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1 Summary

The category of operator spaces and linear complete contractions, Oper, resembles that of Banach spaces
and linear contractions, Ban, except that its structure is yet more intricate! In particular, Oper admits
three monoidal structures, here denoted ×∩, ⊠, and ×∪, all having unit C, and comparison maps ×∩ → ⊠ → ×∪.

The first and last of these, ×∩ and ×∪, are analogous to their namesakes on Ban. In particular, ×∩ is closed;C is a dualising object for (Operfd, ×∩,−◦); ×∪ is an extension to the whole of Oper of ×∩’s dual in Operfd;
there are linear distributions P ×∩ (Q ×∪ R) → (P ×∩ Q) ×∪ R relating for arbitrary operator spaces P,Q,R.

But ⊠ is something quite different and new, and particularly useful with regard to Hilbert spaces. It is
non-symmetric in the sense that there exist operator spaces P,Q for which P ⊠ Q ≇ Q ⊠ P . But it does
define a Frobenius functor

(Oper, ×∩,C, ×∪,C) × (Oper, ×∩,C, ×∪,C) → (Oper, ×∩,C, ×∪,C)

—that is, a monoidal functor (Oper,×∩,C) × (Oper, ×∩,C) → (Oper, ×∩,C) together with a compatible
comonoidal functor (Oper, ×∪,C) × (Oper, ×∪,C) → (Oper, ×∪,C).

In particular, there are (non-invertible) comparison maps

(P ⊠Q) ×∩ (R⊠ S) → (P ×∩ R) ⊠ (Q ×∩ S) (1)

(P ×∪ R) ⊠ (Q ×∪ S) → (P ⊠Q) ×∪ (R⊠ S) (2)

as well as maps
(P −◦ R) ⊠ (Q −◦ S) → (P ⊠Q) −◦ (R⊠ S) (3)

induced by (1).
Hilbert spaces can be construed as operator spaces in several inequivalent ways: we shall focus on what

are called “column Hilbert spaces”.

2 Definitions

A matrix norm on a (real or complex) vector space V is a function ‖ ‖ :
∐

d∈N V d×d → [0,∞)—equivalently,

a sequence of functions
(
‖ ‖d : V d×d → [0,∞)

)
d∈N

—satisfying

• for all ζ ∈ Cd×e, α ∈ pd×d and ω ∈ Ce×d,

‖ζ · α · ω‖e ≤ ‖ζ‖ · ‖α‖d · ‖ω‖
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• for every α ∈ pd×d and every β ∈ pe×e,
∥∥∥∥
α 0
0 β

∥∥∥∥
d+e

≤ max {‖α‖d , ‖β‖e}

in addition to the usual axioms for a norm. (That is, each ‖ ‖d should be a norm on V d×d.) Given a matrix
norm, V is Cauchy-complete wrt ‖ ‖1 iff V d×d wrt ‖ ‖d, for all d. In this case we say simply that V is
Cauchy-complete wrt ‖ ‖.

An operator space P is a complex vector space p together with a matrix norm ‖ ‖P = (‖ ‖P,d)d∈N for

which p is Cauchy-complete. We write Md(P ) for the Banach space comprising pd×d and ‖ ‖P,d, and P̃ for

the operator space comprising p and the opposite matrix norm ‖α‖ eP
=
∥∥αT

∥∥
P
.

A linear complete contraction P → Q is a linear transformation ω : p → q such that, for every d ∈N, ωd×d : pd×d → qd×d defines a linear contraction Md(P ) → Md(Q). [Here ωd×d denotes entry-wise
application of ω.] Thus, for each d ∈ N there is a forgetful functor Md : Oper → Ban, where Oper denotes
the category of operator spaces and linear complete contractions.

