Solutions to Math 3E03 Homework 4

2.18. (Reflexivity) Let € X. Since one clearly has f(x) = f(x), x = «.

(Symmetry) Let z1, 25 € X and 2 = y. Then f(z) = f(y) which is the same as saying
f(y) = f(z). Hence y = .

(Transitivity) Let z1, 29,23 € X with x = y and y = 2. Then we have f(z) = f(y)
and f(y) = f(z) which combines to give f(x) = f(z). Thus, x = z.

2.68. G is abelian <= ab = ba for all a,b € G <= (ab)™* =a~ b7 for all a,b € G
<= f(ab) = f(a)f(b) for all a,b € G <= f is a homomorphism.

2.73. Let 0,7 € S, and let ey, ..., e, be the standard basis for R". Then for each 1,
Pyr(€i) = eor(iy = €o(r(i)) = Foler@) = Ps(Pr(e;)). Therefore P, = P,P; and thus, f is
a group homomorphism.

Clearly P, = I, if and only if ¢ = 1. Thus ker f = {1} and so f is injective by
Proposition 2.93(ii). Hence f is an isomorphism from S,, to im f, which is a subgroup of

GL(n,R).

2.75. Since ab = a(ba)a™', ab and ba are conjugate to each other and so have the

same order by Proposition 2.94(ii).

2.80. Let H;,i € I be a family of normal subgroups of G. From Proposition 2.76, we
have that (,.; H; is a subgroup of G. To show that this is normal, let g € G,z € (,c; H;.
Then x € H; for all i. Since each H; is normal in G, grg~! € H;. Since this is true for all

i, we have gzg™' € ,c; Hi.

2.84. Supposing we have a matrix of the form al,a # 0 where I is the 2 x 2 identity
matrix, then for any A € GL(2,R), (al)A = aA = Aa = A(al). Therefore such a matrix
lies in the center of GL(2,R).
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Conversely suppose ( p > is in the center of GL(2,R), then considering

c

(1) 5)-6 )0



we obtain

(=)

This yields —b = b and ¢ = —c which imply b = ¢ = 0. Now considering
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This implies that a = d and since the matrix is invertible, a # 0. Hence the center of
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GL(2,R) consists precisely of matrices of the form al,a # 0.
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2.86. We first compute explicitly the elements of Q. They are I, A = < Lo ),
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(i) One checks that AB = BA3 # BA. Thus Q is not an abelian group.
(ii) One checks this directly.

(iii) and (iv): Let H be a subgroup of Q with order 2. Then the nonidentity element
in H must have order 2 (it has order either 1 or 2 by Lagrange’s Theorem but since it is
not the identity. it’s order must be 2). But Q has only one element of order 2 which is

—1I. Hence H = (—I). Thus Q only has one subgroup of order 2.
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Let ( ¢ ; ) be in Z(Q). Then considering
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Thus we obtain a = d and b = —c. Now considering
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From the above, we obtain c¢i = —ci implying ¢ = 0. Thus an element in Z(Q) is of the
form of a scalar matrix. Now the only scalar matrices in Q are I and A? = —I, and

clearly these two matrices lie in the center. Hence (—I) = Z(Q).

2.87. From 2.86, Q has only one element of order 2 whereas Dg has at least two
elements of order 2 (for instances reflection and rotations by 180°). Hence Q and Dg are

nonisomorphic to each other by Problem 2.69.

2.92. (i) Clearly the identity map is an automorphism. Therefore Aut(() is nonempty.
Let f,g € Aut(G). Since f and g are bijective, so is f o g. To see that fog € Aut(G), it
remains to show that f o g is a group homomorphism. Let z,y € G. Then (f o g)(zy) =

flg(zy)) = Flg(x)g(y)) = f(9(2))f(9(y)) = (f o g)(x)(f o g)(y). Hence we have show

that composition is a binary operation. Associativity follows from the basic properties of
functions and the identity map is clearly the identity element in Aut(G).

We are left with the verification of inverse. Let f € Aut(G). Since f is bijective, it
has an inverse (as a function!) g. We now show that ¢ is also a group homomorphism.

Let 2,y € G. Then there exists a,b € G such that f(a) = x and f(b) = y. Therefore we
have g(z) = a and g(y) = b. Hence g(zy) = g(f(a)f(b)) = g(f(ab)) = ab = g(z)g(y).

(ii) Let g,h € G. Then for every @ € G, ygu(x) = (gh)z(gh)™' = g(hah™')g™' =
Yo(hah™) = v5(m(x)) = (75 © ) (x). Thus Ygn = 74 © Y.

(iii) yy=1 <= y(x)=xforallz € G+ gzg ' =z foral z € G < g € Z(G).
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(iv) Let § € Aut(G),g € G. Then for every z € G, we have (§ oy, 06 1)(z) =

0(15(07H(x))) = (g~ (x)g™") = d(g)d(g™") = d(g)xd(g)™" = Vs(9)(x). Hence 60,0
61 =75 € imry. Therefore imy is a normal subgroup of Aut(G).

2.94. Let = be a generator of C' and f € Aut(C). Then f(x) = z' for some 0 < i < n.
Since f is an automorphism, x' must generate the group C. But this is only possible if
ged(i,n) = 1.

Conversely let ¢ be an integer such that 0 < i < n and ged(i,n) = 1. Define a function
f:C — Cby f(z7) = 2¥. This is a group homomorphism as f(2/7") = 2?0+ = gi+ir =
295" = f(a?) f(2"). Since 2 is in the image of f and is a generator of C it follows that f
is surjective. Since (' is a finite group, f is an automorphism. Thus we have shown that
the Aut(C) consists precisely of maps sending = to z* where 0 <4 < n and ged(i,n) = 1.
Therefore, |[Aut(C)| = ¢(n).



