
Solutions to Math 3E03 Homework 4

2.18. (Reflexivity) Let x ∈ X. Since one clearly has f(x) = f(x), x ≡ x.

(Symmetry) Let x1, x2 ∈ X and x ≡ y. Then f(x) = f(y) which is the same as saying

f(y) = f(x). Hence y ≡ x.

(Transitivity) Let x1, x2, x3 ∈ X with x ≡ y and y ≡ z. Then we have f(x) = f(y)

and f(y) = f(z) which combines to give f(x) = f(z). Thus, x ≡ z.

2.68. G is abelian ⇐⇒ ab = ba for all a, b ∈ G ⇐⇒ (ab)−1 = a−1b−1 for all a, b ∈ G

⇐⇒ f(ab) = f(a)f(b) for all a, b ∈ G ⇐⇒ f is a homomorphism.

2.73. Let σ, τ ∈ Sn and let e1, ..., en be the standard basis for Rn. Then for each i,

Pστ (ei) = eστ(i) = eσ(τ(i)) = Pσ(eτ(i)) = Pσ(Pτ (ei)). Therefore Pστ = PσPτ and thus, f is

a group homomorphism.

Clearly Pσ = In if and only if σ = 1. Thus ker f = {1} and so f is injective by

Proposition 2.93(ii). Hence f is an isomorphism from Sn to im f , which is a subgroup of

GL(n, R).

2.75. Since ab = a(ba)a−1, ab and ba are conjugate to each other and so have the

same order by Proposition 2.94(ii).

2.80. Let Hi, i ∈ I be a family of normal subgroups of G. From Proposition 2.76, we

have that
⋂

i∈I Hi is a subgroup of G. To show that this is normal, let g ∈ G, x ∈
⋂

i∈I Hi.

Then x ∈ Hi for all i. Since each Hi is normal in G, gxg−1 ∈ Hi. Since this is true for all

i, we have gxg−1 ∈
⋂

i∈I Hi.

2.84. Supposing we have a matrix of the form aI, a 6= 0 where I is the 2× 2 identity

matrix, then for any A ∈ GL(2, R), (aI)A = aA = Aa = A(aI). Therefore such a matrix

lies in the center of GL(2, R).

Conversely suppose

(
a b

c d

)
is in the center of GL(2, R), then considering

(
a b

c d

)(
1 0

0 −1

)
=

(
1 0

0 −1

)(
a b

c d

)
,
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we obtain (
a −b

c −d

)
=

(
a b

−c −d

)
.

This yields −b = b and c = −c which imply b = c = 0. Now considering(
a 0

0 d

)(
0 1

1 0

)
=

(
0 1

1 0

)(
a 0

0 d

)
,

we obtain (
0 a

d 0

)
=

(
0 d

a 0

)
.

This implies that a = d and since the matrix is invertible, a 6= 0. Hence the center of

GL(2, R) consists precisely of matrices of the form aI, a 6= 0.

2.86. We first compute explicitly the elements of Q. They are I, A =

(
0 1

−1 0

)
,

A2 = −I, A3 =

(
0 −1

1 0

)
, B =

(
0 i

i 0

)
, BA =

(
−i 0

0 i

)
, BA2 =

(
0 −i

−i 0

)

and BA3 =

(
i 0

0 −i

)
.

(i) One checks that AB = BA3 6= BA. Thus Q is not an abelian group.

(ii) One checks this directly.

(iii) and (iv): Let H be a subgroup of Q with order 2. Then the nonidentity element

in H must have order 2 (it has order either 1 or 2 by Lagrange’s Theorem but since it is

not the identity. it’s order must be 2). But Q has only one element of order 2 which is

−I. Hence H = 〈−I〉. Thus Q only has one subgroup of order 2.

Let

(
a b

c d

)
be in Z(Q). Then considering

(
a b

c d

)(
0 1

−1 0

)
=

(
0 1

−1 0

)(
a b

c d

)
,
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we obtain (
−b a

−d c

)
=

(
c d

−a −b

)
.

Thus we obtain a = d and b = −c. Now considering(
a −c

c a

)(
0 i

i 0

)
=

(
0 i

i 0

)(
a −c

c a

)
,

we obtain (
−ci ai

ai ci

)
=

(
ci ai

ai −ci

)
.

From the above, we obtain ci = −ci implying c = 0. Thus an element in Z(Q) is of the

form of a scalar matrix. Now the only scalar matrices in Q are I and A2 = −I, and

clearly these two matrices lie in the center. Hence 〈−I〉 = Z(Q).

2.87. From 2.86, Q has only one element of order 2 whereas D8 has at least two

elements of order 2 (for instances reflection and rotations by 1800). Hence Q and D8 are

nonisomorphic to each other by Problem 2.69.

2.92. (i) Clearly the identity map is an automorphism. Therefore Aut(G) is nonempty.

Let f, g ∈ Aut(G). Since f and g are bijective, so is f ◦ g. To see that f ◦ g ∈ Aut(G), it

remains to show that f ◦ g is a group homomorphism. Let x, y ∈ G. Then (f ◦ g)(xy) =

f(g(xy)) = f(g(x)g(y)) = f(g(x))f(g(y)) = (f ◦ g)(x)(f ◦ g)(y). Hence we have show

that composition is a binary operation. Associativity follows from the basic properties of

functions and the identity map is clearly the identity element in Aut(G).

We are left with the verification of inverse. Let f ∈ Aut(G). Since f is bijective, it

has an inverse (as a function!) g. We now show that g is also a group homomorphism.

Let x, y ∈ G. Then there exists a, b ∈ G such that f(a) = x and f(b) = y. Therefore we

have g(x) = a and g(y) = b. Hence g(xy) = g(f(a)f(b)) = g(f(ab)) = ab = g(x)g(y).

(ii) Let g, h ∈ G. Then for every x ∈ G, γgh(x) = (gh)x(gh)−1 = g(hxh−1)g−1 =

γg(hxh−1) = γg(γh(x)) = (γg ◦ γh)(x). Thus γgh = γg ◦ γh.

(iii) γg = 1 ⇐⇒ γg(x) = x for all x ∈ G ⇐⇒ gxg−1 = x for all x ∈ G ⇐⇒ g ∈ Z(G).
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(iv) Let δ ∈ Aut(G), g ∈ G. Then for every x ∈ G, we have (δ ◦ γg ◦ δ−1)(x) =

δ(γg(δ
−1(x))) = δ(gδ−1(x)g−1) = δ(g)xδ(g−1) = δ(g)xδ(g)−1 = γδ(g)(x). Hence δ ◦ γg ◦

δ−1 = γδ(g) ∈ imγ. Therefore imγ is a normal subgroup of Aut(G).

2.94. Let x be a generator of C and f ∈ Aut(C). Then f(x) = xi for some 0 ≤ i < n.

Since f is an automorphism, xi must generate the group C. But this is only possible if

gcd(i, n) = 1.

Conversely let i be an integer such that 0 ≤ i < n and gcd(i, n) = 1. Define a function

f : C → C by f(xj) = xij. This is a group homomorphism as f(xj+r) = xi(j+r) = xij+ir =

xijxir = f(xj)f(xr). Since xi is in the image of f and is a generator of C, it follows that f

is surjective. Since C is a finite group, f is an automorphism. Thus we have shown that

the Aut(C) consists precisely of maps sending x to xi where 0 ≤ i < n and gcd(i, n) = 1.

Therefore, |Aut(C)| = φ(n).
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