Notes on Banach spaces and Hilbert spaces

J. M. Egger

January 13, 2014

1 Summary

The category of Banach spaces and linear contractions, **Ban**, resembles that of vector spaces and linear transformations, **Vec**, except that its structure is finer; by this, I mean that it distinguishes pairs of concepts which collapse to a single concept in **Vec**.

- 1. **Ban** is complete and co-complete, but products and coproducts coincide only in the nullary case, and in the trivial cases which follow from that.
- 2. Epis and monos needn't be regular in **Ban**; one has both (regular epi/mono)- and (epi/regular mono)-factorisation systems in **Ban**, in place of a single (epi/mono)-factorisation system as in **Vec**.
- 3. Ban has two monoidal structures generalising tensor product of vector spaces; these correspond to the "tensor" and "par" of linear logic. Both have \mathbb{C} as unit; hence, there is a natural transformation between them, but its components are invertible only in trivial cases.

In particular, the full subcategory of finite-dimensional Banach spaces form a *-autonomous category in which tensor and par differ.

Thinking of Hilbert spaces as a particular kind of Banach space, they naturally acquire the structure of a **Ban**-enriched category. But to do justice to the further (also **Ban**-enriched) "dagger" structure, one observes that there is a slightly larger class of generalised Hilbert spaces which also admit the structure of a **Ban**-enriched dagger category. The categorical yoga required to define **gHilb** requires only that **Ban** is a closed involutive monoidal category.

2 Basics about Banach spaces

A norm on a (real or complex) vector space V is a function $\| \| : V \to [0,\infty)$ satisfying

- 1. $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$
- 2. $\|\lambda \cdot \gamma\| = |\lambda| \cdot \|\gamma\|$
- 3. $\|\alpha\| = 0 \Rightarrow \alpha = 0$

If $\sum \|\alpha_k\| < \infty$, then the partial sums $\sum_{k < n} \alpha_k$ form a Cauchy sequence. Hence, in the presence of Cauchy-completeness, one can define $\sum \alpha_k$ to be the limit of $\sum_{k < n} \alpha_k$ whenever $\sum \|\alpha_k\| < \infty$. Such series are naturally called *norm-convergent*.

A Banach space P is a complex vector space p together with a norm $\| \|_P$ for which p is Cauchy-complete. The set of vectors of norm ≤ 1 is called the *unit ball* of P and denoted $\mathcal{U}(P)$.

$$\mathcal{U}(P) = \{ \alpha \in p \mid \|\alpha\|_P \le 1 \}$$

$$\tag{1}$$

A linear contraction $P \to Q$ is a linear transformation $\omega : p \to q$ satisfying $\|\omega(\alpha)\|_Q \leq \|\alpha\|_P$; equivalently, one which restricts to a map $\mathcal{U}(P) \to \mathcal{U}(Q)$. More generally, a multilinear contraction $P_1 \times \ldots \times P_n \to Q$

is a multilinear transformation $\psi : p_1 \times \ldots \times p_n \to q$ satisfying $\|\psi(\alpha_1, \ldots, \alpha_n)\|_Q \leq \|\alpha_1\|_{P_1} \cdots \|\alpha_n\|_{P_n}$; equivalently, one which restricts to a map $\mathcal{U}(P_1) \times \cdots \times \mathcal{U}(P_n) \to \mathcal{U}(Q)$.

The symmetric multicategory of Banach spaces and multilinear contractions, **Ban**_{multi}, happens to be representable; that is, for every *n*-tuple of Banach spaces (P_1, \ldots, P_n) , there exists a universal multilinear contraction $\otimes : P_1 \times \ldots \times P_n \to P_1 \otimes \ldots \otimes P_n$. Explicitly, for $n > 0, P_1 \otimes \ldots \otimes P_n$ is the Cauchy completion of $p_1 \otimes \ldots \otimes p_n$ with respect to the following norm.

$$\|\beta\|_{\aleph} = \inf\left\{\sum_{j < k} \|\alpha_{1,j}\|_{P_1} \cdots \|\alpha_{n,j}\|_{P_n} \ \left| \ \beta = \sum_{j < k} \alpha_{1,j} \otimes \cdots \otimes \alpha_{n,j} \right. \right\}$$
(2)

(In the nullary case, we take "1" : $1 \to \mathbb{C}$.) Thus the (mere) category of Banach spaces and linear contractions, **Ban**, admits a symmetric monoidal structure defined on objects by the binary and nullary cases of \otimes .

