

What is a morphism of Frobenius functors? (also: what are *lax* Frobenius functors?)

J.M. Egger

Australian Category Seminar
3 February 2010

Review: a *ldc* is a category with two monoidal structures

$(\odot \text{ and } \otimes)$ or $(\bowtie \text{ and } \bowtie)$ or $(\otimes \text{ and } \bowtie)$ or . . .

linked by nats

$$p \odot (q \otimes r) \longrightarrow (p \odot q) \otimes r \qquad p \bowtie (q \bowtie r) \longrightarrow (p \bowtie q) \bowtie r$$

$$(q \otimes r) \odot s \longrightarrow q \otimes (r \odot s) \qquad (q \bowtie r) \bowtie s \longrightarrow q \bowtie (r \bowtie s)$$

Mnemonic Device: “linear discipline”

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r) \quad \text{—bad! (repetition of } p\text{)}$$

$$p \wedge (q \vee r) \leq (p \wedge q) \vee r \quad \text{—good! (no repetition of } p\text{)}$$

Naïve question: is this *only* a mnemonic device?

Review: a (unital) *quantale* is a complete lattice with an associative (and unital) operation $\&$ which distributes joins:

$$\alpha \& (\bigvee_{j \in I} \beta_j) = \bigvee_{j \in I} (\alpha \& \beta_j) \quad (\bigvee_{j \in I} \beta_j) \& \zeta = \bigvee_{j \in I} (\beta_j \& \zeta)$$

There exists a monoidal category $(\mathbf{Sup}, \otimes, \mathbf{2})$ whose monoids are the same thing as unital quantales.

Definition: a (unital) *Idq* is a (unital) quantale plus a second associative (and unital) operation \otimes which distributes meets

$$\alpha \otimes (\bigwedge_{j \in I} \beta_j) = \bigwedge_{j \in I} (\alpha \otimes \beta_j) \quad (\bigwedge_{j \in I} \beta_j) \otimes \zeta = \bigwedge_{j \in I} (\beta_j \otimes \zeta)$$

and such that

$$\begin{aligned} \alpha \& (\beta \otimes \zeta) &\leqslant (\alpha \& \beta) \otimes \zeta \\ (\beta \otimes \zeta) \& \vartheta &\leqslant \beta \otimes (\zeta \& \vartheta) \end{aligned}$$

hold.

Theorem: a (unital) Idq is the same thing as a semigroup (resp., monoid) in $(\text{Sup}, \otimes, \mathbf{2})$ and a cosemigroup (resp., comonoid) in $(\text{Sup}, \otimes, \mathbf{2}^{\text{op}})$ which share the same underlying object, q , together with two 2-cells as below.

$$\begin{array}{ccccc}
 & q \otimes (q \otimes q) & \xrightarrow{\quad \vec{\kappa} \quad} & (q \otimes q) \otimes q & \\
 & \uparrow \text{id} \otimes \delta & & \downarrow \mu \otimes \text{id} & \\
 q \otimes q & \xrightarrow{\quad \mu \quad} & q & \xrightarrow{\quad \delta \quad} & q \otimes q \\
 & \downarrow \delta \otimes \text{id} & & \uparrow \text{id} \otimes \mu & \\
 & (q \otimes q) \otimes q & \xrightarrow{\quad \vec{\kappa} \quad} & q \otimes (q \otimes q) &
 \end{array}$$

Definition: a *Frobenius quantale* (Frq) is a unital Idq where the two 2-cells are identities.

[Note: this does *not* entail equalities $\alpha \& (\beta \otimes \zeta) = (\alpha \& \beta) \otimes \zeta$, $(\beta \otimes \zeta) \& \vartheta = \beta \otimes (\zeta \& \vartheta)$.]

Theorem: a Frq amounts to a unital Idq *with duals*; that is, a quantale which is also $*$ -autonomous.

Remark: there exists a notion of *Frobenius functor* (Fr f) between arbitrary Idcs such that a Fr f $\mathbb{1} \rightarrow (\mathbf{Sup}, \otimes, 2, \otimes, 2^{\text{op}})$ is, tautologically, a Frq. (More later!)

Theorem: let s, t be (unital) Idqs, $t \xrightarrow{\psi} s$ an arrow in \mathbf{Sup} , and ψ^\sharp its right adjoint. Then ψ is a morphism of cosemigroups (resp., comonoids) iff ψ^\sharp preserves \otimes (and its unit).

