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1 Summary

The category of Banach spaces and linear contractions, Ban, resembles that of vector spaces and linear
transformations, Vec, except that its structure is finer; by this, I mean that it distinguishes pairs of concepts
which collapse to a single concept in Vec.

1. Ban is complete and co-complete, but products and coproducts coincide only in the nullary case, and
in the trivial cases which follow from that.

2. Epis and monos needn’t be regular in Ban; one has both (regular epi/mono)- and (epi/regular mono)-
factorisation systems in Ban, in place of a single (epi/mono)-factorisation system as in Vec.

3. Ban has two monoidal structures generalising tensor product of vector spaces; these correspond to
the “tensor” and “par” of linear logic. Both have C as unit; hence, there is a natural transformation
between them, but its components are invertible only in trivial cases.

In particular, the full subcategory of finite-dimensional Banach spaces form a ∗-autonomous category in
which tensor and par differ.

Thinking of Hilbert spaces as a particular kind of Banach space, they naturally acquire the structure
of a Ban-enriched category. But to do justice to the further (also Ban-enriched) “dagger” structure, one
observes that there is a slightly larger class of generalised Hilbert spaces which also admit the structure of
a Ban-enriched dagger category. The categorical yoga required to define gHilb requires only that Ban is a
closed involutive monoidal category.

2 Basics about Banach spaces

A norm on a (real or complex) vector space V is a function ‖ ‖ : V → [0,∞) satisfying

1. ‖α+ β‖ ≤ ‖α‖ + ‖β‖

2. ‖λ · γ‖ = |λ| · ‖γ‖

3. ‖α‖ = 0 ⇒ α = 0

If
∑

‖αk‖ <∞, then the partial sums
∑

k<n αk form a Cauchy sequence. Hence, in the presence of Cauchy-
completeness, one can define

∑

αk to be the limit of
∑

k<n αk whenever
∑

‖αk‖ < ∞. Such series are
naturally called norm-convergent.

A Banach space P is a complex vector space p together with a norm ‖ ‖P for which p is Cauchy-complete.
The set of vectors of norm ≤ 1 is called the unit ball of P and denoted U(P ).

U(P ) = {α ∈ p | ‖α‖P ≤ 1} (1)

A linear contraction P → Q is a linear transformation ω : p→ q satisfying ‖ω(α)‖Q ≤ ‖α‖P ; equivalently,
one which restricts to a map U(P ) → U(Q). More generally, a multilinear contraction P1 × . . . × Pn → Q
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is a multilinear transformation ψ : p1 × . . . × pn → q satisfying ‖ψ(α1, . . . , αn)‖Q ≤ ‖α1‖P1
· · · ‖αn‖Pn

;
equivalently, one which restricts to a map U(P1) × · · · × U(Pn) → U(Q).

The symmetric multicategory of Banach spaces and multilinear contractions, Banmulti, happens to be
representable; that is, for every n-tuple of Banach spaces (P1, . . . , Pn), there exists a universal multilinear
contraction � : P1 × . . .×Pn → P1 ×∩ . . . ×∩ Pn. Explicitly, for n > 0, P1 ×∩ . . . ×∩ Pn is the Cauchy completion
of p1 � . . .� pn with respect to the following norm.

‖β‖
×∩ = inf







∑

j<k

‖α1,j‖P1

· · · ‖αn,j‖Pn

∣

∣

∣

∣

∣

∣

β =
∑

j<k

α1,j � · · · � αn,j







(2)

(In the nullary case, we take "1" : 1 → C.) Thus the (mere) category of Banach spaces and linear contractions,
Ban, admits a symmetric monoidal structure defined on objects by the binary and nullary cases of ×∩.

A bilinear contraction ψ : P ×Q→ R can be recast as a bilinear transformation ψ : p× q → r satisfying

sup {‖ψ(α, β)‖R | α ∈ U(P )} ≤ ‖β‖Q (3)

—hence, the Curry of ψ (qua linear transformation q → p −◦ r) factors through s := {ω ∈ p −◦ r | ‖ω‖S <∞},
where

‖ω‖S := sup {‖ω(α)‖R | α ∈ U(P )} , (4)

and is furthermore contractive with respect to ‖ ‖Q and ‖ ‖S . It is easily verified that s and ‖ ‖S form a
Banach space, henceforth denoted P −◦ R or R ◦− P . Thus the symmetric monoidal category (Ban, ×∩,C)
is closed.

It happens that a linear transformation ω : p → r satisfies ω ∈ P −◦ R (i.e., ‖ω‖P−◦R < ∞) if and only
if it is continuous with respect to the topologies induced by ‖ ‖P and ‖ ‖R.

