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ARTSCI 1Dos
DEIRDRE HASKELL

DAY CLASS
DURATION OF EXAMINATION 2.5 Hours
MCMASTER UNIVERSITY FINAL EXAMINATION — PRACTICE V ERSION

THIS EXAMINATION PAPER, INCLUDES n QUESTIONS ON m PAGES. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special instructions: Answer all the questions in the space provided.
If you need more paper, ask the invigilator.
Use of Casio-FX-991 calculator only is permitted,
This paper must be returned with your answers.
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ArtSei 1D06 Final Exam

1)
a) State the Mean Valve Theorem,
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b) State the limit comparison test for convergence of the series Z (.
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c) Let I’ be the point with cartesian coordinates (-3, —4). Find polar coordinates for P.
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ArtSci 1D06 Final Exam Name:

d) Solve the separable diffcrential equation E;E =322, y(0y =1,
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e) State theiaﬁnition of the in%gral of the function f(z) on the interval [a, b] as the limit of Ricmann
SUS.
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f) Sketch the contour map for the fanction 2 — #” — 9% (you should indicate at least 3 level sets).
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g) Sketch the curve given in polar form by the equation » = 4.
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ArtSci 1D06 Final Exam

Nuame:
h} Find 23 when Newton’s method is

sed to approximate a zero of the function J(z) =z - cos(z)
with starting point z, = 7/4.
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: Y
of differcntial equations ; = =000z + zy, % = 200y — 22y is
given. Sketch the solution curve starting at the point » = 10[], y = 250,

1) The direction field for the system

j) A contour map for the surface » — Flo,y)

is given. Find the approximate coordinates of the
points where f, = 0 and the points where f, = 0.
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Name;
22y
2) Let fla,y) = —<_,
) Let fay) = L
a} Show that this function is not continuous at the origin
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¢} Find all second order partial derivatives and verify that Joy = Fue-
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Name:

3) The graph of the curve parainctrized by o = ¢%5¢ is shown. Find the oxact value of the
coordinates where the tangent line to the curve is horizontal, and the exact coordinates of the point
where the tangent line is vertical.
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ArtSci 1D06 Final Exam Naune;

4} Solve the initial-value problem Y +dry = g, y(0) = 1.
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Name:
5)

a) Find the Taylor series for the function f{z) =1In(1

+ 2z) (do not quote a known Taylor scries)
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6) The goal of this problem is to
sequence of positive terms and
a; = f(?) for all 1.

a) Write £,,

Justify the intcgral test for convergence of a series. Let {a,} be a

assume that f is a continuous, non-negative decreasing function with

for the Riemann sum with left endpoints and Az = 1 which approximates the integral
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where 7 is any integer greater than 1. (Here is the picture. )
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Express L,, as a finite sum.
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b) Compare the series Z a; with the integral / f(z) dz to find a lower bound for Z a; .
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c¢) Write R, for the Riemann sum with right endpoints and Az = 1 which
n+1

f(x) da,
where n is any integer greater than 1. Express R, as a sum.
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d) Compare the serics with the integral to find an uppel bound for Z ;.
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e) Use these bounds on Z @; to dednee the statement of the integral tost.
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