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GANZSTELLENSÄTZE IN THEORIES OF VALUED FIELDS

DEIRDRE HASKELL AND YOAV YAFFE

Abstract

The purpose of this paper is to study an analogue of Hilbert’s seventeenth problem for functions
over a valued field which are integral definite on some definable set; that is, that map the given
set into the valuation ring. We use model theory to exhibit a uniform method, on various theories
of valued fields, for deriving an algebraic characterisation of such functions. We apply it to
algebraically closed valued fields, model complete theories of difference and differential valued
fields, and real closed valued fields. In the latter case, an essential step is to understand when a
given valuation on K(X) extending the valuation on the ordered valued field K is compatible with
an ordering on K(X). We characterise this completely in the case when X is a single variable.

1. Introduction

A “nichtnegativstellensatz” in real algebraic geometry is a theorem which gives an
algebraic representation for a polynomial or rational function which takes only non-
negative values on a given set. The original nichtnegativstellensatz is the solution
by Artin [1] to Hilbert’s seventeenth problem: a polynomial which takes only non-
negative values everywhere can be written as a sum of squares of rational functions.
The methods of Artin’s solution are the foundations of the abstract study of real
closed fields. Relativised versions of positivstellensätze and nichtnegativstellensätze
describe the polynomials which are positive or non-negative on a semi-algebraic
set in a real closed field. Abstract statements of these results can be found in the
beautiful survey paper of Lam [12].

Model-theoretic proofs of the stellensätze rely on the fact that the theory of
real closed fields is model complete. Dickmann [6] and Becker [2] use the model
completeness of the theory of real closed rings to prove analogues of the stellensätze
in this context (Dickmann for the functions which are globally non-negative, and
Becker for some relativised statements). A real closed ring has a valuation, which
gives rise to infinitesimal elements, and increases the collection of positive definite
functions beyond just the sums of squares.

For valued fields in general one can consider the functional property of being
integral instead of the property of being positive. That is, one asks for an algebraic
representation of a function which always takes values in the ring of integers (all
values of the function are “ganze Elemente”). Kochen [10] did exactly this for
p-adically closed fields. The theorem of Kochen that we call a “ganzstellensatz”
asserts that such an integral definite rational function (of course, no polynomial
is integral definite) is integral over a ring defined using the Kochen γ operator.
That is, the γ operator serves to characterise the integral elements in a p-adically
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closed field just as the squaring operator characterises the positive elements of a
real closed field. More refined statements, and also a relative version, are given by
Prestel and Roquette [16].

In this paper, we give a framework for a model-theoretic proof of such relative
ganzstellensätze that can be followed in any model-complete theory of valued fields.
We apply it to algebraically closed valued fields (Theorem 2.3), D-henselian valued
D-fields (Theorem 3.1) and real closed valued fields (Theorems 4.12 and 4.13). Fur-
thermore, we get similar representations for certain infinitesimal-definite functions
(Corollary 5.2 and Proposition 5.3). An essential part of the general framework is a
careful analysis in Subsection 2.2 of the concept of a function being integral. Bélair
[3] has given a similar proof for the theory of Witt vectors. Indeed, it was he who
pointed out to us the crucial lemma from Kochen’s paper, and we thank him for
thus making this work possible. We note that a similar flavour of model-theoretic
nullstellensatz was given by Cherlin in [4].

A different motivation for these results, and the original reason that we started
to ask these questions, comes from the problem of elimination of imaginaries. Given
a definable set S = {x : v(p(x)) ≥ v(q(x))} in a model of a theory of valued fields,
one would like to know if there is a canonical object (a “code”) associated to S.
Ideally, the code would be a tuple of elements from the field. The results of [7]
and [8] show that, in the case of algebraically closed valued fields and p-adically
closed fields, there is a code which is a sequence of definable modules and torsors.
The results of the present paper show that, in each of the theories of valued fields
that we consider, there is a ring associated to such a definable set S which contains
all other functions which could be used to define the same set. Thus this ring is a
canonical object associated to S. Of course, it is not itself definable, so does not
solve the problem of elimination of imaginaries.