There are two distinct notions of “multilinear complete contraction” P1 × · · · × Pn → Q, based on two
different notions of matrix multiplication: the usual one (representing composition of linear transformations),
and the Kronecker product (representing the tensor product of linear transformations). The one which
appeared first in the literature, and therefore seized control of the name “multilinear complete contraction”
is based on composition of matrices; it is that of a multilinear transformation ψ : p1 × · · · × pn → q (with
corresponding linear transformation ω : p1 � · · · � pn → q) such that, for all d, the “(not-so-)obvious map”

pd×d
1 × · · · × pd×d

n

ψ(d)
//

matrix
multiplication
using � for ·

..

qd×d

(p1 � · · · � pn)d×d

ωd×d

II

defines a multilinear contraction Md(P1) × · · · ×Md(Pn) → Md(Q). Explicitly, in the case n = 2,

[ψ(d)(α, β)]jk = ω

(
∑

l

αjl � βlk

)
=
∑

l

ψ(αjl, βlk).

We shall refer to this concept as multilinear complete-◦-contraction in order to emphasise the role of com-
position (of matrices) in its definition.

The second concept to appear in the literature happens to be more general, and is saddled with the
arguably unfortunate1 name “multilinear jointly complete contraction”; it is that of a multilinear transfor-
mation ψ : p1 × · · · × pn → q (with corresponding linear transformation ω : p1 � · · ·� pn → q) such that, for
all d1, . . . , dn, the “perhaps-even-less-obvious map”

pd1×d1

1 × · · · × pdn×dn

n

ψ(d1,...,dn)
//

Kronecker
product

using � for ·
--

q(d1···dn)×(d1···dn)

(p1 � · · · � pn)(d1···dn)×(d1···dn)

ω(d1···dn)×(d1···dn)

EE

defines a multilinear contraction Md1
(P1) × · · · ×Mdn

(Pn) → Md1···dn
(Q). Explicitly, in the case n = 2,

[ψ(d,e)(α, β)]jk = ω(αj′k′ � βj′′k′′) = ψ(αj′k′ , βj′′k′′)

1At least to me, “jointly complete” sounds like a more restrictive condition than “complete”, whereas—in the case at hand—it

proves to be a less restrictive condition.
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where j′ = ⌊ j

e
⌋, j′′ = j − j′e, k′ = ⌊k

e
⌋, k′′ = k − k′e. We shall refer to this concept as multilinear complete-

�-contraction in order to emphasise the role of Kronecker product in its definition. [[This terminology of
mine also has some mnemonic side-benefits.]]

Operator spaces and multilinear complete-�-contractions form a symmetric multicategory, Oper�multi,
whereas operator spaces and multilinear complete-◦-contractions form a multicategory Oper◦multi which is

involutive wrt (̃ ), but not symmetric; both happen to be representable.
To explain this, let us consider a bilinear transformation ψ : p× q → r (where, as usual, p, q, r underlie

operator spaces P,Q,R), and the corresponding bilinear transformation χ : q × p→ r, defined by χ(β, α) =
ψ(α, β). Then every entry of ψ(d,e)(α, β) appears in χ(e,d)(β, α), and vice versa. More specifically, we have

[ψ(d,e)(α, β)](j′e+j′′)(k′e+k′′) = ψ(αj′k′ , βj′′k′′) = χ(βj′′k′′ , αj′k′) = [χ(e,d)(β, α)]j′′d+j′,k′′d+k′

—hence, there exists a permutation matrix π such that ψ(d,e)(α, β) = π−1χ(e,d)(β, α)π. It follows immedi-
ately that

∥∥ψ(d,e)(α, β)
∥∥

R,de
=
∥∥χ(e,d)(β, α)

∥∥
R,de

; so ψ is a bilinear complete-�-contraction iff χ is so.

On the other hand, ψ(d)(α, β) has entries which need not appear in χ(d)(β, α). Rather, one has

[ψ(d)(α, β)]jk =
∑

l

ψ(αjl, βlk)

=
∑

l

χ(βlk, αjl)

=
∑

l

χ(βT
kl, α

T
lj)

= [χ(d)(βT , αT )]kj

—or, in other words, ψ(d)(α, β) =
(
χ(d)(βT , αT )

)T
. Hence, ψ defines a bilinear complete-◦-contraction

P × Q → R iff χ defines a bilinear complete-◦-contraction Q̃ × P̃ → R̃. More generally, there is a well-
behaved bijective correspondence between multilinear complete-◦-contractions of the form P1×· · ·×Pn → Q,
and those of the form P̃n × · · · × P̃1 → Q̃, and this is what we mean by an “involutive multicategory”.

