(Resp. ¢', S.)

One would like to be able to say that for any ultradiagram .# € Hom(I',K), we
can apply X to produce a “pushforward” ultradiagram X o .# in Hom(I',S). How-

ever, since we defined ultradiagrams “strictly” (by requiring that there is a literal
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equality between .Z(f) for f a bound node with ultraproduct data (I,U,g) and
[ 1,y +#(g(i))), this only happens if (X, ®) is a strict preultrafunctor (c.f. [3.4.1)). So,
we will do the next best thing and “strictify” X o ..

Definition 3.3.15. ([12], Section 3) Let (X, ®) : K — S be a pre-ultrafunctor be-
tween the pre-ultracategories K and S. We define an ultradiagram X.# : ' — S as

follows:
1. If v is a free node, then X.Z(v) ¥Xxo M (7).

2. If B is a bound node with ultraproduct data (I,U, g), then X.Z (53) 4 [, Xo
A (9(i))-

There is an obvious natural isomorphism of functors v : X o . # ~ X.# whose
component vg at a bound node § with ultraproduct data (I,U, g) is the appropriate
component of the transition isomorphism v 4o Xo.#(g(i)) and whose component at a

free node 7 is just the identity map v, i Xo.l (v)-

Definition 3.3.16. ([12], Section 3) Let (X,®) : K — S be a pre-ultrafunctor be-
tween the pre-ultracategories K and S, and let § be an ultramorphism in K and ¢’

an ultramorphism in S, both of type (', k, ).

We say that X carries § into ¢’ (prototypically, § and ¢’ will both be canonically
defined in the same way in both K and S and in this case we say that ¢ has been

preserved) if for every ultradiagram .# € Hom(I', K), the diagram

X (o (k) 224 X (o (0)

V,gl lw

(XA (k) 5— (XA)(0)

commutes.
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3.3.4 The definitions of ultracategory and ultrafunctor

Denote the class of all ultramorphisms in Set by A(Set).

Definition 3.3.17. ([12], Section 3) An ultracategory K is a pre-ultracategory
(c.f. [3.3.1)) K whose ultramorphisms are “fibered over” those of Set: we additionally
require a specification of an ultramorphism Jdk associated with any § € A(Set) such

that dk is of the same type (I, k, £) as ¢.

Definition 3.3.18. ([12], Section 3) We define an ultrafunctor X : K — S between
ultracategories K, S to be a pre-ultrafunctor (c.f. [3.3.2]) which respects the fibering

over Set: for every § € A(Set), X carries 0k into dg (in the sense of the definition
3.3.16/ above) for all § € A(Set).

Definition 3.3.19. A map between ultrafunctors is just an ultratransformation [3.3.2]

of the underlying pre-ultrafunctors.

We write Ult(Mod(T'), Set) for the category of ultrafunctors Mod(T") — Set.

3.4 The ultracategory structure on Mod(7)

Mod(T) is canonically equipped with the structure of a pre-ultracategory by “lifting”
the canonical pre-ultracategory structure on Set: an ultraproduct of models is just

the ultraproduct of the underlying sets of the models.

We now describe how to additionally canonically equip Mod(7') with the structure of

an ultracategory (“lifting”, as before, the canonical ultracategory structure on Set).

Lemma 3.4.1. Let .# :T' — Mod(T) be an ultradiagram. Let X : Mod(T) — Set

be a strict pre-ultrafunctor. Then:

1. Xou : T — Set is an ultradiagram.
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2. ifn My — My is an ultradiagram morphism, then Xn < {X (0y)}rer is an
ultradiagram morphism X o M — X o M.

Proof. 1f 8 is a bound node of T" with ultraproduct data (I,U, g), then

1.
Xoud(B) =X (H //l(g(i))) = [[Xoa(40i)).

i—U i—U
whence strictness of the pre-ultrafunctor X. Thus the ultradiagram condition

[3.3.9is satisfied.

X (ng) =X (H Ug(i)) = 11X (n)

i—U i—U
whence strictness of the pre-ultrafunctor X. Thus the ultradiagram morphism

condition [3.3.10] is satisfied.
Il

Definition 3.4.2. ([12], Section 3) We make the pre-ultracategory Mod(7") into an
ultracategory by specifying, for each ultramorphism ¢ in A(Set) of type (T, k, ¢), for
every ultradiagram .# : I' — Mod(T'), and for every object A € Def(T),

((6M0d(T))///)A d:f 5eVA oM -

Remembering that dnoa(r) is supposed to be a natural transformation of evaluation
functors on ultradiagrams, and elementary embeddings are natural transformations,
the equation displayed above reads: the component at the definable set A of the
component at .# of the ultramorphism 0 _4(r) is defined to be the component at the

ultradiagram ev 4 o.# of 0.

It is easy to verify that dnioq(r) so defined is an ultramorphism, using the previous

lemma.
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Proposition 3.4.3. Let A € Def(T'). Then the strict pre-ultrafunctorev 4 : Mod(T) —

Set is an ultrafunctor.

Proof. Setting up the preservation of ultramorphisms condition [3.3.16] it remains to
check that the diagram

vt (1) 2Dk a0

eva (M (k) — eva(A (L))

6evA oM

commutes. So,

eva ((dmoam)) ) = ((Omoarr)) ) 4

which was defined above to be ey A0z O

3.5 Strong conceptual completeness

There is a canonical evaluation functor
év : Def(T) — Ult(Mod(T), Set)

sending each definable set A € T to its corresponding ultrafunctor ev,, and we

now have the following picture of factorizations of the original evaluation map ev :
Def(T) — [Mod(T) — Set]:
Def(T) —¥— Ult(Mod(T), Set)

\ [

PUIt(Mod(T), Set)

ev l

[Mod(T), Set]

Now, we can state strong conceptual completeness.

Theorem 3.5.1. ([12], Section 4) év : Def(T) — Ult(Mod(T), Set) is an equiva-

lence of categories.
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Chapter 4

A-functors and definability for

Nop-categorical theories

In this chapter, we apply (pre)-ultracategories and A-functors to deduce a definability
criterion for Ny-categorical theories (Theorem |4.3.2)): a functor X : Mod(T) — Set
is definable, i.e. isomorphic as a functor to ev,() for some ¢(z) € T, if and only if

there is some transition isomorphism ® such that (X, ®) is a A-functor.

This shows that for Nyp-categorical theories, the rest of the ultramorphisms [3.3.11
that were part of Makkai’s reconstruction data for strong conceptual completeness

are unnecessary for checking definability.

The result is related to, but distinct from, Makkai’s strong conceptual complete-
ness. From , we know that if (X, ®) is a A-functor, then the underlying functor
X is isomorphic to an evaluation functor. This situation does not necessarily imply
that (X, ®) is an ultrafunctor. A counterexample is given in where a definable
functor is expanded by a transition isomorphism to a non-ultrafunctor. As the coun-
terexample shows, we need to exploit the Ny-categoricity assumption further before

we can deduce strong conceptual completeness for Ry-categorical theories.
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Indeed, later we will prove a coherence criterion (Theorem for objects in the
classifying toposes of first-order theories, specialize to Ny-categorical T, and deduce
as a corollary Theorem [7.2.2] which says that any A-functor (X, ®) : Mod(T') — Set
is an ultrafunctor, completing our deduction of strong conceptual completeness for

No-categorical theories.

4.1 A-functors and the finite support property

Definition 4.1.1. We say a functor X : Mod(7) — Set has the finite support
property (is fsp, has fsp) if for every M € Mod(T), for every z € X(M), there

exists an a € M such that for every pair of elementary embeddings hy,hy : M — N,

hi(a) = ho(a) = Xhi(z) = Xha().

As a warm-up to the theorem4.3.2] we will show in general that if X : Mod(T") — Set
is a A-functor, X must map Aut(M) continuously to Sym(X (M)).

Proposition 4.1.2. Let T be any theory, and let (X,®) : Mod(T) — Set be a
A-functor. Then for any model M = T, the restriction of X to a map Aut(M) —
Sym(X (M)) is a continuous group homomorphism (where both groups are topologized

by pointwise convergence).

Proof. Since X is a functor, its restriction to Aut(M) is a group homomorphism. To
check continuity, let D be a directed partial order indexing a net of automorphisms
[0a]aep. It suffices to check that if [0 ]aep — 0 in Aut(M), then [X o, ]|aep — Xo in
Sym(X (M)).

We will suppose not and take an ultraproduct of counterexamples. So suppose that
[X04]aep does not converge to Xo. The basic open neighborhoods B, 4 of Xo are

parametrized by tuples ¢, d of the same sort, and they look like this:
f
Beoa & {p: X(M) — X(M)] p(c) = d}.
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Since [ X 0, ]aep does not converge to Xo, then there exists some neighborhood B, 4

such that for every « € D, there exists an o > « € D such that Xo, ¢ B.., 4.

Now, let I be the underlying set of D, and consider the collection of subsets {P, <
I}oep, where each P, is the set of all § € D such that § > «. Since D was a
directed partial order, {P,}.ep has the finite intersection property, and can therefore

be completed to an ultrafilter I/.

Then consider the ultraproduct of automorphisms

[Xoo] X(MM - X(M)H,

aslU -
Let Ax ) be the diagonal embedding of X (M) into X (M)¥. Since every X o, sends
ctod #d, [Xow], , sends Axan(c) to Axan(d) # Axan(d). Therefore,

[Xo_a/]a—ﬂ/{ © AX(M) ta [Xo-]a—ﬂxl © AX(M)

By the definition [3.3.14] of a A-functor, we can replace Ax ) with @) 0 X (Ayy).
By the definition of a pre-ultrafunctor, we can replace [Xou], ,;, and [Xo]
with

a—U

) © X ([00 i) © iy and Bapy 0 X ([0]ai) © .

