

# Non-Hausdorff topologies and polar co-ordinates: a divertissement

(notes for a talk by JME)

March 4, 2016

## Background

Email to Bob: three talks in three weeks, all on different topics? We agreed that I should go with this ‘light’ talk first (March 1); another, more serious, topic will follow next week (March 8); possibly also the third topic on March 15. (But perhaps the second topic will require more than one week?)

This talk: toying around with the definition of (the locale)  $\mathbb{R}$  in an elementary topos, led to a very minor epiphany about polar co-ordinates for complex numbers: they describe  $(\mathbb{C}, \cdot, 1)$  as a pullback in the category of topological monoids.

But polar co-ordinates are not just for complex numbers—also complex matrices, bounded operators on a Hilbert space! I think that they probably also describe  $\mathbb{C}^{m \times n}$  as a pullback in the category of topological spaces, but I haven’t proven it yet—I attach no priority to doing so, though some of the ideas which emerge are fun and may prove useful in another context.

But we begin with numbers.

## Polar decomposition for complex numbers

Undergrads are generally taught (at best) something like:

*Every non-zero complex number  $z$  can be factored uniquely as  $r \cdot e^{i\theta}$  where  $r$  is a positive real number and  $\theta$  an element of  $\mathbb{R}/2\pi\mathbb{R}$ .*

—in other words, the punctured plane  $\mathbb{C} \setminus \{0\}$  is isomorphic (in several categories—most obviously, that of topological groups) to the cartesian product of  $(0, \infty)$  and  $\mathbb{R}/2\pi\mathbb{R}$ .

But how do we account for zero? It’s usually brushed under the carpet.

## Handling zero without topology (old stuff)

As mere sets, we can say that  $\mathbb{C}$  is isomorphic to  $1 + (0, \infty) \times \mathbb{R}/2\pi\mathbb{R}$ ; but that’s not really impressive since, for instance,  $\mathbb{C}$  is also isomorphic to  $\mathbb{N}^\mathbb{N}$  in the category of sets. But any set of the form  $1 + A \times B$  is correctly viewed as a pullback!

$$\begin{array}{ccc} 1 + A \times B & \longrightarrow & 1 + A \\ \downarrow & & \downarrow \\ 1 + B & \longrightarrow & 1 + 1 \end{array}$$

(In general,  $+$  commutes with pullbacks in **Set**.)

So the right way of dealing with 0 is to add, not merely a “length zero”, but also an “undefined angle”  $\perp$ , so that 0 can be written as  $0 \cdot e^{i\perp}$ . The grammar of pullbacks prevents the occurrence of expressions such as  $0 \cdot e^{i\theta}$  (where  $\theta \in \mathbb{R}/2\pi\mathbb{R}$ ) and  $r \cdot e^{i\perp}$  (where  $r > 0$ ).

To ensure that we still have a pullback of monoids (not merely sets) one must define  $\perp + \theta = \perp$ . In light of this, we should define  $e^{i\perp} = 0$  so that we still have a homomorphism  $\{\perp\} \cup \mathbb{R}/2\pi\mathbb{R} \rightarrow \mathbb{C}$ . In fact, we might

as well identify  $\{\perp\} \cup \mathbb{R}/2\pi\mathbb{R}$  with the range of said homomorphism,  $\{0\} \cup S^1$ . Note that the intersection of  $\{0\} \cup S^1$  with  $[0, \infty)$  is just  $\{0, 1\}$ .

So we actually have two pullbacks simultaneously.

$$\begin{array}{ccc}
 & \perp \perp & \\
 & \text{---} \longrightarrow & \\
 \mathbb{C} & \xrightarrow{\quad} & [0, \infty) \\
 \arg \downarrow & \nearrow \text{---} & \downarrow \arg \\
 \{0\} \cup S^1 & \xrightarrow{\quad} & \{0, 1\} \\
 & \perp \perp &
 \end{array}$$

[In fact, now that I come to think about it, there are actually four pullback squares in that diagram...]