3 More about Banach spaces

Clearly, U defines a functor Ban → Set; moreover, the universal bilinear contraction � : P × Q → P ×∩ Q
restricts to a map U(P )×U(Q) → U(P ×∩ Q), which, by abuse of notation, we also denote �. Then (U ,�, 1)
defines a monoidal functor (Ban, ×∩,C) → (Set,×, 1). This has a monoidal left adjoint whose functor part
is denoted ℓ1; explicitly, ℓ1(J) = {α : J → C | ‖α‖ℓ1 <∞}, where ‖α‖ℓ1 =

∑

|αj |.
This adjunction may be monoidal, but it is not monadic. Nevertheless, the comparison functor Ban →

Alg(Uℓ1) is fully faithful and reflective; moreover, Uℓ1 is ℵ1-ary. We can conclude that Ban is locally ℵ1-
presentable—therefore, in particular, complete, co-complete, and not self-dual. However, the full subcategory
Banfd of finite-dimensional Banach spaces is ∗-autonomous.

The dual tensor product (“par”), defined on Banfd by

P ×∪ Q := (∗Q ×∩ ∗P )∗ ∼= P ◦− ∗Q,

extends to the whole of Ban. Explicitly, for arbitrary Banach spaces P and Q, P ×∪ Q is the Cauchy
completion of p� q with respect to the following norm.

‖ζ‖
×∪ = sup {|(ω � ψ)(ζ)| | ω ∈ U(P −◦ C), ψ ∈ U(Q −◦ C)} (5)

Whenever ζ ∈ p� q can be written in the form
∑

j<k αj � βj , we have

‖ζ‖
×∪ = sup







∣

∣

∣

∣

∣

∣

(ω � ψ)(
∑

j<k

αj � βj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω ∈ U(P −◦ C), ψ ∈ U(Q −◦ C)







= sup







∣

∣

∣

∣

∣

∣

∑

j<k

ω(αj) · ψ(βj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω ∈ U(P −◦ C), ψ ∈ U(Q −◦ C)






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≤ sup







∑

j<k

|ω(αj)| · |ψ(βj)|

∣

∣

∣

∣

∣

∣

ω ∈ U(P −◦ C), ψ ∈ U(Q −◦ C)







≤
∑

j<k

‖αj‖ · ‖βj‖

—hence ‖ζ‖
×∪ ≤ ‖ζ‖

×∩ = inf
{

∑

j<k ‖αj‖ · ‖βj‖
∣

∣

∣
ζ =

∑

j<k αj � βj

}

. Thus the identity on p� q extends to

a linear contraction ν : P ×∩ Q → P ×∪ Q. Curiously, ν need not be injective: the “nuclear tensor product”
of Banach spaces is defined by P ×∩nuc Q = (P ×∩ Q)/ ker ν.

Similarly, for arbitrary Banach spaces P , Q, R, the associativity isomorphism p� (q � r) → (p� q) � r
extends to a linear contraction

P ×∩ (Q ×∪ R) → (P ×∩ Q) ×∪ R

generalising the linear distributions which come for free in the finite-dimensional case.
On the subject of which, a linear contraction ω : P → Q is: mono, if it is injective; regular mono, if it

preserves norm; epi, if its range is dense; regular epi, if ‖β‖Q = inf {‖α‖P | ω(α) = β}. So the epi/regular-
mono factorisation of ω is given by the closure of its range, with the restriction of ‖ ‖Q; the regular-epi/mono
factorisation of ω is given by equipping P/ kerω with the appropriate norm. It is important fact that C is a
regular-injective object in Ban—that is, injective wrt regular monos. From this, it follows that the canonical
maps P → (∗P )∗ are regular mono. We recall that an object of a closed monoidal category is called reflexive

if that map happens to be iso; thus to show that a Banach space P is reflexive, it suffices to show that the
range of P → (∗P )∗ is dense.

Finally, the conjugate of a complex vector space V , denoted V , is defined by changing the scalar multi-
plication of V and leaving all else the same; similarly also the conjugate of a Banach space; V 7→ V underlies
an endofunctor of Vec, and P 7→ P underlies an endofunctor of Ban, in each case defined on arrows by
ω 7→ ω. There is a natural isomorphism span(J) → span(J), where span denotes the left adjoint of the
forgetful functor Vec → Set; similarly, there is a natural isomorphism ℓ1(J) → ℓ1(J). Since (arguably)
every vector space is isomorphic to one of the form span(J), one can conclude that there is an isomorphism
V

∼
→ V for every vector space V , hence also an isomorphism P

∼
→ P for every Banach space P . Nevertheless,

there is no natural isomorphism V
∼
→ V ; nor a natural isomorphism P

∼
→ P . But there is a coherent natural

isomorphism V �W
∼
→ W � V defined by α � β 7→ β � α; this induces to coherent natural isomorphisms

P ×∩ Q
∼
→ Q ×∩ P and P ×∪ Q

∼
→ Q ×∪ P . Thus (Vec,�,C, ( )) is a semitrivial example of an involutive

monoidal category, and (Ban,×∩,C, ×∪,C, ( )) that of an involutive linear-distributive category.