Substituting into the displayed inequality above and letting inverse transition isomor-

phisms cancel out, we obtain
Py 0 X ([oa]amtr) © X (Anr) # Piary 0 X ([0]ae) © X (Anr)
and since ®(,) is a bijection, we may omit it:
X ([oar)amt) © X (Anr) # X ([0)asu) 0 X (Anr) -
Since X is a functor, we conclude that

X ([oa]amu o Anr) # X ([0]a—u © Anr)
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and since X is certainly a function from Mod(T')(M, M“) — Set (X (M), X (MY)),
this means that

[Oarlamu © Apr # [0)amu 0 Apy.

But this inequality says that there is some a € M such that for every «, there is an o/
such that {o.(a)}, disagrees with {o(a)}, on some U-large set of indices P. Letting
¢ = a and d = o(c), we have that a U-large subset of {0/ (a)}, lies outside of the basic
open B.,.,4 3 0. Since U contains all the principal filters in D, we have that for every
a € D, the intersection P n P, is nonempty. So, for the basic open B...4 3 o, we
have that for every o we can find some " € P n P, such that o, ¢ B.., 4. Therefore,

[0a]aep does not converge to o, which is the contrapositive. O

Since for any 7" and M = T, End(M) is the closure of Aut(M) inside the product

space MM one easily modifies the above proof to obtain:

Theorem 4.1.3. Let T and T be any two theories. If (X, ®) : Mod(T') — Mod(1")
is a A-functor, then for each M € Mod(T),

Xy £ X 'End(M) : End(M) — End(X(M))

18 continuous.

Theorem 4.1.4. ([12], Section 4) Let (X, ®) : Mod(T') — Set be a A functor. Then
X is fsp.

Proof. Towards the contrapositive, suppose X is not fsp. Then there is some M and
x € X(M) such that for every tuple a € M, there exists elementary embeddings
ha, hl, - M — N, such that h,(a) = hl(a) while Xh,(z) # X1/ (z).

As in the ultraproduct proof of compactness, let I index all the finite subsets
(i.e. tuples) of M. Let U be an ultrafilter completing the collection {P,};c; where P;
is the set of all j € I such that, viewed as finite subsets of M, j 2 i; this collection

has the finite intersection property, so is contained in some ultrafilter.
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Now, take the ultraproducts h and h’ of h, and h]. On any element [a];y of the
diagonally embedded copy of M in MY, h and h’ agree on [a] whenever b 2 a. Hence,
this happens on P,, which was in U.

Therefore, the maps h,h' : MY — [],, N, are equalized by Ay : M — MY.

By assumption, this is not preserved by the functor X, so X must have failed to

preserve A,; or an ultraproduct. O

Remark 4.1.5. An fsp functor is not necessarily the underlying functor of a A-
functor. For example, if p is a complete non-isolated type, then the functor X :
Mod(T) — Set taking each model M to its realizations p(M) of p is fsp (if there is

a realization, then it is its own support inside the model).

However, this X does not commute with ultraproducts (with the obvious choice of
transition map): if M omits p, then X(M) = . The ultraproduct of an empty set

is empty, but since MY realizes p, X is not a A-functor.

Somewhat less trivially, if X is definable then the infinite disjoint union | |,_; X again
has fsp (every point is its own support), but with the obvious choice of transition map

is not definable.

Later, we will see that in general these two examples are “absolutely undefinable”, in

the sense that there is no isomorphism whatsoever to any definable functor.

Finally, we point out that [4.1.3| and {4.1.4] are really saying the same thing:

Theorem 4.1.6. X : Mod(7T) — Set is fsp if and only if it induces continuous maps

on endomorphism monoids.

Proof. Suppose X is fsp. Fix M. For any finite tuple z € X (M) with support
a;, we have from the definition of fsp that whenever ca, = idy;a,, Xox =
idx(ayz. Therefore, Stab(a,) = X~!(Stab(z)), so X~ '(Stab(z)) is open. Since

was an arbitrary finite tuple and the pointwise convergence topology has a basis of
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neighborhoods of the identity given by stabilizers of finite tuples, this means that
X restricts to a continuous map between endomorphism monoids equipped with the

topology of pointwise convergence.

On the other hand, suppose X induces continuous monoid maps at each M. Then for
every finite tuple x € X (M), X~!(Stab(x)) is open, hence contains some basic open
neighborhood of the identity of the form Stab(a,), for some a, which we put as the
support of z. n

4.2 Failure of F to preserve the ultracategory struc-

ture

In [4], a pair of Ny-categorical structures M = T and M’ | T" are constructed
which have isomorphic endomorphism monoids End(M) ~ End(M’) that are not

isomorphic as topological monoids. By [2.9.5] and [2.3.20, 7" is not bi-interpretable

with T7”. With what we have so far, we can see the failure of bi-interpretability at the

level of ultracategories.

By we know that the isomorphism of endomorphism monoids F' :

End(M) ~ End(M’) : G induces an equivalence of categories of models F' : Mod(T") ~
Mod(T") : G. By strong conceptual completeness m, if there were a way of
expanding F' and G to ultrafunctors (F,®) : Mod(T) ~ Mod(T") : (G, V), this
would induce an equivalence of categories of ultrafunctors Ult(Mod(T'), Set) ~

Ult(Mod(7"), Set), and hence of pretoposes Def(7”) ~ Def (7). Therefore,

Theorem 4.2.1. F or G cannot be the underlying functor of an ultrafunctor.

Proof. Suppose there existed ® and ¥ such that (F,®) and (G, ¥) are ultrafunctors.
Then (F, ®) and (G, ¥) are A-functors. By 4.1.3, F and G are then continuous. Since
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they already invert each other, End(M) and End(M’) are isomorphic as topological

monoids, a contradiction. O

4.3 A definability criterion for Nj;-categorical the-

ories

Lemma 4.3.1. Let T be any theory, and let X : Mod(T) — Set be a A-functor.
Then X preserves filtered colimits of models: for any model N, if N can be written

as the filtered colimit N ~ lim M;, then X (N) ~ lim X (M;).

Proof. First, we’ll show that being a A-functor implies that elementary embeddings

are sent to injective functions:
Claim: Let f: M — N be an elementary embedding. Then X (f): X(M) — X(N)
is injective.
Proof of claim. By Scott’s lemma (see e.g. [3] for a proof), there is an ultrapower

MY of M and an elementary map ¢ : N — MY such that the diagram

commutes. Since X was assumed to be a A-functor, the diagram

XM <S80 X (M

s o
A}k X(Awr)
)

commutes. Since Axypy : X (M) — X (M) is injective and @, is a transition
isomorphism, X (A)y) is injective, and therefore the composite X (g) o X(f) is

injective. Therefore, X (f) was injective. ]

74



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Claim: For any N |= T, the collection of maps {X(f)|f: M — N, M countable}
jointly surject onto X (V).

Proof of claim. Since N is covered by copies of countable models, we do know that

{f|f:M — N, M countable} jointly covers N.

Let I index the elementary embeddings from (representatives of isomorphism
classes of) all countable models to N. Let U be a non-principal ultrafilter on 7
which contains the sets P; & {i € I |im(f;) > 71}, which has the finite intersection

property by the downward Lowenheim-Skolem theorem.

Consider the map

H M, [fi]_i:»b{ N

1—U
The diagonal copy of N in N¥ is in the image of this map: if [n];_.;; € N, then
{i € I|3m; s.t. fi(m;) = n}is in U, so [ filimulmilimu = [n]imu. Pulling back
An(N) along [ fi]iu, we obtain a map n from N into [ [, ,, M; such that the

diagram

NU

N ——= Tl M
commutes.

Now apply X, obtaining the commutative diagram (it is easy to check that the
extra subdiagrams involving X () commute by ® vy and ®(,z,) being isomor-

phisms):

X(A/ \ijm

() )

X(n
T[X(fi)]i—ﬂ/{

i > X(M)u

()

fz i—U T
z—)Z/{
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In particular,
Axmny = [X(fi)]imu © NIGVARS X(n).

This implies that Ax(y) is contained inside the image of [ X (f;)]i—u-

Now, suppose that the X (f;) did not cover X (V). That is, suppose that there
exists an z € X (V) such that x lies outside of the image of X (f;) for every i € I.
Then for any [m;]i—u € [ [,y Mi, fi(mi) # o for all i € I. Therefore, Ax(y)(z)

is not contained in the image of [X(f;)];—u, a contradiction.

We conclude that {X(f)|f: M — N} jointly surjects onto X (N). O
Claim: Present N as a filtered colimit of its countable submodels M;. Then X (N) ~

lim X (M;).

Proof of claim. Our two previous claims show that we may view X () as the

union of the X (M;)’s. lim X (M;) can be canonically written as
( Llier X(Ml)) /E

where (z € X(M;)) ~g (y € X(1M;)) if and only if  and y become the same
element in some X (M) for M), amalgamating M; and M,. It is easy to check
that sending an x € X (V) to the E-class of an arbitrary lift 2’ € X (M;) (for a

choice of some X (M;) containing z’) gives a bijection
X(N) ~lim X (M;) by z — [2/]g,
compatible over the X (M;)’s. O

So far, we have shown that X preserves filtered colimits of countable models. But
every model is a filtered colimit of countable models. Explicitly, if we have N = h_r)n N;
where the N, are possible uncountable, we have that each N; = h_r)n N;, SO thatl we
have written N as a filtered colimit of countable models N ; !

N = limAlim N;‘ = lim N;

T — (i,4)
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Then

J

— (i.j) —i i

X(N) ~lim X (N}) ~ lim lim X(N;) ~ lim X (V;).
[l

Theorem 4.3.2. Let T be Ro-categorical. A functor X : Mod(T') — Set is definable

if and only if there is a transition isomorphism ® such that (X, ®) is a A-functor.