2. The model theoretic framework

We fix the following notation. For any valued field (K, v), let OK be the valuation
ring of K and MK its maximal ideal. We will also often write Ov for the valuation
ring of the valuation v and O×v = {x : v(x) = 0} for its units. Extend v to K by
letting v(0) = ∞. Let Γ denote the value group of v, and let Γ∞ = Γ ∪ {∞}. Let k
be the residue field, and denote the residue of an element x either by res(x) or by
x. Given an extension field L of K and an OK-subalgebra A of L, let T = T (A) =
{1 + ma : a ∈ A,m ∈ MK}, and define AT = {f ∈ L : tf ∈ A for some t ∈ T}.
Note that if A ∩K = OK then T is a multiplicative set, and AT is the localisation
of A at T . However if A ∩ (K \ OK) 6= ∅ then AT = L (since 0 ∈ T ). Let Aint

T be
the integral closure of AT in L.

The central piece of our framework is the following lemma (paraphrased) from
Kochen.

Lemma 2.1. [10, Lemma 3] Let K be a valued field, L a field extension of K
and A a subring of L such that A ∩K = OK . Then Aint

T is the intersection of all
valuation rings OL of L such that A ⊆ OL and OL ∩K = OK .

The proof in one direction is a straightforward calculation. For the other direction,
one proves the contrapositive. Suppose that x ∈ L is not in the integral closure of
AT . Consider the ideal N generated by MK and x−1 in AT [x−1]. One can use the
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place extension theorem to show that there is a valuation ṽ on L whose maximal
ideal contains N (and hence ṽ(x) < 0). The assumption that A∩K = OK ensures
that ṽ extends the given valuation on K.

2.1. The naive framework

The way that we want to use the above lemma is the following. Let L be a
language which contains the language of valued fields. Assume for the moment
that L does not add any function symbols. We will use v for the formal symbol
in L interpreted as the valuation. However we might be less careful with the other
symbols of L, and employ the common practice of using them also for their various
interpretations. Let T be a theory in the language L, and assume it has a model
completion T̃ . In all our applications T̃ will actually admit quantifier elimination.
Fix K = (K, v, . . .) a model of T̃ . So K is a valued field, possibly with extra
structure. Let S = {x ∈ Kn : K |= ϕS(x)}, where ϕS is a quantifier free formula in
the language L with parameters from K. (See [13, Chapter 3] for definitions of all
model theoretic notions, such as ‘model completion’ and ‘quantifier elimination’.)

Definition 2.2. We say that a rational function f(X) ∈ K(X) = K(X1, . . . , Xn)
is integral on S if for all x ∈ S we have f(x) ∈ OK .

We would like to use Lemma 2.1 to prove that there is an OK-subalgebra A of
K(X), defined in some way from S, such that for any g(X) ∈ K(X),

g is integral on S if and only if g(X) ∈ Aint
T . (1)

In order to do so, we need to construct the OK-algebra A to have the following
properties.
Necessity f ∈ A =⇒ f is integral on S.
Sufficiency For any model F =

(
K(X), ṽ, . . .

)
of T which is an extension of K, if

ṽ(f(X)) ≥ 0 for all f ∈ A then F |= ϕS(X).
Furthermore, A should contain a set I , not dependent on S, with the extension
property:
Extension For any valuation ṽ on K(X) extending the valuation on K, if ṽ(f) ≥ 0

for all f ∈ I then (K(X), ṽ) can be expanded to an L-structure
(
K(X), ṽ, . . .

)
which extends K and is a model of T .

Given such an OK-algebra A, the standard argument using the model completeness
of T̃ can now be applied to prove (1). If A ∩ (K \ OK) 6= ∅ then AT = K(X), but
we also get S = ∅ from necessity, so (1) holds. Hence we assume A∩K = OK . The
necessity condition gives the right-to-left direction, as localising at T (A) and taking
the integral closure preserve the property of being integral definite. To prove the
forward implication, suppose that g is integral on S but g(X) /∈ Aint

T . By Lemma 2.1,
there is some valuation ṽ of K(X) extending v such that ṽ(f) ≥ 0 for all f ∈ A and
ṽ(g) < 0. Since I ⊆ A we can use the extension property to expand

(
K(X), ṽ

)
to

a model F =
(
K(X), ṽ, . . .