### Handling zero with topology (new stuff)

If we topologise  $\{0, 1\}$  and  $\{0\} \cup S^1$  correctly, then

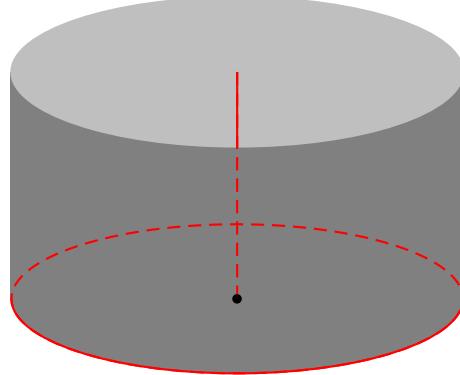
$$\begin{array}{ccc}
 & \perp \perp & \\
 & \text{---} \longrightarrow & \\
 \mathbb{C} & \xrightarrow{\quad} & [0, \infty) \\
 \arg \downarrow & & \downarrow \arg \\
 \{0\} \cup S^1 & \xrightarrow{\quad} & \{0, 1\} \\
 & \perp \perp &
 \end{array}$$

remains a pullback of topological monoids.

We topologise  $[0, \infty)$  in the usual way; so, in order for  $\arg: [0, \infty) \rightarrow \{0, 1\}$  to be continuous,  $\{0, 1\}$  needs to be given the Sierpinski topology, with 0 is closed and 1 is open. Similarly, we topologise  $\{0\} \cup S^1$  so that the only open neighbourhood of 0 is the whole space; then  $\arg: \mathbb{C} \rightarrow \{0\} \cup S^1$  is continuous.

In both cases, multiplication is continuous wrt the given topologies; moreover, the topology induced on  $\mathbb{C}$  as a subspace of  $[0, \infty) \times (\{0\} \cup S^1)$  is the usual one; so we have a pullback in the category of topological monoids.

Here's a picture:



the product  $[0, \infty) \times (\{0\} \cup S^1)$  is a cylinder plus a line; the pullback  $[0, \infty) \times_{\{0,1\}} (\{0\} \cup S^1)$  omits the red circle and the red part of the line, leaving just the black point (the origin) and the rest of the cylinder.

Note that, while

$$\begin{array}{ccc}
 \mathbb{C} & \xleftarrow{\quad} & [0, \infty) \\
 \arg \downarrow & & \downarrow \arg \\
 \{0\} \cup S^1 & \xleftarrow{\quad} & \{0, 1\}
 \end{array}$$

is also still a pullback in topological monoids, the inclusions  $\{0, 1\} \rightarrow [0, \infty)$  and  $\{0\} \cup S^1 \rightarrow \mathbb{C}$  are no longer continuous.

## Polar decomposition of complex matrices

(Equivalently, polar decomposition of linear transformations between finite-dimensional Hilbert spaces.)

Most of the results in this section generalise to linear transformations between arbitrary Hilbert spaces, but in a few cases the proofs become more difficult, and the language becomes less familiar to a general audience; hence we focus on the finite-dimensional case.

### Easy case

*Every invertible  $n \times n$  matrix  $A$  can be factored uniquely as  $U \circ P$ , where  $U$  is unitary and  $P$  is positive.*

[Unitaries are those matrices satisfying  $A^\dagger = A^{-1}$  (obvious generalisation of unit complex numbers); equivalently, they are normal matrices ( $A^\dagger \circ A = A \circ A^\dagger$ ) whose eigenvalues are all unit complex numbers. ( $A^\dagger$  denotes the Hermitian transpose  $\overline{A}^T$ .) Positives are those matrices of the form  $B^\dagger \circ B$ , for some  $B$  (obvious generalisation of non-negative reals); equivalently, they are self-adjoint matrices ( $A^\dagger = A$ ) whose eigenvalues are all non-negative. (Self-adjoint matrices are the same as normal matrices with real eigenvalues.) I use  $\circ$  to denote matrix multiplication to remind myself that we are (implicitly) writing composition in the Polish—*i.e.*, non-diagrammatic—order.]