Proof. If X is definable, then its isomorphism to an evaluation functor ¢ pulls back
©’s transition isomorphism @’ to a transition isomorphism & for X, and since (¢, ®’)
was an ultrafunctor (X, ®) is also (these are diagrammatic conditions on @’ and so

are invariant under conjugation by isomorphisms).

On the other hand, suppose that (X, ®) is a A-functor. Aut(M) acts via X on X (M),
and so X (M) splits up into Aut(M)-orbits. For each representative z of these orbits,
we know from the remarks following that there is a tuple a, € M which supports
x, and the map a, — x induces an Aut(M )-equivariant map from the orbit (type) of

a, to the orbit of z.

Therefore, each Aut(M )-orbit of X (M) is a quotient of an Aut(M )-orbit of M by some
Aut(M )-invariant equivalence relation. Since M is Ny-categorical, these equivalence

relations are definable and all types are isolated by formulas, so we can write:

X(M) = \/ M(pi(w:)) = | | M(pi(x2)).

el el
By the previous lemma and the fact that colimits always commute with colimits

and definable functors always commute with filtered colimits of models, we conclude
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(writing N = h_r)nj M;):

~ lim <|_| wi( M (4.1)
7 iel

~ limy; (M (4.2)
el 7

~ wi( hmM (4.3)
el

= wi(V (4.4)
el

Now we will show that the I indexing the ¢; must be finite.

In the pre-ultrafunctor condition

U, (M)

X (ITy Mi) 2224 TT,, (X (M)
X(Hu fi)l ll_[z,( X (fs)
X (T N0 gt Tl (X)),

restricting our attention to just ultraproducts of automorphisms tells us that @y, :
X ([Tioy) My = T 1oy X(M;) is a [ [,_,, Aut(M;)-equivariant bijection, and therefore

induces a bijection on the orbits of the action on either side.

Let U be some ultrafilter such that [I¥| > |I|. Then, at the countable model M, we
have the bijection:

X (M%) " (X (M)
Now, the left hand side is | |,.; ¢; (M¥). Each ¢; (M¥) is actually an Aut(M)“-orbit,
since o;(M) was an Aut(M)-orbit. Therefore, the number of Aut(M)“-orbits on the
left hand side is |I|.

On the right hand side, we have (| |, ¢:(M)). Two points [z;]i- and [y;]iu
are Aut(M)“-conjugate if and only if there exists a P € U such that for all j € P,
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@z, = @y, (Where ¢,, means which ¢, z; came from.) But, this is the same as saying

[02,)j—u = [@y,;]j—u- So the number of orbits on the right hand side is [T,

Therefore, || = |I], so I must be finite. Hence there is a formula op(x) such that
X(N) ~ p(N) for all N |=T. Since for each N, this isomorphism X (N) ~ ¢(N) is
induced via filtered colimits by X (M) ~ ¢(M), this is a natural isomorphism, so X
is definable. O

4.3.1 Aut(M) orbit-counting

Besides the observation that A-functors induce continuous maps of automor-
phism groups, the key step in the proof of the theorem was counting Aut (M )¥-
orbits in an ultrapower, coming from the fact that pre-ultrafunctors X : Mod(7T) —

Set are defined by requiring all squares

X ([T, M) 2% T, (X (M)
x(T )| |Mhex(s
X (Hu N;) m Hu (X(N).

to commute; in particular, when N; = M; for all ¢, this says that X is necessarily

Aut(M )-equivariant, where

Aut(MY £ {[0,]iu | 00 € Aut(M)},
where [0;]; .y : MY — MY is defined by pointwise application on elements [x;]; .y of
the ultrapower.

Note that while MY might be saturated and so p(MY) is transitively acted upon by
the full automorphism group Aut(MY), this is not true under the Aut(M )“-action: a
non-isolated type p will have realizations [z;];—y which are U-often not realizations

of p.
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For example, take a countable model of the (theory of the infinite set + countably
many distinct constants), such that the non-isolated type “I am not any of the con-
stants” is realized by some a. In a countable ultrapower of this model, A(a) is not
Aut(M )H-conjugate to [¢; |i € w];_y (in fact, since this element of MY comes from a

sequence of constants, this is a fixed point of the Aut(M)“-action.)

We can write down an explicit description of the Aut(M )“-orbits of p(MY) for a
complete type p.

Lemma 4.3.3. Let p be a complete type of T'. Let (ai e M; ! M; = T) be a sequence

of elements in possibly distinct models. Let U be a non-principal ultrafilter on I.

Then tp([a;]i—u) = p if and only if in the Stone space, the sequence (pi df tp(ai)>

el
U-converges to p.

Proof. Suppose that [a;];—y = p. Then for each ¢ € p, U-often, a; € p(M;). Hence
for each D, the basic open neighborhood of p corresponding to ¢ in the Stone space,

U-often, p; € D,. Hence p; “ p.

Now suppose that p; Y p. Let ¢ € p. Then U-often, p; € D, equivalently, U-often,

(Y28

a; € p(M;). Hence [a;]i—u = p- O

Theorem 4.3.4. The [],_,, Aut(M,;)-orbits of p([[,_,, Mi) refine the equivalence

classes [p;limu where each p; is realized in M; and p; 4 p in the Stone space.

Furthermore, if the M; are homogeneous (so that any two realizations of the same type

in each M; are Aut(M;)-conjugate), then we can improve “refine” to “are exactly”.

Proof. 1t suffices to show that the map

i—U

is constant on each Aut(M)¥ orbit/]

!Note that this only means that we have a well-defined surjection from Aut(M)¥-orbits onto the
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Let [a;];—y be Aut(M)“-conjugate to [b;];;. Then (ultrafilter-often), tp(a;) = tp(b;)

50 tp™ ([ailiu) = tp” ([bilimr)-

Now, suppose furthermore that in each M;, any two realizations of the same type
in M; are Aut(M;)-conjugate. Then if two realizations [a;]; .y and [b;];—y of p in

[ [,_y M; are not Aut(M;),—y-conjugate, it follows that U-often, tp(a;) # tp(b;).
Therefore, tp"([a;]i—u) # tpY ([bi]imu)- O

Remark 4.3.5. With this theorem, the role of w-categoricity in the orbit-counting
argument for the proof of is clear: there are only finitely many types in every
sort, and all the types are isolated, so in the Stone space, the only sequences which

approach these types are constant sequences of these types.

Therefore, counting Aut(M)“-orbits of \/,.;p; (MY) yields |I|, whereas counting
Aut(M)H-orbits of (\/,.; ps(M)¥ yields |1Y].

ultraproducts of sequences of types converging to p. To get injectivity also, we would need to show

that the values are different for different orbits.

81



Chapter 5

Strictifications of pre-ultratfunctors

In this chapter, we prove a purely formal theorem comparing non-strict pre-ultrafunctors
Mod(T) — Set (i.e. those whose transition isomorphisms are not all the identity
map) with strict ones (i.e. those whose transition isomorphisms are all the identity
map), showing how for any non-strict pre-ultrafunctor we may obtain an isomorphic
strict pre-ultrafunctor. To carry out this construction we perform a transfinite induc-
tion on the “ultraproduct complexity” of models; this complexity is given in terms of

an ordinal-valued rank.

5.1 Strict vs non-strict pre-ultrafunctors

Throughout, we will work with the usual (pre)ultracategory structures on Mod(T")
and Set. In particular, in Definition [3.1.2] we fixed once and for all the ultraproduct
functors [U] : Set’ — Set, and whenever we talk about ultraproducts of sets, we
understand that we are applying those specific ultraproduct functors. As we saw
in Definition [3.1.3] once the pre-ultracategory structure on Set has been fixed, this
induces a “standard” pre-ultracategory structure on Mod(7'), and so determines what

the ultraproduct functors are for Mod(T'), too.
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In general, pre-ultrafunctors Mod(T) — Set are only required to “preserve ultra-

products up to a specified transition isomorphism”, which means that the squares
(1)
X(TTisu fi)l lﬂm X(f:)
X ([Ticu Vi) 5 TTiny X (Vi)

®(<;)
(ranging over all indexing sets I, ultrafilters & on I, and I-indexed sequences of
elementary embeddings (M EiA N;)) commute, where @,y does not necessarily have

to be the identity map, only some isomorphism.

Definition 5.1.1. If a pre-ultrafunctor X does have identity maps for all of it tran-

sition isomorphisms, we say that X is strict.

Remark 5.1.2. The proof of the Los theorem 3.2.1|shows that the evaluation functors
M — M(X) for any (eq)-definable set X is a strict pre-ultrafunctor.

Remark 5.1.3. One might worry about being able to achieve strictness in the sit-
uation where there is a way to write a model N as two different ultraproducts, say
N = MY and N =[], ,, M;; then, after applying a general pre-ultrafunctor X, we

have
X (MY) == X ([ 1,y M)

(P(J\l)l lq)(Mi)
XM —— [y X (M)
where the bottom isomorphism is the unique map given by composing the isomor-

phisms in the rest of the diagram.

If we try to make X strict, say by setting ®(,z,) to be the identity, then we see that
the other transition isomorphism ®(,s) can’t be the identity, which would present an

obstruction to finding any strict pre-ultrafunctor on Mod (7).

However, as long as we are careful about what sets we assign to be ultraproducts
(as when we made the conventions in Definition about what the ultraproduct

functors on Set precisely were), this situation never arises; we explain below.
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Lemma 5.1.4. If we have unidentical data (I,U,(M;)icr) # (I'\U', (M])icr), then
Hi—ﬂ,{ M; # ni—w{/a Mz/

Proof. Recalling our conventions made in Definition about how we construct

products and quotients in Set, we look at the three cases:

1. If I # I’, then for every definable set A,
HMZ(A) = {{(a,i) ‘ ae MZ-(A)}ZEI} # {{(a/,i’) ‘ a' € M{,(A)}ixep} = H M,
i—1 el
and so their quotients, which we think of as collections of equivalence classes,

cannot literally be the same set.