)
of T which is an extension of K. By the sufficiency

property and as T̃ is the model completion of T , there is U a model of T̃ which
extends F and satisfies the following existential formula

U |= ∃X
(
ϕS(X) & v(g(X)) < 0

)
.



4 DEIRDRE HASKELL AND YOAV YAFFE

By model completeness of T̃ the elementary submodel K satisfies the same formula,
contradicting the hypothesis on g.

A paradigm for this argument is given by the case of algebraically closed valued
fields. In this case, L is exactly the language of valued fields, T is the theory of
valued fields (VF), and T̃ is the theory of algebraically closed valued fields (ACVF),
which by Robinson [18] is the model completion of VF.

Theorem 2.3. Let K = (K, v) be an algebraically closed valued field. Let
S = {x ∈ Kn :

∧
j∈J fj(x) ∈ OK}, where for each j in the finite enumeration set J ,

fj ∈ K(X). Let A be the OK-subalgebra of K(X) generated by {fj(X) : j ∈ J}.
Then for any g(X) ∈ K(X),

g is integral on S ⇐⇒ g(X) ∈ Aint
T .

Proof. By the framework above, we need only verify that A satisfies the proper-
ties listed. The necessity is clear, as the process of taking the generated OK-algebra
preserves non-negativity of the valuation. Also the sufficiency condition is clear,
since the formula ϕS is just the integrality condition on the functions fj which are
in A. The set I of the extension property is empty in this case; any valuation on
K(X) which extends the valuation on K makes it a model of T .

Remark 2.4. One can allow the index set J to be infinite if enough saturation
is assumed. For example, if K is an ℵ1-saturated model of ACVF then Theorem 2.3
holds with countable J (see [13, section 4.3] for the definition of ℵ1-saturation).

Remark 2.5. Prestel and Rippol [15] have related results with a similar proof.
Their theorem is weaker, in that they only characterise functions which are integral
definite on the valuation ring (that is, S = OK). It is stronger in two ways. First,
they only assume that the field K is dense (in the valuation topology) in its
algebraic closure, and second, they describe when the ring AT is integrally closed.
Theorem 2.3 could also be stated only assuming that K is dense in its algebraic
closure; it just requires one extra step in the proof to use the continuity of the
function g at a point in the algebraic closure witnessing the contradiction to find
a nearby point in K which also witnesses the required contradiction. However, the
analogous statement for D-henselian fields is less clear, so we prefer to preserve the
uniformity of statement for the various theories.

2.2. A refined concept of being integral

The definition of what it means for a rational function to be integral at a point
is somewhat sensitive. Kochen and Bélair both allow the rational function f(X) =
p(X)/q(X) to be integral at a point b where f(X) is “not defined”. It is clear that
the function 1

X−b should not be considered to be integral at b, so presumably, this
should be more precisely stated as allowing f to be integral at a point b satisfying
p(b) = q(b) = 0, as this corresponds to b lying in the set {x : v(p(x)) ≥ v(q(x))}.
However it is not hard to show that, even with this definition, the set of rational
functions integral at a point is not a ring, since we do not have cancellation in the
semigroup Γ∞. For example, if c /∈ OK then X1

X2
· cX2
X1

is not integral at (0, 0).
On the other hand, there are contexts where we would like a function to be

integral at a point where it is not defined. For example, in a valued D-field (see
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section 3) we would like the function D(X−b)
X−b to be globally integral definite, so it

should also be integral at b. Similarly, in an ordered valued field (see section 4) the
function X2

X2+Y 2 should be integral everywhere, even at (0, 0).
The issue becomes more delicate with examples such as the following: should

f(X) = X−b
D(X−b) be integral at b? On the one hand there are points c arbitrarily

close to b such that for ε = c − b we have Dε = ε, whence f(c) = ε
ε ∈ OK . On

the other hand there are c arbitrarily close to b such that D(c − b) = 0, whence
f(c) = ε

0 is certainly not integral.
We therefore make the following definitions. Let K = (K, v, . . .) be a model of T̃ ,

and let F be either the field of rational functions K(X) or, in the case of valued
D-fields, the field of quotients of D-polynomials K(X)D. Let ṽ be a valuation on F
extending v. We will say that ṽ is a T -valuation if there is an expansion of (F, ṽ) to
a model F = (F, ṽ, . . .) of T extending K. In the case of valued D-fields, we require
the expansion to interpret D on F = K(X)D in the standard way. Note that a
V F -valuation is just a valuation on K(X) extending v.