As stated previously, there is both a universal bilinear complete-�-contraction P × Q → P ×∩ Q, and a
universal bilinear complete-◦-contraction P × Q → P ⊠ Q. These are each defined by taking the Cauchy-
completion of p� q wrt the least matrix norm making � : p× q → p� q completely(-◦- or -�-)contractive.
An explicit description of these norms is sufficiently intricate that we postpone it to section ??; but it should
be clear that, if there is any matrix norm making � : p× q → p� q completely(-◦- or -�-)contractive, then
there is also a least one.

Now let us consider the Curry φ : q → p −◦ r of (the linear transformation ω : p� q → r corresponding
to) a bilinear transformation ψ : p × q → r. Then a direct computation shows that the Curry of ψ(d,1) :
pd×d × q1×1 → rd×d (defined above) equals the composite

q
φ

// p −◦ r
( )

d×d

// pd×d −◦ rd×d

—namely, for α = (αjk) ∈ pd×d and β ∈ q, we have

ψ(d,1)(α, β) = (ψ(αjk , β))

= (φ(β)(αjk))

= φ(β)d×d(α).

Hence, if ψ(d,1) defines a bilinear contraction Md(P ) × M1(Q) → Md(R) for all d ∈ N (as required by

completely-�-contractivity), then the range of φ lands inside s =
{
ω ∈ p −◦ r

∣∣∣ ‖ω‖S,1 <∞
}

where

‖ω‖S,1 = sup
{∥∥ωd×d

∥∥
Md(P )−◦Md(R)

∣∣∣ d ∈ N}
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and, moreover, φ is a contraction M1(Q) → (s, ‖ ‖S,1).

A similar computation shows that the Curry of ψ(1,e) : p1×1 × qe×e → re×e equals the composite

qe×e
φe×e

// (p −◦ r)e×e ∼
→ p −◦ (re×e)

and, more generally, the Curry of ψ(d,e) : pd×d × qe×e → rde×de equals the composite

qe×e
(φ[d,1])e×e

// (pd×d −◦ rd×d)e×e ∼
→ pd×d −◦ ((rd×d)e×e)

∼
→ pd×d −◦ rde×de

where φ[d,1] denotes the Curry of ψ(d,1) discussed above. Thus ‖ ‖S,1 extends to a matrix norm on s,

‖ω‖S,e = sup
{∥∥ωd×d

∥∥
Md(P )−◦Mde(R)

∣∣∣ d ∈ N} ,
and φ defines a linear complete contractionQ→ P −◦ R := (s, ‖ ‖S) iff ψ is a bilinear complete-�-contraction
P ×Q→ R.

3 Examples

Let h = (h, 〈−,−〉
h
) be a Hilbert space, and H = (h, ‖ ‖H) its induced Banach space, as in the previous set

of notes. For d ∈ N, let hd denote the Hilbert space comprising hd and the obvious inner product.

〈


α1

...
αd


 ,




β1

...
βd



〉

hd

= 〈α1, β1〉h + · · · + 〈αd, βd〉h

We denote the induced Banach space of hd by H⊞d, and we define h •− h to be the operator space with
Md(h •− h) = H⊞d ◦− H⊞d. We leave as an exercise to the reader that this does define an operator space.

For every Hilbert space h, composition defines a bilinear complete-◦-contraction

(h •− h) × (h •− h) → h •− h

thus also a linear complete contraction

(h •− h) ⊠ (h •− h) → h •− h.

Similarly, adjunction defines a linear complete contraction † : h̃ •− h → h •− h.
Every operator space can be embedded into one of the form h •− h, and every monoid in (Oper,⊠,C)

can be embedded into one of the form (h •− h, ◦, id). But not every dagger monoid in (Oper,⊠, (̃ ),C) can
be embedded into one of the form (h •− h, ◦, †, id).
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