2. If U # U’ then even if all the other data were the same, the quotients of the
I-indexed products by U and U’, which we think of as collections of equivalence

classes, cannot be the same since U and U’ are distinct.

3. Evenif [ =I'" and U = U’, if for some i € I, we have distinct models M; # M/,
then by definition, for some definable set A, the sets M;(A) and M/(A) are
distinct. Then the I-indexed products are distinct and so are the quotients by

Uu.

[]

Strong conceptual completeness [12] tells us that ultrafunctors Mod(7') — Set are
definable, i.e. are isomorphic to evaluation functors of the kind in the previous para-
graph. In particular, every ultrafunctor is isomorphic to a strict ultrafunctor, and we
can think of the condition of preserving all ultramorphisms as forcing any non-identity

transition isomorphisms of a given pre-ultrafunctor to be, in some way, “canonical”.

The purpose of this section is to show that any non-strict pre-ultrafunctor is iso-
morphic to a strict one, and that the construction of this isomorphism respects the

preservation of ultramorphisms. In particular, any non-strict A-functor is isomorphic
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to a strict A-functor and this gives another proof that any non-strict ultrafunctor is

isomorphic to a strict ultrafunctor.

5.2 The ultraproduct rank of a model

Now we introduce the wultraproduct rank of a model, which will be an inductively-
defined ordinal rank that measures how complicated it is to write a model up to

isomorphism as a non-trivial ultraproduct of smaller models.

To avoid quantifying over proper classes of isomorphism types of models, we make an

auxiliary definition:

Definition 5.2.1. Let x be a regular cardinal. A k-bounded model of T is a model
M’ : Def(T) — Set which factors through the full subcategory Set,, of Set spanned
by the hereditarily s-small sets. (Equivalently, for any A € T, M'(A) must be a

hereditarily x-small set.

Since our theories have only a small number of definable sets, for any model M :

Def(T') — Set, there exists some isomorphic k-bounded model M’ : Def(T') — Set,.

Definition 5.2.2. The ultraproduct rank of a model M is an ordinal upc(M)

which we define inductively as follows:

(i) If M is not isomorphic to a non-trivial ultraproduct of |M|"-bounded models,

then put upc(M) £ 0.
(ii) Otherwise, put

upc(M) A inf sup upc(M;)

{6 |1, ptymat} 9

(here the infimum runs over all sequences of |M|*-bounded models (M;);es such

that l_[j—>u M; ~ M for some non-principal ultrafilter & on J.)
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Remark 5.2.3. In part (ii) of the previous definition, we can derive from the cardi-
nality of M a bound on the cardinality of the possible indexing sets J, and there are
only a set’s worth of xk-bounded models of T', so for each M we are only quantifying

over a set’s worth of things: the ultraproduct rank is well-defined.

To perform the construction in the next section, we will make some arbitrary choices.

In particular, we will need to choose witnesses for the value of the ultraproduct rank.

Definition 5.2.4. If upc(M) = «, we define a witness for this to be a sequence
(M;)jes and an ultrafilter ¢ on J such that [ ], ,,, M; ~ M and sup; upc(M;) = a.

Since the ordinals are well-ordered, witnesses always exist.

5.3 Constructing the isomorphism

Theorem 5.3.1. For every non-strict pre-ultrafunctor X : Mod(T) — Set, there

exists a strict pre-ultrafunctor X' : Mod(T') — Set and an isomorphism X ~ X'.

Proof. We start building X’ by asking that if M; and M, are rank 0, then

()

X’ (M1 g, MQ) I x ) Y x ().

This defines X’ on the full subcategory of rank 0 models and completes the base of

the induction.

Now the induction step. If X’ has already been defined on the full subcategory
C < Mod(T) of rank < a models, then fix choices of witnesses for anything in C
extending any choices of witnesses we have made at an earlier stage, and extend X’ to

a full subcategory C' € Mod(T') made of anything that is an ultraproduct of objects
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of C by setting X'(M; 4, M) to the dashed map below:

o,
X ([Ta M) | Tl X)) = X ([T M)
X(f) | dr | X
! i |
X (I N) | T X0 g X (T )
where:
(i) @y, (resp. () is defined by the composition
(Hz—»b{ M _____ e Hz—»b{ X/<Ml)
D as. )
(Mnl /z_,ucn
Hz—J/[ X(
and where:
(ii)
1dX(MZ) if upc(MZ) = 0,
o, & QJ’(MZ:) if X'(M;) was defined at an earlier stage, and
[1,. M; = M; is a witness for the nonzero ul-
L traproduct rank of M,;.

To complete the induction step, we have to extend X’ to all the rank-a models (note
that N being a rank-a model only means that N is isomorphic to an ultraproduct of
rank < a models, not necessarily that N is an ultraproduct of rank < a models), so
we choose a witness [ [, ,, M; ~ N that upc(/N) = a In particular, we have chosen an
isomorphism [ ], ,; M; ~ N. We then extend X’ to the full subcategory of Mod(T)
spanned by C" U {N} by decreeing that X'(N) = X' (] [,_,, M), and that the chosen
isomorphism is sent to the identity. Doing this for all N, we extend X’ to the full

subcategory of rank-a-models.

Since we observed (Remark [5.2.3) that the ultraproduct rank is well-defined, every

model is reached at some (possibly transfinite) stage of this construction.
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X’ is a functor because conjugating by ®’’s cancels out.

To check pre-ultrafunctoriality, we need the diagrams

X' (Hiau Mz) — Hiau X/(Mz)
X/(Hiau fl)l ll_[iﬂu X'(fi)
X' (Hiau Nl) E— Hiau X/(Nz)

to commute, i.e. that X' ([ [,_,, fi)) = [ [,y X'(fi)

So, unravelling the definitions, we calculate:
X' (H fi) =[x
i—U i—U
— CI)/ yoX <1_[ f1> _ < HX’(fZ)

i—U i—U
— HUzNoq)(Ni)OX(Hfz)O d 1o<HJZM) ;nX’(fi)
i—U i—U i—U i—U
= [To¥e[Txt- (HU ) “ITx)
i—U i—U i—U i—U
— [T (e¥x(r) (@™ 2 TT X
i—U i—U
= [T omx () (@)
i—U
= [[oMx0) (M)
i—U

In the final step, we are observing that since ®y. is idy, if V; was from the base case,

Oy, is o (resp. M;). O
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5.4 Showing the constructed isomorphism respects

preservation of ultramorphisms

Now we will show that the property of a pre-ultrafunctor (X, ®) preserving an ultra-

morphism is invariant under the construction of X'.

Heuristically, this should be true because preserving ultramorphisms is a “local”,
component-by-component property of the transition isomorphisms ®, and the only
source of the new data ®’ in the construction of X’ was taking ultraproducts of

components of the old ®, with maybe some identity maps interspersed.

Rigorously, this follows from some definition-unraveling. To give an idea for it, we will
first prove the special case that the preservation of the diagonal maps A is invariant

under the construction of X”.

Proposition 5.4.1. A pre-ultrafunctor (X, ®) preserves the diagonal embeddings A
if and only if X' preserves the diagonal embeddings A.

Proof. Suppose first that X preserves the diagonal maps. The diagram

X' (M)
X'(Anr)
X'(M)
Axriay
(X'(M))"

commutes if and only if

X/(AM) = AX’(M)

if and only if (note that since M is being viewed as a trivial ultraproduct, ®,;, = idy,
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and [[,_,,, o™ = o)

X,(AM) = AX’(M)
— @3\414 o X(Ap)o (CI)'M)f1 L AX’(M)

— 1_[ UZMM o @y 0 X(Ay)o®y o (O’M)_l L Axr(an

i—U

= [ oAxano (™) £ Ay
i—U

By chasing the diagram
X'(M) «Z"— X (M)
AX’(M)l lAX(l\l)
X/(M)MH?MX(M)M

clockwise, we see that

l !

[2]; o — [(‘7
commutes, so the equation is true and X’ preserves the diagonal maps.

Conversely, suppose X’ preserves the diagonal maps. Then multiplying the left and

right sides of the equation

[T oM 0 @y 0 X(An) 0 @3t o (6™) ™ = Axany

i—U
—1
by (Hi—»M 0{”“) and o™ respectively, yields

-1
(I)( oX AM (HO’ ) OAX/(M)OUM;A)((M).

i—U
Checking the final equality can be done by a diagram chase entirely analogous to the
one from the first half of the proof. m

Of course, the statement is true even when we replace A with general ultramorphisms.
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Theorem 5.4.2. Let § and &' be ultramorphisms of type (I', k, ) in the ultracategories
Mod(T') and Set, respectively. A pre-ultrafunctor (X, ®) : Mod(T) — Set carries ¢
into 0" if and only if the X' given by the construction does also.

Proof. Suppose first that X carries ¢ into 0.

Let .# be an ultradiagram in Mod(7"). By the definition [3.3.16, X carries ¢ into ¢’

if and only if

X (o (k) 2 X (ar (0))

Q’J/z(k)l l‘?/fz(e)

(XA ) (k) 5— (X A) (D)

/
X

commutes. We need to check (whence strictness of X') that

X/(d///) ; (S/X’///v

1
— ¥, o X0ux) o (Y ym)

-1
— 1_[ UZ-///(Z) o® 4o X(0,4)o0 ((I)///(k))_l o (H Ui//l(k)> - Ox' y
i—U i—U

~1
— 1_[ Ui//[(z) 0dy 40 (H J%(k)> L 8w

i—U i—U

which is true if and only if the diagram

Xt (k) 25 X.(0)
Hi—»l/{ U%(k)l lH'L—»M U"//[(E)

commutes. Since ¢’ is a natural transformation of the evaluation functors (k) and ¢,
to check that this square commutes, it suffices to check that the vertical maps arise

from a morphism between the ultradiagrams X.# and X'.# in Hom(I",Set). The
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condition to check for this is

0= [ @00

1—Ug
for all bound nodes /3, but this is easily seen to be true after we remember that if k
or ¢ are not bound, then their ultraproducts in the above square become trivial and
[y a%(k) is just a map o ().
Therefore, X’ carries § to ¢'.

