
Non-Hausdorff topologies and polar co-ordinates: a divertissement

(notes for a talk by JME)

March 4, 2016

Background

Email to Bob: three talks in three weeks, all on different topics? We agreed that I should go with this ‘light’
talk first (March 1); another, more serious, topic will follow next week (March 8); possibly also the third
topic on March 15. (But perhaps the second topic will require more than one week?)

This talk: toying around with the definition of (the locale) R in an elementary topos, led to a very minor
epiphany about polar co-ordinates for complex numbers: they describe (C, ·, 1) as a pullback in the category
of topological monoids.

But polar co-ordinates are not just for complex numbers—also complex matrices, bounded operators on
a Hilbert space! I think that they probably also describe Cm×n as a pullback in the category of topological
spaces, but I haven’t proven it yet—I attach no priority to doing so, though some of the ideas which emerge
are fun and may prove useful in another context.

But we begin with numbers.

Polar decomposition for complex numbers

Undergrads are generally taught (at best) something like:

Every non-zero complex number z can be factored uniquely as r · eiθ where r is a positive real

number and θ an element of R/2πR.

—in other words, the punctured plane C \ {0} is isomorphic (in several categories—most obviously, that of
topological groups) to the cartesian product of (0,∞) and R/2πR.

But how do we account for zero? It’s usually brushed under the carpet.

Handling zero without topology (old stuff)

As mere sets, we can say that C is isomorphic to 1 + (0,∞)× R/2πR; but that’s not really impressive since,
for instance, C is also isomorphic to NN in the category of sets. But any set of the form 1+A×B is correctly
viewed as a pullback!

1 +A×B //

��

1 +A

��

1 +B // 1 + 1

(In general, + commutes with pullbacks in Set.)
So the right way of dealing with 0 is to add, not merely a “length zero”, but also an “undefined angle”

⊥, so that 0 can be written as 0 · ei⊥. The grammar of pullbacks prevents the occurrence of expressions such
as 0 · eiθ (where θ ∈ R/2πR) and r · ei⊥ (where r > 0).

To ensure that we still have a pullback of monoids (not merely sets) one must define ⊥+ θ = ⊥. In light
of this, we should define ei⊥ = 0 so that we still have a homomorphism {⊥}∪R/2πR → C. In fact, we might
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as well identify {⊥} ∪ R/2πR with the range of said homomorphism, {0} ∪ S1. Note that the intersection of
{0} ∪ S1 with [0,∞) is just {0, 1}.

So we actually have two pullbacks simultaneously.

C

| |
// //

arg
����

[0,∞)

arg
����

oooo

{0} ∪ S1

| |
// //

OO

OO

{0, 1}oooo
OO

OO

[In fact, now that I come to think about it, there are actually four pullback squares in that diagram. . . ]

Handling zero with topology (new stuff)

If we topologise {0, 1} and {0} ∪ S1 correctly, then

C
| |

//

arg
��

[0,∞)

arg
��

{0} ∪ S1

| |
// {0, 1}

remains a pullback of topological monoids.
We topologise [0,∞) in the usual way; so, in order for arg: [0,∞) → {0, 1} to be continuous, {0, 1} needs

to be given the Sierpinski topology, with 0 is closed and 1 is open. Similarly, we topologise {0} ∪ S1 so that
the only open neighbourhood of 0 is the whole space; then arg:C → {0} ∪ S1 is continuous.

In both cases, multiplication is continuous wrt the given topologies; moreover, the topology induced on
C as a subspace of [0,∞)× ({0} ∪ S1) is the usual one; so we have a pullback in the category of topological
monoids.

Here’s a picture:

b

the product [0,∞)× ({0} ∪ S1) is a cylinder plus a line; the pullback [0,∞)×{0,1} ({0} ∪ S1) omits the red
circle and the red part of the line, leaving just the black point (the origin) and the rest of the cylinder.

Note that, while

C

arg
����

[0,∞)

arg
����

oooo

{0} ∪ S1 {0, 1}oooo
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is also still a pullback in topological monoids, the inclusions {0, 1} → [0,∞) and {0}∪S1 → C are no longer
continuous.

Polar decomposition of complex matrices

(Equivalently, polar decomposition of linear transformations between finite-dimensional Hilbert spaces.)
Most of the results in this section generalise to linear transformations between arbitrary Hilbert spaces,

but in a few cases the proofs become more difficult, and the language becomes less familiar to a general
audience; hence we focus on the finite-dimensional case.