Definition 2.6. Let b = (b1, . . . , bn) ∈ Kn. A T -valuation ṽ on F is said to
be given by evaluation near b if for any 1 ≤ i ≤ n and every c ∈ K× we have
ṽ(Xi − bi) > v(c). We will also call such a ṽ a T -valuation near b for short.

So each Xi− bi is a new infinitesimal smaller than any infinitesimal in MK . Note
that in a valued D-field, as ṽ is assumed to be a V DF -valuation, D(Xi−bi) will also
be a new small infinitesimal, as the theory VDF implies ṽ(D(Xi−bi)) ≥ ṽ(Xi−bi).
An example where T = V F is the following valuation.

Let Γ be the value group of K and fix new elements δ1, . . . , δn not in Γ. Let
Γ′ = Γ ⊕ Zδ1 ⊕ . . . ⊕ Zδn and make it an ordered group by setting δ1 > γ for all
γ ∈ Γ, and δi+1 > `δi for all ` in N (i = 1, . . . , n − 1). We define a valuation ṽ
of K[X] = K[X1, . . . , Xn] into Γ′ satisfying ṽ(Xi − bi) = δi, which then extends
canonically to K(X). For any p(X) ∈ K[X], write p(X) =

∑
α pα(X − b)α as a

sum of monomials in (X − b)α =
∏n
i=1(Xi − bi)αi (here α = (α1, . . . , αn) is a

multi-index). Define

ṽ(p(X)) = min
α
{v(pα) +

n∑
i=1

αiδi} .

Then ṽ is clearly a valuation on K[X] (the argument from [17, Chapter 3A] applies,
although the value group is different), and extends the valuation on K. In fact, it
is clear that the above minimum is attained at the multi-index α which is minimal,
with respect to the reverse lexicographic order, in the “support” {α : pα 6= 0} of p.

Notice that, if we let b = (0, 0) in the above example, then cX2
X1

is in Oṽ, while X1
X2

is not. By the definition below, neither of these functions is V F -integral at (0, 0).
We now show that any (V F -) valuation given by evaluation near b is closely

related to evaluation at b. A similar result will hold for T -valuations near b for any
theory T treated in the present paper.

Proposition 2.7. Let ṽ be a valuation on K(X) given by evaluation near b,
and let f ∈ K(X) be defined at b.

(i) If f(b) ∈ K× then ṽ(f) = v(f(b)).
(ii) If f(b) = 0 then ṽ(f) > 0.
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Proof. Let δi = ṽ(Xi − bi) for 1 ≤ i ≤ n. Let f(X) = p(X)/q(X) for p and q
coprime inK[X] (so q(b) 6= 0), and write p(X) =

∑
α pα(X−b)α. Note that for every

c ∈ K× and any α 6= (0, . . . , 0) we have ṽ(pα(X − b)α) = v(pα) +
∑n
i=1 αiδi > v(c),

hence ṽ(p(X) − p(b)) = ṽ(p(X) − p(0,...,0)) > v(c). If p(b) ∈ K× then we get
ṽ(p(X)) = v(p(b)), and by the same result for q(X) we get (i). If p(b) = 0 then
ṽ(p(X)) > v(q(b)) = ṽ(q(X)), as required for (ii).

Definition 2.8. Given f in F and b ∈ Kn, we say that the function f is T -
integral at b if, for every T -valuation ṽ on F which is given by evaluation near b,
we have ṽ(f) ≥ 0.

Remark 2.9.

(i) A function may be T -integral at a point where it is not defined (and hence
not integral). For example in the valued D-field context, given any D-
polynomial p, the functions Dp

p and σp
p are globally V DF -integral definite,

even at roots of p. Similarly X1
2

X1
2+X2

2 is OV F -integral everywhere, in par-
ticular also at (0, 0).

