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ARTSCI 1D06
DEIRDRE HASKELL

DAY CLASS
DURATION OF EXAMINATION 2.5 Hours
MCMASTER UNIVERSITY FINAL EXAMINATION — PRACTICE VERSION

THIS EXAMINATION PAPER INCLUDES n QUESTIONS ON m PAGES. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special instructions: Answer all the questions in the space provided.
If you need more paper, ask the invigilator.
Use of Casio-FX-991 calculator only is permitted.
This paper must be returned with your answers.
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1)

a) State the Mean Value Theorem.

o0

b) State the limit comparison test for convergence of the series Z Ay,

n=1

c) Let P be the point with cartesian coordinates (—3,—4). Find polar coordinates for P.
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d
d) Solve the separable differential equation d_y =y*z?, y(0) = 1.
T

e) State the definition of the integral of the function f(z) on the interval [a, b] as the limit of Riemann
sums.

f) Sketch the contour map for the function z = 2> — 9y (you should indicate at least 3 level sets).

g) Sketch the curve given in polar form by the equation r = 4.

Page 3 of 10



ArtSci 1D06 Final Exam Name:

h) Find x3 when Newton’s method is used to approximate a zero of the function f(z) = x — cos(x)
with starting point z; = 7 /4.

d d
i) The direction field for the system of differential equations d—f = —500x + xy, d—g; = 200y — 2zy is

given. Sketch the solution curve starting at the point x = 100,y = 250.
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j) A contour map for the surface z = f(x,y) is given. Find the approximate coordinates of the
points where f, = 0 and the points where f, = 0.
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2zy
2) Let f(z,y) = pr

a) Show that this function is not continuous at the origin.

b) Find f, and f,, for (x,y) # (0,0).

c¢) Find all second order partial derivatives and verify that f,, = fy..
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3) The graph of the curve parametrized by z = e’ y = ¢""? is shown. Find the exact value of the
coordinates where the tangent line to the curve is horizontal, and the exact coordinates of the point
where the tangent line is vertical.
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4) Solve the initial-value problem y' + 4zy = z, y(0) = 1.
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5)
a) Find the Taylor series for the function f(z) = In(1 4 2z) (do not quote a known Taylor series).

b) Find the radius of convergence for the above series.

c¢) Find the interval of convergence for the series.
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6) The goal of this problem is to justify the integral test for convergence of a series. Let {a;} be a
sequence of positive terms and assume that f is a continuous, non-negative decreasing function with

a; = f(i) for all 1.
a) Write L,, for the Riemann sum with left endpoints and Ax = 1 which approximates the integral

/ fa

where n is any integer greater than 1. (Here is the picture.)

Y

1 2 3 non4l

Express L,, as a finite sum.

n n+1 n
b) Compare the series Z a; with the integral / f(z) dz to find a lower bound for Z a; .
1

i=1 =1
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c) Write R, for the Riemann sum with right endpoints and Az = 1 which approximates the integral

[ rwa

where n is any integer greater than 1. Express R,, as a sum.

d) Compare the series with the integral to find an upper bound for Z a;.
i=1

n
e) Use these bounds on Z a; to deduce the statement of the integral test.
i=1
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Formula Sheet

Integrals (constants of integration are omitted)

xn+1
"dr = -1
/x x n+1,n7é

sinxdxr = —cosz

tanzdr = —In|cosx |

sec’ xdxr = tanx

secxtanx dxr = secx

cosxdr =sinx

cotxdr =In|sinz |

csc? xdr = — cot x

cscrcotxzdr = —cscx

Jeo /
/ /
/ /
/ /
/ /
| e /

1 T 1 . T
= —arctan (—) —— dxr = arcsin (—)

x2+a2 a

a a2 — a
Trigonometry
sin?z + cos’z =1
1+ tan?z = sec® x 1+ cot’z = cscx

sin(2z) = 2sinxcosr  cos(2x) = cos® r — sin®z = 2cos’z — 1

f(zn)
Euler’s method =z, = xn + R, Yn1 = Yn + Fxn, yn)h

Newton’s method z,,.1 =z, —

Taylor series T'(z Z ™ (a)(z —a)"

Page 11 of 10; THE END