Conversely, suppose X' carries § to 0.

We need to check that

Sn = ® 00 X(0.4) 0 (D)

o () . VIO
Multiplying on the left by [[,_,;, o; and on the right by <Hpu a; ) , we get
—1

[[0esae (ITa) =0

i—U i—U
and by our assumption, the previous equation is true if and only if

3(’,/// = X/(&///)’

which is what we assumed. O
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Chapter 6

Classifying toposes of first-order

theories

The aim of this chapter and of is to prove that ultraproducts provide a
natural characterization of the coherent objects of the classifying topos of a first-order
theory. The classifying topos &(T) of T is a natural enlargement of Def(T") whose
models in Set are the same as T’s, and whose objects pick out a subcategory of evalua-
tion functors Mod(7') — Set containing the image of ev : Def(T') — [Mod(T'), Set].
We will show in Theorem that the property of evg being a pre-ultrafunctor with
respect to a canonical transition map characterizes whether or not B € &(T) is iso-

morphic to an object in Def(T").

6.1 Preliminaries on the classifying topos
For the construction and standard facts about the classifying topos of a first-order

(or generally, a coherent) theory, see e.g. Part D of [7] or Volume III of [5]. For our

convenience we will repeat the essentials for our results.
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Throughout this chapter, “topos” will mean “Grothendieck topos”, i.e. a category
of sheaves on a small site. For detailed definitions of sites, sheaves, and toposes, we

direct the reader to the relevant sections of the excellent references [10], [5], and [7].

For the reader’s convenience, we will repeat Giraud’s axiomatic characterization of

Grothendieck toposes (see C.2.2.8, [7]):

Fact 6.1.1. A (possibly large) category & is a Grothendieck topos if and only if the

following conditions are satisfied:
1. Ewvery class of morphisms &(X,Y) in & is a set (& is "locally small”).

2. There exists a set S of objects in E such that for every pair of maps f,g: X —-Y
in & such that for all S € S, for alle : S — X, foe=goe, thene =g (& has

a “small separating set of objects”).
3. & has all small limaits.
4. & has all small coproducts, which are disjoint and stable under pullback.

5. All equivalence relations in & have quotients which are stable under pullback.

Note the similary to the definition of a pretopos (Definition [2.6.16]). Indeed, it was
shown in [I3] that one could generalize the closure under “finitary” operations defining
a pretopos to a notion of a k-pretopos for a regular cardinal x, and that Grothendieck

toposes are precisely co-pretoposes with a small separating set of objects.

Definition 6.1.2. The classifying topos of a first-order theory T is a topos &(T')
equipped with a fully faithful functor y : Def(T') — &(T") which is also a model in
the sense of (the definition given there only involves the preservation of certain
categorical properties, so makes sense for functors into any topos instead of Set). &(T')

additionally satisfies the following universal property: for any other topos . and any

model M : Def(T) — . of Def(T) in ., there exists a unique M : &(T) — . such
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that the diagram

commutes.

This characterizes &(T) up to equivalence. We call M the inverse image functor
associated to the model M. We also call objects of & (7") which are, up to isomorphism,
in the image of y representable (echoing the standard construction of &(T) as a

certain category of sheaves on Def(7).)

As the definition indicates, the extension M of M from Def (T') to &(T) should be
determined by what M does on the objects of Def(T"). The following discussion is
meant to make this intuition explicit, and to give a formula for computing what M

is outside of the image of y inside &(T).

6.1.1 Computing the associated inverse image functor M

Definition 6.1.3. (3.7.1 of [5]) Let F': A - B and G : A — C be functors. The
left Kan extension of G along F, if it exists, is a pair (K, «) where K : B — C
is a functor and o : G — K o F is a natural transformation satisfying the following
universal property if (H, 3) is another pair with H : B — C' a functor and 8 : G —
H o F a natural transformation, then there exists a unique natural transformation

v : K — H satisfying the equality (vF') o o = (3, as in the following diagram:

A—Lr B

c K . v:K -S> H.
H

C

We write Lang G for the left Kan extension of G along F'. Right Kan extensions are

defined dually, and are written Ranp G.
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Before proceeding, we give two definitions around the category of points of a (con-

travariant) functor.

C D.
Definition 6.1.4. Consider the diagram of functors \ / The
F G
E

comma category (F' | G) is given by:
Objects: (¢,d,«) where ce C,de D, : F(c) — G(d) € E.

Morphisms: Hom gy ((c1,d1, 1), (c2, da, a2)) is defined to be the set

Fer) 2P p(ey)

(B1,B2) | Bz cr = ¢, B2t di — da, and all 0y commutes.

Gdy) £ G(dy)

Definition 6.1.5. If F': ' — Set is a Set-valued functor on a locally small category
C, the category of (global) points of F', written SCEC F(c), is the comma category
(1] F).

Explicitly, it is given by:
Objects: {(c,z)|ce C,x e F(C)}.

Morphisms: Homgeee ((e1, 1), (€, x2)) is defined to be the set

{f‘f ccp — e and F(f)(x1) = xg.}
If FF: C® — D is a contravariant functor, we write § ., F(c) for the opposite of
SCGC F(C)

The category of points of a functor F' : C' — D is equipped with a projection (forgetful)
functor 7 back to C.

Lemma 6.1.6. (5.7.2 of [5]) Consider two functors F : A — B and G : A — C with
A small and C' cocomplete. Then the left Kan extension of G along F exists, and is
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given pointwise by a colimait

acA acA
(b — V) — lim U B(a,b) LAEC) — lim (J B(a, V) LA£C>

— —

Lemma 6.1.7. (3.7.3 of [J]) Let F : A — B be a full and faithful functor with A a
small category. Let C be a cocomplete category. Then for any functor A — C, the
canonical natural transformation G = (Lang G) o F is an isomorphism (so that the

inner triangle from “commutes”).

Corollary 6.1.8. Every model M : Def(T) — Set extends uniquely alongy Def(T) <

&(T) to an inverse image functor M, as in
&(T)
y] %
Def(T) —— Set

The extension to &(T) is given by a pointwise Kan extension, so that for any B €

&(T), M(B) can be computed as the colimit

—

AeDef (T)
lim (f &(T)(A, B) 5 Def(T) 4 set> :

6.2 Coherence, compactness and definability in & (7

In this section, we review the necessary parts of the theory of classifying toposes of

first-order theories. We refer the reader to section D3 of [7] for details.

Definition 6.2.1. An object A of a topos & is compact if every covering family of

maps {f; | i € I} of maps into A contains a finite subcover.

Definition 6.2.2. An object A of a topos & is stable if for every morphism f : B — A

where B is compact, the domain K of the kernel relation K = B 1 Alsalso compact.

Definition 6.2.3. An object A of a topos & is coherent if it is both compact and
stable.
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Remark 6.2.4. In a coherent topos, the pretopos of coherent objects is not necessarily
closed under arbitrary finite colimits. This is because coequalizers are quotients by
(at least) transitive closures of certain relations, so if one has a relation R = X whose
transitive closure is properly ind-definable, the coequalizer y(R) =3 y(X) — Y will
not be definable.

Lemma 6.2.5. (D3.5.7, [1]) An object B of the classifying topos &(T') of a first-order
theory T is representable (i.e. isomorphic to an object from Def(T) — &(T)) if and

only if it is coherent.

Remark 6.2.6. If one constructs the classifying topos &(T') as a category of sheaves
on Def(T) (where T' might not necessarily eliminate imaginaries), then taking the
coherent objects of &(7T') yields an alternate construction of the pretopos completion
of Def(T). Thus, if T eliminates imaginaries (as we have assumed for most of this
document), the pretopos completion of Def(T) is isomorphic to Def(7), hence the

previous lemma.

Notation 6.2.7. From now on, when working in the classifying topos &(7T) of a

first-order theory, we will use “definable” and “coherent” interchangably.

Definition 6.2.8. Let C be a category, and let B be an object of C. Let cp be
the constant functor C — B which sends every morphism in C to idg. The slice

category C/B is defined to be the comma category (Definition [6.1.4)) (idc, ¢g).

The “fundamental theorem of topos theory” (see A2.3, [7]) says that for a topos &,
any slice category & /B of & is also a topos.

Lemma 6.2.9. (D3.3.16, [7]) Let &(T') be the classifying topos for a first-order theory.
Then an object B € &(T) is coherent if and only if the slice category &(T)/B is a
coherent topos, which is presented by the coherent site Def(T')/B of coherent objects

Ae &(T) over B.

We also record the following observation, which seems to be folklore:
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Lemma 6.2.10. Let B € &(T) be coherent. Then the slice topos &(T)/B is presented

by the theory of T extended by a generic constant of b, written T[b : B].