(ii) Note that X−b
D(X−b) is not V DF -integral at b: there exists a V DF -valuation

near b that gives D(X − b) a strictly greater value than X − b.

We now change the above framework accordingly — we replace “integral” by
“T -integral” everywhere (specifically in (1) and in the necessity property). Note
that, by “T -integral on S” we simply mean “T -integral at every point in S”. We
need to add the following assumption on T -integrality.
Conservativity Whenever a function f ∈ F is defined at a point b ∈ Kn, f is

T -integral at b if and only if f is integral at b.
There are three points that need restating. First, we note that T -integrality is

indeed preserved by the relevant operations (localising at T (A) and taking integral
closure), since each Oṽ is closed under these operations. Second, note that if the
function g is given by g(X) = p(X)/q(X), where p and q are coprime in K[X] (or
in K[X]D), then actually U satisfies the formula

U |= ∃X
[
ϕS(X) &

(
v(p(X)) < v(q(X))

)
& q(X) 6= 0

]
.

Again by model completeness of T̃ , K satisfies the same formula, and we get some
b ∈ S ⊆ Kn such that g(b) is defined and non-integral. By the conservativity
assumption we get that g is also not T -integral at b, contradicting our revised
hypothesis on g. Last, for the case A ∩ (K \ OK) 6= ∅ we actually need existence
of some T -valuation near b (which follows from conservativity) in order to get a
contradiction from the existence of some b ∈ S.

As an example we point out how to adapt Theorem 2.3 and its proof to the
revised framework. In the statement of the theorem we replace “g is integral on S”
by “g is V F -integral on S”. We use Proposition 2.7 to show that V F -integrality
is conservative. For the forward implication in conservativity we actually need the
existence of some valuation near b, which we demonstrated by giving an example.
In the proof of the revised theorem we note that, since each f ∈ A is integral on
S, it is also V F -integral there by conservativity, hence we get our revised necessity
property.
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2.3. Integrality vs. V F -integrality

We end this section by proving that when T = V F we do not get a new concept of
integrality, so V F -integrality is actually equivalent to (naive) integrality. This makes
the adaptation of Theorem 2.3 to the revised framework redundant. However the
proof below that these concepts are equivalent is rather long, while the adaptation
was straightforward, and will be easy to generalise.

Since V F -integrality is conservative all we need to show is that if f ∈ K(X) is not
defined at b then it cannot be V F -integral at b — there exists a valuation ṽ given by
evaluation near b such that f /∈ Oṽ. Since one can easily shift to the origin we prove
this for b0 = (0, . . . , 0) ∈ Kn. For any valuation ṽ on K(X) extending v denote the
“relative valuation ring” by Rṽ/v = {f ∈ K(X) : ṽ(f) ≥ v(c) for some c ∈ K}.
We say that an element f is ṽ-large if f /∈ Rṽ/v, and that f is ṽ-small if 1/f is
ṽ-large (or if f = 0). Note that ṽ is given by an evaluation near b0 if and only if Xi

is ṽ-small for all 1 ≤ i ≤ n, and that for such ṽ we have K[X] ⊆ Rṽ/v.

Proposition 2.10. Let p(X)/q(X) ∈ K(X) = K(X1, . . . , Xn) be a rational
function in reduced form such that q(b0) = 0. Then there is a valuation ṽ given by
evaluation near b0 such that p(X)/q(X) is ṽ-large.

Since Oṽ ⊆ Rṽ/v we get p(X)/q(X) /∈ Oṽ, so indeed the function p/q is not
V F -integral at b0, as stated above.

Proof. We prove the proposition by induction on n. We can reduce to the case
that q(X) is irreducible: let q̂ be an irreducible factor of q such that q̂(b0) = 0, find
a ṽ given by evaluation near b0 such that p/q̂ is ṽ-large (so p/q̂ /∈ Rṽ/v), and use
q/q̂ ∈ K[X] ⊆ Rṽ/v.