Definition: a morphism of (unital) Idqs is a \mathbf{Sup} -adjunction

$$s \begin{array}{c} \xrightarrow{\omega} \\ \xleftarrow{\psi} \end{array} t$$

such that ω is a morphism of semigroups (resp., monoids) and ψ a morphism of cosemigroups (resp., comonoids).

A morphism of Frqs “should be” a morphism of unital Idqs.

Question: can we find an equivalent definition (of morphism of Frqs) which does not refer to the 2-structure of \mathbf{Sup} ?

Review: a *linear functor* (Lf) between Idcs

$$(\mathcal{J}, \otimes, e, \otimes, d) \xrightarrow{T} (\mathcal{K}, \otimes, e, \otimes, d)$$

consists of: a monoidal functor $(\mathcal{J}, \otimes, e) \xrightarrow{\forall_T} (\mathcal{K}, \otimes, e)$, a comonoidal functor $(\mathcal{J}, \otimes, d) \xrightarrow{\exists_T} (\mathcal{K}, \otimes, d)$, actions of \forall_T on \exists_T

$$\forall_T(p) \otimes \exists_T(q) \longrightarrow \exists_T(p \otimes q) \longleftarrow \exists_T(p) \otimes \forall_T(q)$$

and coactions of \exists_T on \forall_T

$$\exists_T(p) \otimes \forall_T(q) \longleftarrow \forall_T(p \otimes q) \longrightarrow \forall_T(p) \otimes \exists_T(q).$$

satisfying a number of compatibility axioms.

A Frf is a Lf with $\forall_T = \exists_T$ and trivial actions and coactions.

Review: a morphism of Ifs $S \xrightarrow{\vartheta} T$ is a monoidal nat $\forall_S \xrightarrow{\forall_\vartheta} \forall_T$ together with a comonoidal nat $\exists_T \xrightarrow{\exists_\vartheta} \exists_S$ which further satisfy

$$\begin{array}{ccccc}
 \forall_S(p) \otimes \exists_S(q) & \xrightarrow{\forall_\vartheta(p) \otimes \text{id}} & \forall_T(p) \otimes \exists_S(q) & \xleftarrow{\text{id} \otimes \exists_\vartheta(q)} & \forall_T(p) \otimes \exists_T(q) \\
 \uparrow & & \forall_\vartheta(p \otimes q) & & \uparrow \\
 \forall_S(p \otimes q) & \xrightarrow{\quad} & & \xrightarrow{\quad} & \forall_T(p \otimes q) \\
 \downarrow & & & & \downarrow \\
 \exists_S(p) \otimes \forall_S(q) & \xrightarrow{\text{id} \otimes \forall_\vartheta(p)} & \exists_S(q) \otimes \forall_T(p) & \xleftarrow{\exists_\vartheta(q) \otimes \text{id}} & \exists_T(q) \otimes \forall_T(p) \\
 & & & & \\
 \exists_S(p) \otimes \forall_S(q) & \xleftarrow{\exists_\vartheta(q) \otimes \text{id}} & \exists_T(p) \otimes \forall_S(q) & \xrightarrow{\text{id} \otimes \forall_\vartheta(p)} & \exists_T(p) \otimes \forall_T(q) \\
 \downarrow & & \exists_\vartheta(p \otimes q) & & \downarrow \\
 \exists_S(p \otimes q) & \xleftarrow{\quad} & & \xleftarrow{\quad} & \exists_T(p \otimes q) \\
 \uparrow & & & & \uparrow \\
 \forall_S(p) \otimes \exists_S(q) & \xleftarrow{\text{id} \otimes \exists_\vartheta(q)} & \forall_S(p) \otimes \exists_T(q) & \xrightarrow{\forall_\vartheta(p) \otimes \text{id}} & \forall_T(p) \otimes \exists_T(q)
 \end{array}$$