We take the “prove uniqueness first” approach: if  $A = U \circ P$ , then

$$\begin{aligned} A^\dagger \circ A &= (U \circ P)^\dagger \circ (U \circ P) \\ &= P \circ U^\dagger \circ U \circ P \\ &= P \circ P \end{aligned}$$

—now  $A^\dagger \circ A$ , being both positive and invertible, has precisely  $2^n$  square roots; but only one of these is again positive.

Note that if we rephrase this proof in terms of an invertible linear transformation between arbitrary finite-dimensional Hilbert spaces,  $T: V \rightarrow W$ , it still works; but  $P$  is—both by construction and by definition—an endomorphism of  $V$ .

$$\begin{array}{ccc} V & \xrightarrow{T} & W \\ & \searrow P & \swarrow U \\ & V & \end{array}$$

So this factorisation is unique “on the nose”, not merely unique up to isomorphism.

### General case

It is actually more convenient to treat the general case of complex  $m \times n$  matrices by using the language of linear transformations between arbitrary finite-dimensional Hilbert spaces,  $T: V \rightarrow W$ , as in the previous paragraph. (We do not assume  $V$  and  $W$  to have the same dimension.)

Let  $J$  denote the inclusion of  $\text{img } T$  in  $W$ , and  $Q$  the quotient map  $V \rightarrow V / \ker T \cong (\ker T)^\perp$ . (Note that  $J^\dagger \circ J$  and  $Q \circ Q^\dagger$  are identities.)

We invoke Noether's first isomorphism theorem to obtain an invertible linear transformation  $S: (\ker T)^\perp \cong V/\ker T \rightarrow \text{img } T$ , and apply the previous factorisation result to it.

$$\begin{array}{ccc}
 V & \xrightarrow{T} & W \\
 Q \downarrow & & \uparrow J \\
 (\ker T)^\perp & \xrightarrow{S} & \text{img } T \\
 \swarrow P & & \searrow U \\
 (\ker T)^\perp & & (\ker T)^\perp
 \end{array}$$

Since we're looking for an endomorphism of  $V$ , we add a superfluous  $Q \circ Q^\dagger$ , as follows.

$$\begin{array}{ccc}
 V & \xrightarrow{T} & W \\
 Q \downarrow & & \uparrow J \\
 (\ker T)^\perp & \xrightarrow{S} & \text{img } T \\
 P \downarrow & & \uparrow U \\
 (\ker T)^\perp & \xrightarrow{Q^\dagger} & V \xrightarrow{Q} (\ker T)^\perp
 \end{array}$$

Now  $\tilde{P} := Q^\dagger \circ P \circ Q$  is still positive;

$$P = B^\dagger \circ B \Rightarrow Q^\dagger \circ P \circ Q = (B \circ Q)^\dagger \circ (B \circ Q)$$

indeed, it is still the unique positive square root of  $T^\dagger \circ T$ .

$$\begin{aligned}
 T^\dagger \circ T &= (J \circ S \circ Q)^\dagger \circ (J \circ S \circ Q) \\
 &= Q^\dagger \circ (S^\dagger \circ (J^\dagger \circ J) \circ S) \circ Q \\
 &= Q^\dagger \circ (S^\dagger \circ S) \circ Q \\
 &= Q^\dagger \circ (P \circ P) \circ Q \\
 &= (Q^\dagger \circ P \circ Q) \circ (Q^\dagger \circ P \circ Q)
 \end{aligned}$$

Note also that, since  $P$  and  $Q^\dagger$  are both injective,  $\ker(Q^\dagger \circ P \circ Q) = \ker Q = \ker T$ .