Easy case

Every invertible n× n matrix A can be factored uniquely as U ◦ P , where U is unitary and P is

positive.

[Unitaries are those matrices satisfying A† = A−1 (obvious generalisation of unit complex numbers);
equivalently, they are normal matrices (A† ◦ A = A ◦ A†) whose eigenvalues are all unit complex numbers.

(A† denotes the Hermitian transposeA
T
.) Positives are those matrices of the formB†◦B, for someB (obvious

generalisation of non-negative reals); equivalently, they are self-adjoint matrices (A† = A) whose eigenvalues
are all non-negative. (Self-adjoint matrices are the same as normal matrices with real eigenvalues.) I use
◦ to denote matrix multiplication to remind myself that we are (implicitly) writing composition in the
Polish—i.e., non-diagrammatic—order.]

We take the “prove uniqueness first” approach: if A = U ◦ P , then

A† ◦A = (U ◦ P )
† ◦ (U ◦ P )

= P ◦ U † ◦ U ◦ P
= P ◦ P

—now A† ◦A, being both positive and invertible, has precisely 2n square roots; but only one of these is again
positive.

Note that if we rephrase this proof in terms of an invertible linear transformation between arbitrary finite-
dimensional Hilbert spaces, T :V → W , it still works; but P is—both by construction and by definition—an
endomorphism of V .

V
T //

P
##G

GG
GG

GG
GG

W

V
U

::vvvvvvvvvv

So this factorisation is unique “on the nose”, not merely unique up to isomorphism.

General case

It is actually more convenient to treat the general case of complex m × n matrices by using the language
of linear transformations between arbitrary finite-dimensional Hilbert spaces, T :V → W , as in the previous
paragraph. (We do not assume V and W to have the same dimension.)

Let J denote the inclusion of imgT in W , and Q the quotient map V → V/ kerT ∼= (kerT )⊥. (Note that
J† ◦ J and Q ◦Q† are identities.)

3



We invoke Noether’s first isomorphism theorem to obtain an invertible linear transformation S: (kerT )⊥ ∼=
V/ kerT → img T , and apply the previous factorisation result to it.

V
T //

Q
����

W

(kerT )⊥
S //

P ''

imgT
OO
J

OO

(kerT )⊥
U

88

Since we’re looking for an endomorphism of V , we add a superfluous Q ◦Q†, as follows.

V
T //

Q
����

W

(kerT )⊥
S //

P
��

img T
OO

J

OO

(kerT )⊥
Q†

// V
Q

// (kerT )⊥

U

OO

Now P̃ := Q† ◦ P ◦Q is still positive;

P = B† ◦B ⇒ Q† ◦ P ◦Q = (B ◦Q)
† ◦ (B ◦Q)

indeed, it is still the unique positive square root of T † ◦ T .

T † ◦ T = (J ◦ S ◦Q)
† ◦ (J ◦ S ◦Q)

= Q† ◦ (S† ◦ (J† ◦ J) ◦ S) ◦Q
= Q† ◦ (S† ◦ S) ◦Q
= Q† ◦ (P ◦ P ) ◦Q
= (Q† ◦ P ◦Q) ◦ (Q† ◦ P ◦Q)

Note also that, since P and Q† are both injective, ker(Q† ◦ P ◦Q) = kerQ = kerT .
But what of Ũ := J ◦ U ◦Q:V → W? Writing V = (kerT )⊥ ⊕ (kerT ) and W = (img T )⊕ (img T )⊥, we

get

Ũ =

(

U 0
0 0

)

—such maps are, naturally enough, called partial isometries ; they are characterised by the formula R ◦R† ◦
R = R. It is clear that a complex number satisfies the formula ω · ω · ω = ω iff it belongs to {0} ∪ S1; so
partial isometries are a reasonable generalisation of what we want.

For an arbitrary partial isometry R, both R†◦R and R◦R† are projections—i.e., self-adjoint idempotents.
There is a well-known bijective correspondence between projections V → V and (linear) subspaces of V ; in
the case of a partial isometry R, R† ◦R and R ◦R† correspond to the “domain” and “range” of isometry at
its core.

(For example, in the case of Ũ = J ◦ U ◦Q,

Ũ † ◦ Ũ = Q† ◦ U † ◦ J† ◦ J ◦ U ◦Q
= Q† ◦ U † ◦ U ◦Q
= Q† ◦Q
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corresponds to (kerT )⊥, and

Ũ ◦ Ũ † = J ◦ U ◦Q ◦Q† ◦ U † ◦ J†

= J ◦ U ◦ U † ◦ J†

= J ◦ J†

corresponds to img T .)
We are now ready to state the polar decomposition theorem for arbitrary matrices.

