

Arts & Science 1D06 Quiz #10

3 March 2016

Full Name: SOLUTIONS Student #: _____

TA: Max Lazar

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.

[4 marks] (1) Solve the differential equation

$$\frac{dy}{dx} = \frac{xe^{x^2}}{y^2}$$

[Note: you do not have to express y as an explicit function of x .]

This is a separable equation, so

$$\begin{aligned}\frac{dy}{dx} &= \frac{xe^{x^2}}{y^2} \\ y^2 dy &= xe^{x^2} dx \\ \frac{1}{3}y^3 &= \frac{1}{2}e^{x^2} + C \\ y^3 &= \frac{3}{2}e^{x^2} + C\end{aligned}$$

[6 marks] (2) Solve the initial value problem

$$\frac{dy}{dx} = 2xy + 2x - y - 1, \quad y(0) = 1$$

(1) First we'll solve the DE by factoring:

$$\begin{aligned}\frac{dy}{dx} &= (2x - 1)(y + 1) \\ \frac{dy}{y + 1} &= (2x - 1)dx \\ \ln|y + 1| &= x^2 - x + C \\ y + 1 &= Ae^{x^2-x}\end{aligned}$$

(2) Now we'll use the initial condition $y(0) = 1$ to solve for A :

$$\begin{aligned}y(0) &= 1 = Ae^{0^2-0} - 1 \\ 1 &= A - 1 \\ A &= 2\end{aligned}$$

So the solution to the IVP is

$$y = 2e^{x^2-x} - 1$$