Write q(X) = Q(Xn) =
∑d
j=0QjXn

j where Qj ∈ K[X1, . . . , Xn−1], assuming
without loss d > 0. We intend to take a valuation w on L = K(X1, . . . , Xn−1)
given by evaluation near (0, . . . , 0) ∈ Kn−1, and extend it to a valuation ṽ on
L(Xn) = K(X) such that ṽ(Q(Xn)) > wL×. This will make p/q ṽ-large, as needed.
The problem will be to do this in such a way that Xn is ṽ-small. For example when
p(X)/q(X) = X2

X2X3−X1
we will need X1/X2 to be w-small. We get the required

control over w by the induction hypothesis.
Let α1, . . . , αd be the roots of Q(Xn) ∈ L[Xn] in the algebraic closure Lalg of L.

To appreciate why we pass to the algebraic closure consider X1
X2

2+X1
. We will find

some valuation w on Lalg such that one of the roots α` is w-small, and such that
the restriction of w to L is given by evaluation near (0, . . . , 0) ∈ Kn−1.

This is enough, as we can then extend w to the unique valuation ṽ on Lalg(Xn)
for which η = ṽ(Xn − α`) > w(Lalg)× (so the value group of ṽ is w(Lalg)× ⊕ Zη).
Since Xn − α` divides Q(Xn) = q(X), and hence does not divide p(X), we will
get that p/q is ṽ-large, as required. In addition, since ṽ(Xn − α`) = η > w(α`) (if
α` 6= 0) we get ṽ(Xn) = w(α`), and since we assumed α` is w-small we get that Xn

is ṽ-small, as required (if α` = 0 then ṽ(Xn) = η > vK×). Of course we actually
need the restriction of ṽ to K(X).

So assume for contradiction no such valuation w on Lalg exists. In other words,
for any w such that w|L is given by evaluation near (0, . . . , 0) ∈ Kn−1 we have that
none of the roots α` are w-small. In particular 0 is not a root, so Q0 6= 0. Rewriting
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Q(Xn) =
∑d
j=0QjXn

j in terms of Z = 1/Xn we get

d∑
j=0

(Qj/Q0)Zd−j =
d∏
`=1

(
Z − (1/α`)

)
.

Since all the inverses 1/α` are not w-large, so they are in the subring Rw/v of L,
we get that all the coefficients Qj/Q0 (for 1 ≤ j ≤ d) are also in this subring. Note
that Q0(0, . . . , 0) = q(b0) = 0, and let Q̂0 ∈ K[X1, . . . , Xn−1] be any irreducible
factor of Q0 such that Q̂0(0, . . . , 0) = 0. Since Q0/Q̂0 ∈ K[X1, . . . , Xn−1] ⊆ Rw/v
we also get that all Qj/Q̂0 are in Rw/v.

Since any valuation on L extends to its algebraic closure we have shown that,
for any valuation w on L = K(X1, . . . , Xn−1) given by evaluation near (0, . . . , 0),
Qj/Q̂0 is not w-large. By the induction hypothesis this has to mean that the
irreducible Q̂0 divides Qj , hence Q̂0 divides Q(Xn) = q(X), but we assumed that
q is irreducible.

3. D-Henselian valued fields

In the formalism of Scanlon [19], a valued D-field is a valued field K with an
additive function D : K → K satisfying the twisted Leibniz rule D(xy) = xD(y) +
yD(x) + eD(x)D(y), where e is a distinguished element of K with v(e) > 0. The
function D and the valuation are required to have the following interaction: for all
x ∈ K, v(D(x)) ≥ v(x). If we let σ(x) = x+ eD(x) then σ is a field endomorphism
satisfying v(σ(x)) = v(x) for all x ∈ K, and we can rewrite the above rule as
D(xy) = xD(y) + σ(y)D(x). If e 6= 0 then D and σ are interdefinable, and K is
called a valued difference field. If e = 0 then D is a derivation, and K is called a
valued differential field (in this case σ = id). The notion of aD-henselian valued field
is defined by Scanlon, and he proves (under certain hypotheses) [19, Theorem 7.1]
that the theory of D-henselian valued fields has quantifier elimination and is the
model completion of the theory VDF of valued D-fields. In this section, we take L
to be the language of valued D-fields, and T a theory containing VDF which implies
that the residue field is a differentially closed field of characteristic zero and the value
group is divisible. Then Scanlon’s results apply, and T̃ is the theory of D-henselian
valued fields. The terms in the language can be written as elements of the ring
of D-polynomials K[{DkXi}k≥0

1≤i≤n]. Strictly speaking, we are not in the situation
of the framework given above, as the functions of interest are quotients of D-
polynomials, rather than rational functions. However, it is clear that the description
of the framework can be modified to fit this situation.