Theorem: a morphism of Idqs induces 2-cells

$$\begin{array}{ccccc}
 s \otimes s & \xrightarrow{\omega \otimes \text{id}} & t \otimes s & \xleftarrow{\text{id} \otimes \psi} & t \otimes t \\
 \delta \uparrow & & \uparrow & & \uparrow \delta \\
 s & \xrightarrow{\omega} & t & & \\
 \delta \downarrow & & \downarrow & & \downarrow \delta \\
 s \otimes s & \xrightarrow{\text{id} \otimes \omega} & s \otimes t & \xleftarrow{\psi \otimes \text{id}} & t \otimes t
 \end{array}$$

$$\begin{array}{ccccc}
 s \otimes s & \xleftarrow{\psi \otimes \text{id}} & t \otimes s & \xrightarrow{\text{id} \otimes \omega} & t \otimes t \\
 \mu \downarrow & & \uparrow & & \downarrow \mu \\
 s & \xleftarrow{\psi} & t & & \\
 \mu \uparrow & & \downarrow & & \uparrow \mu \\
 s \otimes s & \xleftarrow{\text{id} \otimes \psi} & s \otimes t & \xrightarrow{\omega \otimes \text{id}} & t \otimes t
 \end{array}$$

and in the case of a morphism of Frqs, these are identity 2-cells.

Question: why no converse?

Theorem: Let s and t be Frfs $1 \rightarrow (\mathbf{Sup}, \otimes, \mathbf{2}, \otimes, \mathbf{2}^{\text{op}})$, and

$$s \xrightarrow{\omega} t$$

ψ

an arbitrary morphism of Ifs, then

$$s \xrightarrow{\omega} t$$

ψ^\sharp

define a If between s and t (now regarded as Idcs).

We do not get $\omega = \psi^\sharp$ (or even $\omega \leq \psi^\sharp$) in general.

$$[\omega \leq \psi^\sharp \iff \psi 1 \leq 1.]$$

Definition: a *point* of a lf T is a nat $\forall_T \xrightarrow{\tau} \exists_T$ satisfying

$$\begin{array}{ccccc}
 \forall_T(p) \otimes \forall_T(q) & \xrightarrow{\mu} & \forall_T(p \otimes q) & \xleftarrow{\mu} & \forall_T(p) \otimes \forall_T(q) \\
 \tau_{p \otimes q} \downarrow & & \tau_{p \otimes q} \downarrow & & \downarrow \text{id} \otimes \tau_q \\
 \exists_T(p) \otimes \forall_T(q) & \longrightarrow & \exists_T(p \otimes q) & \longleftarrow & \forall_T(p) \otimes \exists_T(q)
 \end{array}$$

$$\begin{array}{ccccc}
 \forall_T(p) \wp \exists_T(q) & \longleftarrow & \forall_T(p \wp q) & \longrightarrow & \exists_T(p) \wp \forall_T(q) \\
 \tau_{p \wp q} \downarrow & & \tau_{p \wp q} \downarrow & & \downarrow \text{id} \wp \tau_q \\
 \exists_T(p) \wp \exists_T(q) & \xleftarrow{\delta} & \exists_T(p \wp q) & \xrightarrow{\delta} & \exists_T(p) \wp \exists_T(q)
 \end{array}$$

A *Frobenius functor* (Fr f) is a lf T for which the identity nat is a point. (Structure, not property!)

Lemma: a point is uniquely determined by $e \xrightarrow{\eta} \forall_T(e) \xrightarrow{\tau_e} \exists_T(e)$ (and also by $\forall_T(d) \xrightarrow{\tau_d} \exists_T(d) \xrightarrow{\varepsilon} d$).

Definition: a morphism of pointed Ifs $(S, \sigma) \rightarrow (T, \tau)$ is a morphism of Ifs $\vartheta : S \rightarrow T$ which further satisfies

$$\begin{array}{ccc} \forall_S(p) & \xrightarrow{\sigma_p} & \exists_S(p) \\ \downarrow \forall_\vartheta(p) & & \uparrow \exists_\vartheta(p) \\ \forall_T(p) & \xrightarrow{\tau_p} & \exists_T(p) \end{array}$$

Lemma: it suffices to check

$$\begin{array}{ccccc} e & \xrightarrow{\eta} & \forall_S(e) & \xrightarrow{\sigma_e} & \exists_S(e) \\ & \searrow \eta & & & \uparrow \exists_\vartheta(e) \\ & & \forall_T(e) & \xrightarrow{\tau_e} & \exists_T(e) \end{array}$$

(or, equivalently, the d -case).

References:

J. R. B. Cockett and R. A. G. Seely. *Linearly distributive functors*. **JPA**A, 143(1-3):155–203, 1999.

R. Blute, J. R. B. Cockett, and R. A. G. Seely. *The logic of linear functors*. **MSCS**, 12(4):513–539, 2002.

J.M. Egger, *The Frobenius relations meet linear distributivity*. **CT'06**.