A bilinear contraction $\psi: P \times Q \to R$ can be recast as a bilinear transformation $\psi: p \times q \to r$ satisfying

$$\sup \left\{ \left\| \psi(\alpha, \beta) \right\|_{R} \mid \alpha \in \mathcal{U}(P) \right\} \le \left\| \beta \right\|_{Q} \tag{3}$$

—hence, the Curry of ψ (qua linear transformation $q \to p \multimap r$) factors through $s := \{\omega \in p \multimap r \mid \|\omega\|_S < \infty\}$, where

$$\|\omega\|_{S} := \sup\left\{\|\omega(\alpha)\|_{R} \mid \alpha \in \mathcal{U}(P)\right\},\tag{4}$$

and is furthermore contractive with respect to $\| \|_Q$ and $\| \|_S$. It is easily verified that s and $\| \|_S$ form a Banach space, henceforth denoted $P \multimap R$ or $R \multimap P$. Thus the symmetric monoidal category (**Ban**, \bowtie , \mathbb{C}) is closed.

It happens that a linear transformation $\omega : p \to r$ satisfies $\omega \in P \to R$ (*i.e.*, $\|\omega\|_{P\to R} < \infty$) if and only if it is continuous with respect to the topologies induced by $\| \|_P$ and $\| \|_R$.

3 More about Banach spaces

Clearly, \mathcal{U} defines a functor **Ban** \to **Set**; moreover, the universal bilinear contraction $\otimes : P \times Q \to P \otimes Q$ restricts to a map $\mathcal{U}(P) \times \mathcal{U}(Q) \to \mathcal{U}(P \otimes Q)$, which, by abuse of notation, we also denote \otimes . Then $(\mathcal{U}, \otimes, 1)$ defines a monoidal functor (**Ban**, \otimes , \mathbb{C}) \to (**Set**, \times , 1). This has a monoidal left adjoint whose functor part is denoted ℓ^1 ; explicitly, $\ell^1(J) = \{\alpha : J \to \mathbb{C} \mid \|\alpha\|_{\ell^1} < \infty\}$, where $\|\alpha\|_{\ell^1} = \sum |\alpha_j|$.

This adjunction may be monoidal, but it is not monadic. Nevertheless, the comparison functor $\mathbf{Ban} \rightarrow \mathbf{Alg}(\mathcal{U}\ell^1)$ is fully faithful and reflective; moreover, $\mathcal{U}\ell^1$ is \aleph_1 -ary. We can conclude that \mathbf{Ban} is locally \aleph_1 -presentable—therefore, in particular, complete, co-complete, and not self-dual. However, the full subcategory \mathbf{Ban}_{fd} of finite-dimensional Banach spaces is *-autonomous.

The dual tensor product ("par"), defined on \mathbf{Ban}_{fd} by

$$P \boxtimes Q := ({}^{*}Q \otimes {}^{*}P)^{*} \cong P \multimap {}^{*}Q,$$

extends to the whole of **Ban**. Explicitly, for arbitrary Banach spaces P and Q, $P \boxtimes Q$ is the Cauchy completion of $p \otimes q$ with respect to the following norm.

$$\|\zeta\|_{\otimes} = \sup\left\{ |(\omega \otimes \psi)(\zeta)| \mid \omega \in \mathcal{U}(P \multimap \mathbb{C}), \psi \in \mathcal{U}(Q \multimap \mathbb{C}) \right\}$$
(5)