4 Basics about Hilbert spaces

A Hermitian form on a vector space V is a function 〈−,−〉 : V × V → C satisfying

1. 〈α, β + γ〉 = 〈α, β〉 + 〈α, γ〉

2. 〈α, λ · β〉 = λ · 〈α, β〉

3. 〈α, β〉 = 〈β, α〉

A Hermitian form is called: definite, if 〈α, α〉 = 0 ⇒ α = 0; positive, if 〈α, α〉 ≥ 0. An inner product is a
Hermitian form which is both positive and definite. The induced norm of an inner product is ‖α‖ =

√

〈α, α〉.
It is an easy theorem that

|〈α, β〉| ≤ ‖α‖ · ‖β‖ (6)

for any inner product (and its induced norm) on any vector space.
A Hilbert space h is conventionally defined as a vector space h together with an inner product 〈−,−〉

h

such that h is Cauchy-complete in the induced norm of 〈−,−〉
h
. We denote the induced norm of 〈−,−〉

h

by ‖ ‖H (not ‖ ‖
h
); the Banach space comprising h and ‖ ‖H will be called the induced Banach space of h,
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and it will be denoted H . The map h 7→ H , together with the canonical self-enrichment of Ban, allows us
to define a (Ban, ×∩,C)-enriched category of Hilbert spaces, Hilb. Explicitly, Hilb(h,k) = K ◦− H .

It is commonplace to observe that an inner product on h may be construed as a bilinear map h× h→ C;
hence also as a linear map h � h → C. However, the Cauchy-Schwarz inequality (6 above) entails that it
also defines a bilinear contraction H × H → C; hence also a linear contraction H ×∩ H → C. The latter
can be Curryed into a linear contraction υ : H → ∗H , and, according to the Riesz Representation Theorem,
this Curryed form is surjective. Now it is easy to show that H → ∗H preserves norm. In fact, for an
arbitrary contraction of the form 〈−,−〉 : K ×∩ H → C, the assertion that its Curry K → ∗H preserve norm
is equivalent to the assertion

(∀α ∈ K)(∃β ∈ H) |〈α, β〉| = ‖α‖ · ‖β‖ (7)

—so, in the case at hand, one can simply choose β = α. Thus a Hilbert space h may be regarded as a
Banach space together with a particular sort of isomorphism H → ∗H .

Specifically, the Hermitianness axiom (〈α, β〉 = 〈β, α〉), when expressed diagrammatically,

H ×∩ H
〈−,−〉

// C
( )

��

H ×∩ H

χ

OO

=
��

H ×∩ H
〈−,−〉

// C
(where χ denotes the isomorphism given by α� β 7→ β � α discussed above) can be Curryed as follows.

H
υ

// ∗H
∼

// H
∗

H // (∗H)∗

υ∗
OO

So, in particular, a Hilbert space is reflexive as a Banach space.
These facts are what allows us to define an (enriched) dagger structure on Hilb. Briefly, ( )† : Hilb(h,k) →

Hilb(k,h) is defined by

K ◦− H
∼

// H −◦ K
∼

// ∗H −◦ ∗K
∼

// H ◦− K

where the last isomorphism is the inverse of the canonical map H ◦− K → ∗H −◦ ∗K; equivalently, the
canonical map ∗H −◦ ∗K → (∗H)∗ ◦− (∗K)∗, composed with the isos H

∼
→ (∗H)∗ and K

∼
→ (∗K)∗.

5 Generalised Hilbert spaces

Let us define a contractive Hermitian form on a Banach space H to be one satisfying the Cauchy-Schwarz
inequality (6)—equivalently, a linear contraction 〈−,−〉 : H ×∩ H → C satisfying the Hermitianness diagram
above. Let us say that a contractive Hermitian form is weakly definite it satisfies (7) above—equivalently,
if its Curry υ : H → ∗H is invertible. Finally, we define a generalised Hilbert space h to comprise a
Banach space H together with a weakly definite contractive Hermitian form 〈−,−〉

h
. Then there is a Ban-

enriched dagger category gHilb of generalised Hilbert spaces with gHilb(h,k) = K ◦− H , and dagger map
gHilb(h,k) → gHilb(k,h) defined exactly as above.

Given a Hilbert space h and a self-adjoint unitary σ (i.e., an arrow H → H with σ = σ† = σ−1), one can
define a generalised Hilbert space hσ having the same underlying Banach space H , but the “deviant” inner
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product 〈α, β〉
hσ = 〈α, σβ〉

h
. Given two such generalised Hilbert spaces, hσ and kτ , and an ω ∈ K ◦− H ,

we have

〈α, ωβ〉
kτ = 〈α, τωβ〉

k

=
〈

ω†τα, β
〉

h

=
〈

σω†τα, σβ
〉

h

=
〈

σω†τα, β
〉

hσ

—hence the “deviant” dagger (which we denote ‡) gHilb(hσ,kτ ) → gHilb(kτ ,hσ) relates to the conven-
tional dagger Hilb(h,k) → Hilb(k,h) of Hilbert spaces via ω‡ = σω†τ .

If I understand correctly, every generalised Hilbert space is equivalent (in a dagger category theoretic
sense) to one of the form hσ. (I just need to find an appropriate citation.) Thus, in particular, the underlying
categories of Hilb and gHilb are equivalent. But the underlying dagger categories of Hilb and gHilb are
certainly not equivalent.

Generalised Hilbert spaces are not much of a generalisation: they arose purely because I have never quite
figured out how to express positivity in a sufficiently categorical manner, and because they suffice for my
purposes. Or, at least, they have sufficed for my purposes so far.

5