Proof. One easily verifies that the adjoint (—) x B to the forgetful functor &(7')/B —
& (T') restricts to an interpretation of the underlying pretoposes which factors through
Def(T'[b : B]), and that the induced map between the categories of models Mod(T[b :
B]) < Mod(&(T)/B) is an isomorphism. By conceptual completeness [3.2.11] the
map Def(T'[b: B]) — Def(7')/B was a bi-interpretation of pretoposes. O
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Chapter 7

Ultraproducts and coherence in the

classifying topos

7.1 Compact non-coherent objects in &(7)

In the previous chapter, we introduced the notions of compact, stable, and coherent
objects in &(T'), and we claimed that the coherent objects were precisely the definable
ones. In this section, we analyze the compact non-coherent objects. As we saw in
the prototypical example in a coherent topos of a compact non-coherent object
is the coequalizer of a definable relation R =2 X on a definable set X with a properly
ind-definable transitive closure. Our aim in this section is to prove the lemma [7.1.4}
which says that this obstruction to coherence actually characterizes the compact non-

coherent objects in a coherent topos.

An important basic category-theoretic fact is the canonical coproduct-coequalizer de-

composition of colimits (whose proof can be found, for example, in [9]):

Fact 7.1.1. Let D be a subcategory of C a category with all colimits.
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Then the colimit lim(D) of D is isomorphic to the coequalizer of the following diagram:

(o) = (L)

where on each component s(f) € Dy of the left hand side, F sends s(f) to itself
d = s(f) by the identity map of d = s(f), and on each s(f) € Dy of the left hand side,
G sends s(f) to t(f) by the map f.

We apply this fact to show the following:

Lemma 7.1.2. An object B of a coherent topos & (T) is compact if and only if every

covering of B whose domains are representables admits a finite subcover.

Proof. The implication “=" is immediate.

Conversely, suppose that {B; — B} is a covering of B. By the Kan extension colimit
formula and the coproduct-coequalizer decomposition of colimits, each B; is covered
by (possibly infinitely many) representables. The collection of all these representables
across all B; form a covering of representables of B. By assumption, this covering
admits a finite subcovering. Therefore, only finitely many of these B; were needed

since all these representable coverings factored through some B;. O

We recount the following fact from [6], closely related to the lemma |[7.1.4;

Fact 7.1.3. (Lemma 7.56 of [6]]). Let & be a topos generated by compact objects. Let
X be a coherent object of E, and let R =3 X be an equivalence relation with coequalizer

R=3 X - X.
Then Y 1is coherent if and only if R is compact.

Our next lemma [7.1.4]is a sharpening of the fact [7.1.3} not only will we show that a

compact non-coherent object is the quotient of a coherent object by a non-compact
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congruence, but we will explicitly describe the non-compact congruence as an infinite

join of coherent objects.

Lemma 7.1.4. Let B € &(T) be a compact non-coherent object. Then B is the
quotient of a coherent object A by a non-compact equivalence relation E which is a

join of infinitely many coherent equivalence relations on A.

Proof. Write B as a colimit of a diagram D whose objects are representables A;. By
the coproduct-coequalizer decomposition, B is a quotient of the coproduct | |, A
and therefore the maps A; — | |,.p A P8 B are a covering family for B. Since B is

compact, finitely many A;, say Ay, ..., A, suffice to cover B.

What we have said so far amounts to saying that B is a quotient of the coherent

object | |._. A;, since the obvious map

(%!AJ < <A|§|) A) Ly

It now remains to calculate the kernel relation K’ of pp o4 and show that it is an

<n

covers B.

infinite union of coherent relations on | |,_, A;.
We break the remainder of the proof into the following steps:

1. The kernel relation K’ of pg o i is the pullback of the kernel relation K of pp

along the inclusion

CVNCORITORID

and therefore in every model consists of those pairs (a;, as) € K such that both

ar and ap are in | |,_, A;.

2. Fix an arbitrary model. There is no harm in working with points and sets in
a generic model since by Deligne’s completeness theorem we can then lift our

calculations to the classifying topos.

102



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Now, K is by definition the smallest equivalence relation containing “3b : F'(b) =
a; and G(b) = ay = a; ~k az.” By how F and G are constructed, this means
that a ~k o if and only if there are finitely many other points aq, ..., a, and
maps linking a to ai, each a; to a;;1, and a, to a’, where the maps may point

in either direction.

It follows that K’ is finer than just the kernel relation of the coequalizer of the
pullback of F,G : [ |,.p, A = [ep, 4 along the inclusion 4, and is given by

the following union:

K’:\/Rn

new

where Ry is the diagonal copy of | |._A;, Ry consists of those pairs (aj, az) such

i<n
that there is some a in |_| Aep, A such that there is a map f in D; that moves a;

to aj or vice-versa, and there is a map ¢ in D; that moves aj, to ay or vice-versa
0 ) 0 )

ete.

3. Ry is the infinite union \/ AeDo Sa, where each Sj4, corresponds to the A con-

taining a particular witness ay = a;, as above.

4. Each Sy, looks like this:

\/ A{(ai,a5) € A x A | 3ay € Ag((ai,ar) € T(f) v T(f) and (a;,ax) € T(g) v T'(g)) },
(f.f".9,9")

where the 4-tuple of maps (f, f', g, ¢') ranges over definable maps
Def(T)(A;, Ax) x Def(T) (A, A;) x Def(T)(A;, Ay) x Def(T)(Ayx, A;)

and therefore each S4, is \/-coherent.

Therefore, R; is \/-coherent.

5. Let us inductively assume that Ry is \/-coherent as the union \/,_;7;. Then
Ry.y1 is the following subset of R, x Ry:

Rii =< (a,0)] \/ 3¢ st (a,0)eT; A (ab)eSa

(Ti,SA)EIXDO

103



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

and is therefore also \/-coherent.

We conclude that K’ is \/-coherent. O

7.2 The coherence criterion

Theorem 7.2.1. Let &(T') be the classifying topos of a first-order theory. Let B be

an object of &(T). The following are equivalent:
1. B is coherent.

2. evg : Mod(T) — Set is the underlying functor of a pre-ultrafunctor (evg, ®)
such that, if B is canonically the colimit of representables A;, then each canonical

map A; — B induces an ultratransformation of the pre-ultrafunctors (ev 4,,id) —

(evp, D).

Proof. => If B is coherent, then it is representable and (evp,id) is a pre-
ultrafunctor,, and since y : Def(T") — &(T) is full and faithful, every map A; —

B corresponds to a definable function, which induces an ultratransformation

ev(A;) — ev(B).

(2| =| 1) First, we note that under the assumptions, evg’s transition isomorphism
is uniquely determined by the transition isomorphisms of the representables

appearing in the Kan extension colimit formula for B: all diagrams of the form

(1)5”1‘)

evp ([ [,_y M) » 1Ly eve(M;)

eva ([ [y M) » T Limy eva(M;)

evar » [y evar (M)

(M;)
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commute, and since the Kan extension colimit formula is computed pointwise,

the transition isomorphism (P?Mi) is a unique comparison map from the colimit

evp ([ 1,0y M) of the eva([ [, M;)’s into [],_,, eva(M;).

Now, knowing this, suppose B is not coherent. Then either B cannot be covered
by finitely many definables, or it can. If it can be covered by the finitely many
definables A1, ..., A,, then the associated map A; -1 A, — B does not have
a definable kernel relation, and in fact by [7.1.4] the kernel relation is properly
ind-definable.

In either case, we know what the transition isomorphism (b(BMi) looks like. In the
first case, if B cannot be covered by finitely many definables, we still know from
the Kan extension colimit formula that it can be covered by infinitely many
(A;)ier. Fix a model M and take a sequence (a;);,; such that for every A;,
cofinitely many a; are not in (the image of) A; (in B). Then for a non-principal
ultrafilter U on I, [a;]ic is not in any of the (images of the) (MY)(A;)’s. There-

fore, it is not in the image of the transition isomorphism (PfM), a contradiction.

In the second case, if B looks like a definable set A quotiented by a properly

ind-definable equivalence relation R = | J,.; R;, then once again we know that

el

the transition isomorphism

(ﬂ Mz-) (A/R) — | [(Mi(A/R))

i—U i—U
is the “obvious” one. Here’s what the “obvious” map is: since A is definable,
we are really comparing two equivalence relations on the same set. On the left
hand side, we have that [a;];—u ~ [bi]imu if and only if there exists some R;
such that ([, ,, M;)(R;) contains ([a;],[b;])ie. On the right hand side, we
have that [a;];—y ~ [bi]imy if and only if a; ~g b; U-often. Since R is properly
ind-definable, the equivalence relation on the left is properly contained in the

equivalence relation on the right. This containment induces a map between the
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quotients, and since the containment is proper, this map is not injective, and

cannot be a bijection.

]

Now we use this result to prove a stronger statement than [4.3.2] The difference is that
in the original statement of [£.3.2] we only concluded that X was definable, without
saying anything about the transition isomorphism ® which allowed us to view (X, ®)
as a A-functor. In fact, we can show that (X, ®) is isomorphic to ev,,), and must

therefore be an ultrafunctor.

Theorem 7.2.2. Let T be Ry-categorical. Let (X, ®) be a pre-ultrafunctor. Then the
underlying functor X is definable if and only if for some o(x) € T, (X, ®) is isomor-

phic as a pre-ultrafunctor to evy,y (equivalently, by strong conceptual completeness

(X, @) is an ultrafunctor).

Proof. By applying the lemma that A-functors preserve filtered colimits and
arguing as in the first part of the proof of [.3.2] we conclude that X is isomorphic to a
possibly infinite disjoint union of representables | |,_; A;. In this way, X is canonically
the colimit of the representables A;. It remains to verify the rest of item [2] i.e. the

canonical inclusions Ay — | |._; A4; ~ X induce ultratransformations.

iel
Before proceeding, we reduce the problem of verifying this for all ultraproducts to
just verifying this for all ultrapowers. This is because, in general, every ultraproduct
is a filtered colimit of ultraproducts of countable models: for every [z;];—y in some
ultraproduct Hi—»b{ N;, take a countable elementary model M; g, N; which contains
x;; then there is an embedding [ [, ,, fi : [ [,y Mi — [ 1., Ni, and the collection
of all such embeddings covers [ [, ,, N;. Since T' is Ny-categorical, an ultraproduct of

countable models is just an ultrapower of the unique countable model.
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So, it remains to check that the diagram

()

X (MY > X(MY
A (MHY)

commutes. Each component ¢y of the ultratransformation is determined by filtered
colimits of the countable model M, with ¢y; determined by sending the support a, €
A(M) to x. Since Ay : M — MY is part of the filtered diagram of countable
submodels of MY, 1y of Ay(a,) = X(Ap)(x), and since (X, ®) was a A-functor,
Py o X(Am)(z) = Axan ().