But what of  $\tilde{U} := J \circ U \circ Q: V \rightarrow W$ ? Writing  $V = (\ker T)^\perp \oplus (\ker T)$  and  $W = (\text{img } T) \oplus (\text{img } T)^\perp$ , we get

$$\tilde{U} = \begin{pmatrix} U & 0 \\ 0 & 0 \end{pmatrix}$$

—such maps are, naturally enough, called *partial isometries*; they are characterised by the formula  $R \circ R^\dagger \circ R = R$ . It is clear that a complex number satisfies the formula  $\omega \cdot \bar{\omega} \cdot \omega = \omega$  iff it belongs to  $\{0\} \cup S^1$ ; so partial isometries are a reasonable generalisation of what we want.

For an arbitrary partial isometry  $R$ , both  $R^\dagger \circ R$  and  $R \circ R^\dagger$  are *projections*—i.e., self-adjoint idempotents. There is a well-known bijective correspondence between projections  $V \rightarrow V$  and (linear) subspaces of  $V$ ; in the case of a partial isometry  $R$ ,  $R^\dagger \circ R$  and  $R \circ R^\dagger$  correspond to the “domain” and “range” of isometry at its core.

(For example, in the case of  $\tilde{U} = J \circ U \circ Q$ ,

$$\begin{aligned}
 \tilde{U}^\dagger \circ \tilde{U} &= Q^\dagger \circ U^\dagger \circ J^\dagger \circ J \circ U \circ Q \\
 &= Q^\dagger \circ U^\dagger \circ U \circ Q \\
 &= Q^\dagger \circ Q
 \end{aligned}$$

corresponds to  $(\ker T)^\perp$ , and

$$\begin{aligned}\tilde{U} \circ \tilde{U}^\dagger &= J \circ U \circ Q \circ Q^\dagger \circ U^\dagger \circ J^\dagger \\ &= J \circ U \circ U^\dagger \circ J^\dagger \\ &= J \circ J^\dagger\end{aligned}$$

corresponds to  $\text{img } T$ .)

We are now ready to state the polar decomposition theorem for arbitrary matrices.

*Every linear transformation between finite-dimensional Hilbert spaces  $T: V \rightarrow W$ , can be decomposed as  $\tilde{U} \circ \tilde{P}$  with  $\tilde{U}$  a partial isometry and  $\tilde{P}$  positive;*

$$\begin{array}{ccc} V & \xrightarrow{T} & W \\ & \searrow \tilde{P} & \swarrow \tilde{U} \\ & V & \end{array}$$

moreover, if we insist that  $\tilde{U}^\dagger \circ U$  be the projection corresponding to  $(\ker \tilde{P})^\perp$ , then this factorisation is unique.

I am not going to prove the second half of the statement, which would require an explicit description of the correspondence between projections and subspaces; indeed I have already wasted much more time on these notes than I intended to.

I just note that this is clearly the statement that the set of linear transformations  $V \rightarrow W$  is a pullback.

$$\begin{array}{ccc} \{\text{arbitrary } V \rightarrow W\} & \xrightarrow{\tilde{P}} & \{\text{positive } V \rightarrow V\} \\ \tilde{U} \downarrow & & \downarrow (\ker -)^\perp \\ \{\text{partial isometries } V \rightarrow W\} & \xrightarrow{\text{dom}} & \{\text{projections } V \rightarrow V = \text{subspaces of } V\} \end{array}$$

$[\tilde{P}(T) = \sqrt{T^\dagger \circ T}$  as discussed above; similarly,  $\text{dom}(R) = R^\dagger \circ R = \sqrt{R^\dagger \circ R}$ . So

$$\begin{array}{ccc} \{\text{arbitrary } V \rightarrow W\} & \xrightarrow{\tilde{P}} & \{\text{positive } V \rightarrow V\} \\ \uparrow & & \uparrow \\ \{\text{partial isometries } V \rightarrow W\} & \xrightarrow{\text{dom}} & \{\text{projections } V \rightarrow V = \text{subspaces of } V\} \end{array}$$

is also a pullback of sets.]

In the case where  $V = W$ , we have also that

$$\begin{array}{ccc} \{\text{arbitrary } V \rightarrow W\} & \longleftrightarrow & \{\text{positive } V \rightarrow V\} \\ \uparrow & & \uparrow \\ \{\text{partial isometries } V \rightarrow W\} & \longleftrightarrow & \{\text{projections } V \rightarrow V = \text{subspaces of } V\} \end{array}$$

is a pullback of sets.