Every linear transformation between finite-dimensional Hilbert spaces T :V → W , can be decom-

posed as Ũ ◦ P̃ with Ũ a partial isometry and P positive;

V
T //

P̃ ##G
GG

GG
GG

GG
W

V
Ũ

::vvvvvvvvvv

moreover, if we insist that Ũ † ◦ U be the projection corresponding to (ker P̃ )⊥, then this factori-

sation is unique.

I am not going to prove the second half of the statement, which would require an explicit description of the
correspondence between projections and subspaces; indeed I have already wasted much more time on these
notes than I intended to.

I just note that this is clearly the statement that the set of linear transformations V → W is a pullback.

{arbitrary V → W} P̃ //

Ũ
��

{positive V → V }

(ker−)⊥

��

{partial isometries V → W} dom // {projections V → V = subspaces of V }

[P̃ (T ) =
√
T † ◦ T as discussed above; similarly, dom(R) = R† ◦R =

√
R† ◦R. So

{arbitrary V → W} P̃ //

OO

OO

{positive V → V }
OO

OO

{partial isometries V → W} dom // {projections V → V = subspaces of V }

is also a pullback of sets.]
In the case where V = W , we have also that

{arbitrary V → W} oo oo

OO

OO

{positive V → V }
OO

OO

{partial isometries V → W} oo oo {projections V → V = subspaces of V }

is a pullback of sets.
But none of these statements can be rephrased in the category of monoids; neither the positives nor the

partial isometries are closed under multiplication, so they are not obviously monoids at all.
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Speculation

As noted previously, the statement that any two sets are isomorphic in Set is pretty unimpressive; but
perhaps we can get a pullback square in the category of topological spaces as before? It may not be
immediately clear that

√
T † ◦ T is continuous wrt the usual topologies, but apparently it is.

However, to make
{positives} → {projections=subspaces}

continuous we will again need a non-Hausdorff topology: the fibre over H is the space of invertible positives,
which is open and not closed. I propose to try to reach the necessary topology via a non-symmetric metric.

Given an effort space (=generalised metric space in the sense of Lawvere), (E, φ), it is natural to extend
φ to subsets of E as follows.

Φ(A,B) = sup
a∈A

inf
b∈B

φ(a, b)

(The usual Hausdorff metric on subsets of a metric space is a symmetrised version of this.) [Note that
if A ⊆ B, then Φ(A,B) = 0, tautologously; on the other hand Φ(A, ∅) = ∞, unless A = ∅. (In fact,
Φ(A,B) = 0 iff A is contained in the closure of B relative to the welling topology on E.)]

If E is a Hilbert space (or, more generally, a Banach space), φ is the norm-derived effort on E, and A
and B are subspaces of E, then

Φ(A,B) =

{

0 if A ⊆ B
∞ otherwise

—so Φ just encodes the usual lattice structure of the subspaces of E. But it is generally understood that it
the unit ball of a Banach space is its true “underlying space”, and if we restrict our attention to the unit
ball of E, E≤1,

Φ̃(A,B) = Φ(E≤1 ∩ A,E≤1 ∩B)

then a radically different picture emerges.
For every a ∈ E≤1 ∩ A,

inf
b∈E≤1∩B

φ(a, b) ≤ φ(a, 0) = ‖a‖ ≤ 1

—hence, for all subspaces A and B, we get Φ̃(A,B) ≤ 1. In the case of a Hilbert space, it is easy to see
that Φ̃(A,B) = 1 iff B⊥ ∩ A 6= {0}. Moreover, as previously discussed, Φ̃(A,B) = 0 iff A is contained
in the closure of B—but since B is already closed, that just means A ⊆ B. So, in general, we may have
0 < Φ̃(A,B) < 1.

A key feature of the welling topology associated to Φ̃ is that every open well

WA,ε =
{

B ⊆ H
∣

∣

∣
Φ̃(A,B) < ε

}

contains {B ⊆ H | A ⊆ B}. In particular, H belongs to every open set except the empty one. At the other
extreme, {0} ∈ WA,ε iff either A = {0}—in which case, WA,ε is the whole space—or ε > 1—in which case,
WA,ε is again the whole space. In other words, {0} belongs to none of open sets except the whole one.

My intuition is that one can probably do something similar for partial isometries, but I haven’t bothered
to try working it out.
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