On the other hand,

[ [ e (Alaw) = [ear(@a)]i = Axany ().
i—U
So the diagram commutes, and now we are done by the direction [2] = of the

theorem. []
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Chapter 8

Exotic functors Mod(7T) — Set

In this chapter, we will construct for, certain theories T', “exotic” functors Mod(T') —
Set which will exhibit the failure of when the assumption of Ny-categoricity is

removed.

8.1 Counterexamples to Theorem in the non-

Nj-categorical case

The basis for our counterexamples is the theory of an infinite set, expanded by count-
ably many distinct constants. We will construct an example of a pre-ultrafunctor
which is not a A-functor, and an example of a A-functor which is not an ultrafunctor

(specifically, we will find an example which fails to preserve the generalized diagonal
embeddings |3.3.13)).

For the rest of this section, T" will mean the theory of an infinite set with countable
many distinct constants {¢;},c.. In a single variable, T' has a unique non-isolated type

p(zx), whose realizations are those elements which are not any constants.

108



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

Definition 8.1.1. The underlying functor X for the pre-ultrafunctors we will con-

struct will be given on the objects of Mod(T') by:

X (M) = p(M)u{c;|kis even}.

On elementary embeddings f : M — N, we set X(f) to just be the restriction of f
to X (M).

There is an obvious map which compares [ [, ,, X (M;) with X ([ [,_,,, M;), namely the
inclusion of the former in the latter. However, this cannot be an isomorphism, since
any unbounded increasing sequence of odd constants will realize p in an ultrapower. To
complete the construction of the counterexamples, it remains to construct transition

isomorphisms for X.

For our convenience, we record an analysis of the automorphisms of the functor X

which will be useful in the construction of the exotic A-functor [8.1.1]

Lemma 8.1.2. Any automorphism n : X — X of X satisfies the following prop-
erty: for every M =T, ny : X(M) — X (M) permutes the constants and fizes the

nonconstants.

Proof. Fix an arbitrary model M, let Ay, : M — MY be the diagonal embedding into

some ultrapower MY, and consider the naturality diagram which must be satisfied by

the components {1} remoa(r) of 1:

M X (M) —™ X (M)
Ay X(A) X(Anm)
MU X (M4) ———— X (MY)

MU

Suppose 1y, sends a constant ¢ to a nonconstant 7y/(c). Then the commutativity of

the naturality diagram tells us nyu sends X (Apr)(¢) = Ap(c) to X(Ap)(nu(c)) =
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Anr(nar(c)). However, any injection M — MY which identifies constants with con-
stants and sends nonconstants to nonconstants is an elementary embedding, and we
can certainly find an embedding f : M — MY which does not send the nonconstant

na(c) to Apr(nar(c)). Then, since elementary embeddings fix constants, the naturality

diagram
M X (M) —™ X (M)
f X(f) X(f)
MY X (Mu) —— X (M“)
MU

would not commute. So, 7y, must send constants to constants. Since 7 is an isomor-

phism and hence invertible, 7, cannot send nonconstants to constants either.

Now suppose that 1y, does not fix the nonconstants, so that for some nonconstant
d, d # na(d), with ny/(d) a nonconstant. Consider again the naturality diagram for
Ay M — MY:

M X(M) —2 5 X (M)
AM X(A]\/]) X(AM)
MY X (M) ——— X (MY)

MU

This tells us that nyu (A (d)) = Ax(nar(d)).

Let d' stand for Ay (na(d)), and let e be another nonconstant in MY, distinct from
Ap(d) and d'. Since d’ and e are nonconstants, we can find an automorphism o :

MY — MY which fixes Ays(d) but which moves d’ to e. Then the naturality diagram

for o
MU X (MH) — By X (MY
g X (o) X (o)
MZ/{ X (MU) T) X (MU)
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tells us that

o o myu(An(d)) = nyu o o(An(d))
= o(d') = 0 (An(d))

= e = d/’
a contradiction. Therefore, 1, fixes the nonconstants. O]

Finally, we remark that any permutation of the constants can be realized in an auto-

morphism 7 : X — X, and in fact Aut(X) ~ Sym(w).

8.1.1 The exotic A-functor

Now we will construct a transition isomorphism ¢ for X such that (X, ®) is a A-

functor which is not an ultrafunctor (and, in fact, which fails to preserve the general-

ized diagonal embeddings |3.3.13]).

Fix I and a non-principal ultrafilter U. Let (M;),e; be an I-indexed sequence of
models. Consider X (] [,_,, M;), in which we can canonically identify [ [, ,, X (M;) as

a subset.

Definition 8.1.3. Let A, be the complement of [ [, ,, X (/;) inside X (] ],_,,, M;).

A, consists of those elements [;];y of [ [, ,,, M; which:
1. realize the non-isolated type p(x), i.e. are not constants, and

2. such that any representative sequence (z;);_y is U-often an odd constant (equiv-

alently, can be represented by a sequence made up entirely of odd constants).

Let B,y be the subset of [[,_,, X(M;) which consists of those elements [;]; .y of
[ 1, which:

1. realize the non-isolated type p(z), i.e. are not constants, and
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2. such that any representative sequence (x;);_y is U-often an even constant (equiv-

alently, can be represented by a sequence made up entirely of even constants).
Finally, let C(y,) be the complement of By, inside [ [,_,, X (M;).

Note that C(y,) consists precisely of those elements of X ([ [,_,, M;) which are either
constants or which are nonconstants [x;];_; for which any representative sequence

(x;)i—y is U-often a nonconstant.

Since elementary embeddings preserve the property of a tuple being constant or non-
constant, for any sequence of elementary embeddings (f; : M; — N;);—y, we have that
[ fi]iu restricts to a map C(ay,) — Cw,), and furthermore because elementary embed-

dings fix constants, [ f;];— restricts to bijections A,y — An,) and B,y — B,

Now, we have disjoint unions

X (H MZ> :A(Mi) ‘—JB(MZ-) I_IC(Mi) and HX M) uC’
1—U i—U
and our task is to find a transition isomorphism ® ) @ Ay U B,y U Cor

By b Coary)

We define @57,y to be the identity on C(yy,). It remains to specify a bijection o :
AvyU By ~ B,y. Since any such o only involves identifying certain ultraproducts
of constants with other ultraproducts of constants, then after fixing a ¢ we can use o
to define ®(y,) for arbitrary /-indexed sequences of models (IN;). With this setup, we

will show that any choice of ¢ works.

While in general, transition isomorphisms depend on the three pieces of information
I,U and (M;), we have constructed candidate transition isomorphisms by making a

choice o which only depends on I and U, so we make this explicit by writing o .

Now, fix o7y and let (M A N;)ier be an I-indexed sequence of elementary embed-
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dings, and consider the pre-ultrafunctor diagram

X([fi]i—»l/l)l l[X(fi)]i—J/{

To show it commutes, consider an arbitrary element [z;];; of the top left corner

X (I'Liny M;). There are three cases:

1. [#;]io0 is in Cyy,. Recall that ®(yy,) and ®(y,) were defined to be the identities on
Cuyy, Cnyy, and that [ f;];_y restricts to a map Ciay,) — Cn,). Chasing [;]i-.u

through the diagram, we get

(2], — (@il

! |

[fivi]iy —— [fizilimy -

2. 2]y is in Ay, Recall that [ f;];y restricts to bijections A,y — A,y and
Bm,) — Bn,)- Chasing [2;];-y through the diagram, we get

[mi]i—d/{ — [0-]7ux7;]i—>u

| !

(2], g — lorumil;_y, -

3. |@i)imu is in B(ag,). Recall that | f;];—.y restricts to bijections A,y — A, and

By — By Chasmg [2;]i—u through the diagram, we get

[z, —— [vauxi]zsu

| !

(23], — loruil,_yy -

Therefore, after making choices of bijections oy for every I and U, we obtain a

transition isomorphism ® such that (X, ®) is a pre-ultrafunctor.
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(X, ®) is also a A-functor: for any ultrapower MY, recall that the subset C(yy,) [8.1.3
of X (M” ) contains all those elements which are constants or nonconstants that are
ultraproducts of nonconstants. In particular, if @ € M, then Ay/(a) = [a]i—y is a
constant if a is a constant or a nonconstant which is an ultraproduct of nonconstants
if a is a nonconstant, so the image of Ax () is contained inside Cyy) S X (MM,
X(Ayy) is just the restriction of Ay to X (M), so the image of X(Ay) also lies in
Cory and agrees with the image of Ax(pr). This means in the below diagram, the
upper-left and lower-left triangles commute:
X (MY)

A

X(Awr)
X(M) _— C(M) D (ar)

Ax ()

X (M.

Furthermore, ® () was defined to be the identity on C(,), so the curved subdiagram
on the right commutes. Therefore, the entire diagram commutes; in particular, the
outer triangle from the definition [3.3.14] of a A-functor commutes, so (X, ®) is a

A-functor.

The theory T is countable, and by strong conceptual completeness there as many
isomorphism classes of ultrafunctors as there are definable sets of 7. But for any
I and U, any choice of a bijection o7y worked. We will show that there are at
least uncountably many isomorphism classes of A-functors (X, ®) that arise from our
construction. This will imply that there is some choice of ® such that (X, ®) is not

an ultrafunctor.