But none of these statements can be rephrased in the category of monoids; neither the positives nor the partial isometries are closed under multiplication, so they are not obviously monoids at all.

## Speculation

As noted previously, the statement that any two sets are isomorphic in **Set** is pretty unimpressive; but perhaps we can get a pullback square in the category of topological spaces as before? It may not be immediately clear that  $\sqrt{T^\dagger \circ T}$  is continuous wrt the usual topologies, but apparently it is.

However, to make

$$\{\text{positives}\} \rightarrow \{\text{projections} = \text{subspaces}\}$$

continuous we will again need a non-Hausdorff topology: the fibre over  $H$  is the space of invertible positives, which is open and not closed. I propose to try to reach the necessary topology via a non-symmetric metric.

Given an *effort space* (=generalised metric space in the sense of Lawvere),  $(E, \phi)$ , it is natural to extend  $\phi$  to subsets of  $E$  as follows.

$$\Phi(A, B) = \sup_{a \in A} \inf_{b \in B} \phi(a, b)$$

(The usual *Hausdorff metric* on subsets of a metric space is a symmetrised version of this.) [Note that if  $A \subseteq B$ , then  $\Phi(A, B) = 0$ , tautologically; on the other hand  $\Phi(A, \emptyset) = \infty$ , unless  $A = \emptyset$ . (In fact,  $\Phi(A, B) = 0$  iff  $A$  is contained in the closure of  $B$  relative to the welling topology on  $E$ .)]

If  $E$  is a Hilbert space (or, more generally, a Banach space),  $\phi$  is the norm-derived effort on  $E$ , and  $A$  and  $B$  are subspaces of  $E$ , then

$$\Phi(A, B) = \begin{cases} 0 & \text{if } A \subseteq B \\ \infty & \text{otherwise} \end{cases}$$

—so  $\Phi$  just encodes the usual lattice structure of the subspaces of  $E$ . But it is generally understood that it the unit ball of a Banach space is its true “underlying space”, and if we restrict our attention to the unit ball of  $E$ ,  $E_{\leq 1}$ ,

$$\tilde{\Phi}(A, B) = \Phi(E_{\leq 1} \cap A, E_{\leq 1} \cap B)$$

then a radically different picture emerges.

For every  $a \in E_{\leq 1} \cap A$ ,

$$\inf_{b \in E_{\leq 1} \cap B} \phi(a, b) \leq \phi(a, 0) = \|a\| \leq 1$$

—hence, for all subspaces  $A$  and  $B$ , we get  $\tilde{\Phi}(A, B) \leq 1$ . In the case of a Hilbert space, it is easy to see that  $\tilde{\Phi}(A, B) = 1$  iff  $B^\perp \cap A \neq \{0\}$ . Moreover, as previously discussed,  $\tilde{\Phi}(A, B) = 0$  iff  $A$  is contained in the closure of  $B$ —but since  $B$  is already closed, that just means  $A \subseteq B$ . So, in general, we may have  $0 < \tilde{\Phi}(A, B) < 1$ .

A key feature of the welling topology associated to  $\tilde{\Phi}$  is that every open well

$$W_{A, \varepsilon} = \left\{ B \subseteq H \mid \tilde{\Phi}(A, B) < \varepsilon \right\}$$

contains  $\{B \subseteq H \mid A \subseteq B\}$ . In particular,  $H$  belongs to every open set except the empty one. At the other extreme,  $\{0\} \in W_{A, \varepsilon}$  iff either  $A = \{0\}$ —in which case,  $W_{A, \varepsilon}$  is the whole space—or  $\varepsilon > 1$ —in which case,  $W_{A, \varepsilon}$  is again the whole space. In other words,  $\{0\}$  belongs to none of open sets except the whole one.

My intuition is that one can probably do something similar for partial isometries, but I haven't bothered to try working it out.