Whenever $\zeta \in p \otimes q$ can be written in the form $\sum_{j < k} \alpha_j \otimes \beta_j$, we have

$$\begin{aligned} \|\zeta\|_{\boxtimes} &= \sup\left\{ \left| (\omega \otimes \psi) (\sum_{j < k} \alpha_j \otimes \beta_j) \right| \ \left| \ \omega \in \mathcal{U}(P \multimap \mathbb{C}), \psi \in \mathcal{U}(Q \multimap \mathbb{C}) \right\} \right. \\ &= \left. \sup\left\{ \left| \sum_{j < k} \omega(\alpha_j) \cdot \psi(\beta_j) \right| \ \left| \ \omega \in \mathcal{U}(P \multimap \mathbb{C}), \psi \in \mathcal{U}(Q \multimap \mathbb{C}) \right\} \right. \end{aligned} \right. \end{aligned}$$

$$\leq \sup \left\{ \sum_{j < k} |\omega(\alpha_j)| \cdot |\psi(\beta_j)| \ \left| \ \omega \in \mathcal{U}(P \multimap \mathbb{C}), \psi \in \mathcal{U}(Q \multimap \mathbb{C}) \right\} \right\}$$
$$\leq \sum_{j < k} ||\alpha_j|| \cdot ||\beta_j||$$

—hence $\|\zeta\|_{\otimes} \leq \|\zeta\|_{\otimes} = \inf \left\{ \sum_{j < k} \|\alpha_j\| \cdot \|\beta_j\| \mid \zeta = \sum_{j < k} \alpha_j \otimes \beta_j \right\}$. Thus the identity on $p \otimes q$ extends to a linear contraction $\nu : P \otimes Q \to P \otimes Q$. Curiously, ν need not be injective: the "nuclear tensor product" of Banach spaces is defined by $P \otimes_{nuc} Q = (P \otimes Q) / \ker \nu$.

Similarly, for arbitrary Banach spaces P, Q, R, the associativity isomorphism $p \otimes (q \otimes r) \rightarrow (p \otimes q) \otimes r$ extends to a linear contraction

$$P \bowtie (Q \boxtimes R) \to (P \bowtie Q) \boxtimes R$$

generalising the linear distributions which come for free in the finite-dimensional case.

On the subject of which, a linear contraction $\omega : P \to Q$ is: mono, if it is injective; regular mono, if it preserves norm; epi, if its range is dense; regular epi, if $\|\beta\|_Q = \inf \{\|\alpha\|_P \mid \omega(\alpha) = \beta\}$. So the epi/regular-mono factorisation of ω is given by the closure of its range, with the restriction of $\|\|_Q$; the regular-epi/mono factorisation of ω is given by equipping $P/\ker \omega$ with the appropriate norm. It is important fact that \mathbb{C} is a regular-injective object in **Ban**—that is, injective wrt regular monos. From this, it follows that the canonical maps $P \to (*P)^*$ are regular mono. We recall that an object of a closed monoidal category is called *reflexive* if that map happens to be iso; thus to show that a Banach space P is reflexive, it suffices to show that the range of $P \to (*P)^*$ is dense.

Finally, the conjugate of a complex vector space V, denoted \overline{V} , is defined by changing the scalar multiplication of V and leaving all else the same; similarly also the conjugate of a Banach space; $V \mapsto \overline{V}$ underlies an endofunctor of **Vec**, and $P \mapsto \overline{P}$ underlies an endofunctor of **Ban**, in each case defined on arrows by $\omega \mapsto \omega$. There is a natural isomorphism $\overline{\operatorname{span}}(J) \to \operatorname{span}(J)$, where span denotes the left adjoint of the forgetful functor $\operatorname{Vec} \to \operatorname{Set}$; similarly, there is a natural isomorphism $\overline{\ell^1(J)} \to \ell^1(J)$. Since (arguably) every vector space is isomorphic to one of the form $\operatorname{span}(J)$, one can conclude that there is an isomorphism $\overline{V} \xrightarrow{\sim} V$ for every vector space V, hence also an isomorphism $\overline{P} \xrightarrow{\sim} P$ for every Banach space P. Nevertheless, there is no natural isomorphism $\overline{V} \xrightarrow{\sim} V$; nor a natural isomorphism $\overline{P} \xrightarrow{\sim} P$. But there is a coherent natural isomorphism $\overline{V \oplus W} \xrightarrow{\sim} \overline{W} \otimes \overline{V}$ defined by $\alpha \otimes \beta \mapsto \beta \otimes \alpha$; this induces to coherent natural isomorphisms $\overline{P \otimes Q} \xrightarrow{\sim} \overline{Q} \otimes \overline{P}$. Thus ($\operatorname{Vec}, \otimes, \mathbb{C}, (\overline{()}$) is a semitrivial example of an involutive monoidal category, and ($\operatorname{Ban}, \otimes, \mathbb{C}, \otimes, \mathbb{C}, (\overline{()})$) that of an involutive linear-distributive category.