Let I now be countable, and let ® and ®’ be two different transition isomorphisms

which arise from making the choices of o7y and o}, during our construction. An
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isomorphism of pre-ultrafunctors (X, ®) — (X, ®’) is an automorphism 7 : X — X
such that, additionally, all diagrams of the form
Mlisu le lni—w{ M

commute.

By our earlier analysis of the automorphisms of X, it is easy to see that when

restricted to C(yy,), the above diagram commutes.
However, if we restrict to Ay,) U B(ay,), then chasing an element around the diagram

Anry u Bary —% Bag
My Mzi ll_[i_,u nMm;
A

%

)2 By —— By

yields the tentative equality

EZI P » oru([zi];_y

| !

(@il —— Tra(l2i]) = TTimeg man, (0 ([2i],200))

so we see that if the transition isomorphisms ® and @’ induced by o7y and o7, are
isomorphic, then there is an automorphism 7 : X — X such that [ [, ,,ma, 0 07y =
07y Therefore, defining G to consist of all ultraproducts | [;_,;, n(,) admissible in the
above diagram (so only those which restrict to a permutation on B(y,)), the number
of isomorphism classes among the (X, ®) is bounded from below by the number of

orbits of the action by composition
G —~ Bijections (A(Mi) L B(Mi), B(Mi)) .

However, G can be identified with a subgroup of Sym(w). Since I was countable,

Sym(w)¥ has size < ¢ the size of the continuum.
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On the other hand, the set on which G acts has the same cardinality as | Sym (By,)) | =
2°.

Therefore, this action has uncountably many orbits, and so there are uncountably
many isomorphism classes of (X, ®) arising from our construction. So, one of them

cannot be an ultrafunctor.

We can also see that ® can be chosen to violate a generalized diagonal embedding
3.3.13l Fix indexing sets I and J such that || > |J|, a surjection g : [ — J, and U
an ultrafilter on I with V its pushforward ¢g.U. Let (M,);es be a J-indexed sequence

of models.

Then the associated generalized diagonal embedding A, : [ iy M — [ Limuy My
induces, informally speaking, a relationship between ultraproducts computed with

respect to different indexing sets and ultrafilters: for it to be preserved, the diagram

X(Ag)
X (Hjav Mj) — X (HHM Mg(i))

@(Mj)l lq’(Mga))

[0 X(M)) e [ Lo X (M)

must commute, for all choices of (M;). However, our construction of ® involved a
specification of ®(,;,) based on a choice of o) which is independent of the choice of
07y used to specify @y, ). To make this concrete, if for a given ® and (M;) the
diagram above happens to commute, then for any a € Ay, in the upper-left corner
which gets sent to some b € By, ) in the lower-right corner, we can change our
choice of @5,y so that Ax(g) © P M;) sends a to a different b # b while keeping the
rest of ® the same, with the modified transition isomorphism @’ still making (X, ®’)

a A-functor.
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8.1.2 The exotic pre-ultrafunctor

In the previous section, the transition isomorphisms ® making (X, ®) a A-functor
were constructed to be the identity on C(,s), and hence also restricted to the identity

on the image of diagonal embeddings Ay : M — MY,

In general, C(yy,) splits into a disjoint union of even constants and nonconstants which

are ultraproducts of nonconstants of M;:

C(Mi) = C(cMi) U C&Z)

We can easily modify the construction of the transition isomorphism to not preserve
the diagonal map, by requiring that & restricts to the identity only on C("AZ), while
on CfMi), we now require that @ restricts to any permutation C(,) — C(ay,), while

keeping the rest of the construction the same.

Now we verify the pre-ultrafunctor condition. When we verified the pre-ultrafunctor
condition during the construction of the exotic Delta-functor, we had three cases
according to whether an element [z;];y € X ([ [,_,, M) was in Ay, By
or C(yy,). With the new definition, the verification of the first two cases remains the
same, but the case of C(yy,) splits into the two cases of whether [x;];iy € Cy, is
a constant or nonconstant. If [z;];_; is a nonconstant, then since ® still acts as
the identity on [x;];_y, the diagram commutes. If [z;];_ is a constant, then even
if ® restricts to a nontrivial permutation of C(y,), the diagram commutes because

elementary embeddings preserve constants.

However, when & restricts to a nontrivial permutation on the even constants, the
diagonal embedding Ay, : M — MY is not preserved, i.e. the triangle diagram
in does not commute. For any even constant ¢ in X (M) which is not fixed
by ® (and identifying X (M) as a subset of X (MY), and this as a subset of M,
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8.2 Further directions

8.2.1 Non-definable counterexamples

In this chapter, we have constructed counterexamples to Theorem [7.2.2] Thus, our
counterexamples are not a priori counterexamples to Theorem Indeed, as we
pointed out in [3.3.5] our functor X is definable, in fact isomorphic to the functor of
points of the 1-sort of 7.

We therefore ask:
Question 8.2.1. What is an example of a non-definable pre-ultrafunctor?

Given the examples of exotic functors we have constructed in this section, it is natural

to also ask the following questions:

Question 8.2.2. Does there exist a pre-ultrafunctor which preserves the generalized

diagonal maps A,, but which is not an ultrafunctor?

Question 8.2.3. Given any ultramorphism §, does there exist a pre-ultrafunctor

which preserves § but which is not an ultrafunctor?

Question 8.2.4. Given any set of ultramorphisms S, does there exist a pre-ultrafunctor

which preserves every ¢ € .S, but fails to preserve every o ¢ S7

118



References

1]

[6]
[7]

G. AHLBRANDT AND M. ZIEGLER, Quasi-finitely axiomatizable totally categor-

ical theories, Annals of Pure and Applied Logic, 30(1) (1986), pp. 63-82.

M. ARTIN, A. GROTHENDIECK, AND J.-L. VERDIER, Theorie des topos et

cohomologie etale des schemas, Springer Lecture Notes in Math.

J. BELL AND A. SLOMSON, Models and Ultraproducts: An Introduction, Dover

Books on Mathematics Series, Dover Publications, 2006.

M. BODIRSKY, D. EvaNns, M. KOMPATSCHER, AND M. PINSKER, A counterez-
ample to the reconstruction of w-categorical structures from their endomorphism

monoids, Israel J. Math, (2015).

F. BORCEUX, Handbook of Categorical Algebra, Cambridge University Press,
1994.

P. JOHNSTONE, Topos theory, Academic Press, 1977.

—, Sketches of an Elephant: A Topos Theory Compendium, Oxford Logic
Guides, 2002.

M. KAMENSKY, A categorical approach to internality, Models, Logics and Higher

dimensional categories. A tribute to the work of Mihaly Makkai, (2009).

S. M. LANE, Categories for the working mathematician, 2nd ed., Springer-

Verlag, 1998.

119



M.Sc. Thesis - Jesse Michael Han McMaster University - Mathematics

[10] S. M. LANE AND I. MOERDUIK, Sheaves in geometry and logic, Springer-Verlag,

1992.

[11] D. LASCAR, Le demi-groupe des endomorphismes d’une structure Ro-catégorique,

Actes de la Journée Algebre Ordonnée (Le Mans, 1987), (1989), pp. 33-43.

[12] M. MAKKAL, Stone duality for first-order logic, Annals of Pure and Applied
Logic, 40 (1988), pp. 167-215.

[13] M. MAKKAI AND G. REYES, First-order categorical logic, Springer-Verlag, 1977.

[14] D. MARKER, Model theory: an introduction, Springer-Verlag, 2002.

120



	Introduction
	Basic model theory and categorical logic
	Introduction
	Notation and conventions

	Basic notions
	The category of definable sets
	Logical categories and elementary functors

	Interpretations between theories and interpretations between structures
	Concrete interpretations
	Abstract interpretations
	Comparing abstract and concrete interpretations

	Interpretations as elementary functors
	Models as elementary functors
	Elementary embeddings as natural transformations of elementary functors

	Pretoposes and the (-)eq-construction
	The 2-category of structures and interpretations
	More on Mod(T)
	Equivalences of theories induce equivalences of categories of models
	Accessibility of Mod(T)

	0-categorical structures and theories
	The Ryll-Nardzewski theorem
	The Coquand-Ahlbrandt-Ziegler theorem

	Recovering Mod(T) from End(M)

	Ultraproducts, ultracategories, and Makkai's strong conceptual completeness
	Introduction
	Basic notions
	The Łos theorem
	Frayne's lemma and Scott's lemma
	The Beth definability theorem
	Conceptual completeness

	Ultracategories and ultrafunctors
	Pre-ultracategories and pre-ultrafunctors
	Ultramorphisms
	What it means for a pre-ultrafunctor to preserve an ultramorphism
	The definitions of ultracategory and ultrafunctor

	The ultracategory structure on Mod(T)
	Strong conceptual completeness

	-functors and definability for 0-categorical theories
	-functors and the finite support property
	Failure of F to preserve the ultracategory structure
	A definability criterion for 0-categorical theories
	Aut(M)U orbit-counting


	Strictifications of pre-ultrafunctors
	Strict vs non-strict pre-ultrafunctors
	The ultraproduct rank of a model
	Constructing the isomorphism
	Showing the constructed isomorphism respects preservation of ultramorphisms

	Classifying toposes of first-order theories
	Preliminaries on the classifying topos
	Computing the associated inverse image functor 

	Coherence, compactness and definability in E(T)

	Ultraproducts and coherence in the classifying topos
	Compact non-coherent objects in E(T)
	The coherence criterion

	Exotic functors Mod(T) Set
	Counterexamples to Theorem 7.2.2 in the non-0-categorical case
	The exotic -functor
	The exotic pre-ultrafunctor

	Further directions
	Non-definable counterexamples


	References