4 Basics about Hilbert spaces

A Hermitian form on a vector space V is a function $\langle -, - \rangle : V \times V \to \mathbb{C}$ satisfying

- 1. $\langle \alpha, \beta + \gamma \rangle = \langle \alpha, \beta \rangle + \langle \alpha, \gamma \rangle$
- 2. $\langle \alpha, \lambda \cdot \beta \rangle = \lambda \cdot \langle \alpha, \beta \rangle$
- 3. $\overline{\langle \alpha, \beta \rangle} = \langle \beta, \alpha \rangle$

A Hermitian form is called: definite, if $\langle \alpha, \alpha \rangle = 0 \Rightarrow \alpha = 0$; positive, if $\langle \alpha, \alpha \rangle \ge 0$. An inner product is a Hermitian form which is both positive and definite. The induced norm of an inner product is $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$. It is an easy theorem that

$$|\langle \alpha, \beta \rangle| \le \|\alpha\| \cdot \|\beta\| \tag{6}$$

for any inner product (and its induced norm) on any vector space.

A Hilbert space **h** is conventionally defined as a vector space h together with an inner product $\langle -, - \rangle_{\mathbf{h}}$ such that h is Cauchy-complete in the induced norm of $\langle -, - \rangle_{\mathbf{h}}$. We denote the induced norm of $\langle -, - \rangle_{\mathbf{h}}$ by $\| \|_{H}$ (not $\| \|_{\mathbf{h}}$); the Banach space comprising h and $\| \|_{H}$ will be called the *induced Banach space* of **h**,

and it will be denoted H. The map $\mathbf{h} \mapsto H$, together with the canonical self-enrichment of **Ban**, allows us to define a (**Ban**, \otimes , \mathbb{C})-enriched category of Hilbert spaces, **Hilb**. Explicitly, **Hilb**(\mathbf{h}, \mathbf{k}) = $K \circ -\underline{H}$.

It is commonplace to observe that an inner product on h may be construed as a bilinear map $\overline{h} \times h \to \mathbb{C}$; hence also as a linear map $\overline{h} \otimes h \to \mathbb{C}$. However, the Cauchy-Schwarz inequality (6 above) entails that it also defines a bilinear contraction $\overline{H} \times H \to \mathbb{C}$; hence also a linear contraction $\overline{H} \otimes H \to \mathbb{C}$. The latter can be Curryed into a linear contraction $v : \overline{H} \to {}^*H$, and, according to the Riesz Representation Theorem, this Curryed form is surjective. Now it is easy to show that $\overline{H} \to {}^*H$ preserves norm. In fact, for an arbitrary contraction of the form $\langle -, - \rangle : K \otimes H \to \mathbb{C}$, the assertion that its Curry $K \to {}^*H$ preserve norm is equivalent to the assertion

$$(\forall \alpha \in K)(\exists \beta \in H) |\langle \alpha, \beta \rangle| = ||\alpha|| \cdot ||\beta||$$
(7)

—so, in the case at hand, one can simply choose $\beta = \alpha$. Thus a Hilbert space **h** may be regarded as a Banach space together with a particular sort of isomorphism $\overline{H} \to {}^{*}H$.

Specifically, the Hermitianness axiom $(\langle \alpha, \beta \rangle = \langle \beta, \alpha \rangle)$, when expressed diagrammatically,

(where χ denotes the isomorphism given by $\alpha \otimes \beta \mapsto \beta \otimes \alpha$ discussed above) can be Curryed as follows.

So, in particular, a Hilbert space is reflexive as a Banach space.

These facts are what allows us to define an (enriched) dagger structure on **Hilb**. Briefly, $()^{\dagger} : \overline{\text{Hilb}(\mathbf{h}, \mathbf{k})} \rightarrow \text{Hilb}(\mathbf{k}, \mathbf{h})$ is defined by

$$\overline{K \circ - H} \xrightarrow{\sim} \overline{H} \to \overline{K} \xrightarrow{\sim} *H \to *K \xrightarrow{\sim} H \circ -K$$

where the last isomorphism is the inverse of the canonical map $H \to K \to {}^{*}H \to {}^{*}K$; equivalently, the canonical map ${}^{*}H \to {}^{*}K \to ({}^{*}H)^{*} \to ({}^{*}K)^{*}$, composed with the isos $H \to ({}^{*}H)^{*}$ and $K \to ({}^{*}K)^{*}$.

5 Generalised Hilbert spaces

Let us define a contractive Hermitian form on a Banach space H to be one satisfying the Cauchy-Schwarz inequality (6)—equivalently, a linear contraction $\langle -, - \rangle : \overline{H} \boxtimes H \to \mathbb{C}$ satisfying the Hermitianness diagram above. Let us say that a contractive Hermitian form is weakly definite it satisfies (7) above—equivalently, if its Curry $v : \overline{H} \to {}^*H$ is invertible. Finally, we define a generalised Hilbert space **h** to comprise a Banach space H together with a weakly definite contractive Hermitian form $\langle -, - \rangle_{\mathbf{h}}$. Then there is a **Ban**enriched dagger category **gHilb** of generalised Hilbert spaces with **gHilb**(\mathbf{h}, \mathbf{k}) = $K \sim H$, and dagger map **gHilb**(\mathbf{h}, \mathbf{k}) \rightarrow **gHilb**(\mathbf{k}, \mathbf{h}) defined exactly as above.

Given a Hilbert space **h** and a self-adjoint unitary σ (*i.e.*, an arrow $H \to H$ with $\sigma = \sigma^{\dagger} = \sigma^{-1}$), one can define a generalised Hilbert space \mathbf{h}^{σ} having the same underlying Banach space H, but the "deviant" inner

product $\langle \alpha, \beta \rangle_{\mathbf{h}^{\sigma}} = \langle \alpha, \sigma \beta \rangle_{\mathbf{h}}$. Given two such generalised Hilbert spaces, \mathbf{h}^{σ} and \mathbf{k}^{τ} , and an $\omega \in K \sim H$, we have

$$\begin{split} \langle \alpha, \omega\beta \rangle_{\mathbf{k}^{\tau}} &= \langle \alpha, \tau \omega\beta \rangle_{\mathbf{k}} \\ &= \langle \omega^{\dagger} \tau \alpha, \beta \rangle_{\mathbf{h}} \\ &= \langle \sigma \omega^{\dagger} \tau \alpha, \sigma\beta \rangle_{\mathbf{h}} \\ &= \langle \sigma \omega^{\dagger} \tau \alpha, \beta \rangle_{\mathbf{h}^{\sigma}} \end{split}$$

—hence the "deviant" dagger (which we denote \ddagger) $\overline{\mathbf{gHilb}(\mathbf{h}^{\sigma}, \mathbf{k}^{\tau})} \rightarrow \mathbf{gHilb}(\mathbf{k}^{\tau}, \mathbf{h}^{\sigma})$ relates to the conventional dagger $\overline{\mathbf{Hilb}(\mathbf{h}, \mathbf{k})} \rightarrow \mathbf{Hilb}(\mathbf{k}, \mathbf{h})$ of Hilbert spaces via $\omega^{\ddagger} = \sigma \omega^{\dagger} \tau$.

If I understand correctly, every generalised Hilbert space is equivalent (in a dagger category theoretic sense) to one of the form \mathbf{h}^{σ} . (I just need to find an appropriate citation.) Thus, in particular, the underlying categories of **Hilb** and **gHilb** are equivalent. But the underlying dagger categories of **Hilb** and **gHilb** are certainly not equivalent.

Generalised Hilbert spaces are not much of a generalisation: they arose purely because I have never quite figured out how to express positivity in a sufficiently categorical manner, and because they suffice for my purposes. Or, at least, they have sufficed for my purposes so far.