Write K[X]D for the ring of D-polynomials in X and K(X)D for its field of
fractions. We can think ofK[X]D as polynomials in variables {Yi,k}k≥0

1≤i≤n where Yi,k
stands for DkXi. There is a unique extension of D to K(X)D such that D(Yi,k) =
Yi,k+1 (when e 6= 0 this can be seen via σ).

Before stating our result about sets defined by weak valuation inequalities (The-
orem 3.1) we take care of the general parts of our framework: we find a set ID

satisfying the extension property, and we show that the theory VDF satisfies the
conservativity property. Let K = (K, v,D) be a valued D-field. Define

ID = {Dp/p : p ∈ K[X]D} .
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Using the formula D(p/q) = (qDp − pDq)/qσ(q) (for p, q ∈ K[X]D) it is easy
to show that ID has the extension property (the required expansion amounts to
interpreting D on K(X)D in the standard way).

We now prove that V DF -integrality is conservative. Note that by Remark 2.9 (i)
V DF -integrality is not equivalent to (naive) integrality. Let ṽ be a V DF -valuation
given by evaluation near some b ∈ Kn, and let f = p/q ∈ K(X)D. We can get a
result similar to Proposition 2.7 by writing the D-polynomials p〈X〉 and q〈X〉 as
polynomials in {Dk(Xi−bi)}k≥0

1≤i≤n and using the fact that the theory V DF implies
that ṽ(Dk(Xi − bi)) ≥ ṽ(Xi − bi) > vK×. Hence in order to get conservativity it
is enough to construct some V DF -valuation near b, and we may assume b = b0 =
(0, . . . , 0).

Let Γ′ = Γ ⊕ Zδ be ordered by setting δ > γ for all γ ∈ Γ. For a D-polynomial
p =

∑
α pαY

α of order r in Y α =
∏0≤k≤r

1≤i≤n Y
αi,k

i,k define

ṽ(p) = min
α
{v(pα) + |α|δ}

(where |α| =
∑0≤k≤r

1≤i≤n αi,k), and extend ṽ to the fraction field K(X)D. Then ṽ is
clearly a valuation given by evaluation near b0 (note that the restriction of ṽ to
K(X) does not yield the example given after Definition 2.6). We need to show ṽ
is actually a V DF -valuation. It is easy to verify, using the twisted Leibniz rule,
that the set {p ∈ K[X]D : ṽ(Dp) ≥ ṽ(p)} is closed under multiplication, and it
obviously contains K ∪{Yi,k}k≥0

1≤i≤n, since ṽ(Yi,k) = δ. Hence the above set contains
all monomials pαY α, and we get

ṽ(Dp) = ṽ
( ∑

α

D(pαY α)
)
≥ min

α
{ṽ(D(pαY α))} ≥ min

α
{ṽ(pαY α)} = ṽ(p) .

The same condition for ratios p/q follows (as in the proof that ID satisfies exten-
sion). We could have made 〈ṽ(Yi,k)〉k≥0 any non-decreasing sequence of values for
each 1 ≤ i ≤ n, as long as ṽ(Yi,0) > Γ.

Theorem 3.1. Let K = (K, v,D) be a D-henselian valued field. Let S = {x ∈
Kn :

∧
j∈J fj〈x〉 ∈ OK}, where for each j in the finite enumeration set J , fj ∈

K(X)D. Let A be the OK-subalgebra of K(X)D generated by ID∪{fj〈X〉 : j ∈ J}.
Then for any g〈X〉 ∈ K(X)D,

g is V DF -integral on S ⇐⇒ g〈X〉 ∈ Aint
T .

Remark 3.2. Note that we do not replace integrality with V DF -integrality in
the definition of the set S. The reason is that we need S to be (first-order) definable
in order to use the model theory, and in the definition of T -integrality we quantify
over valuations. However by Remark 3.3 below we actually can redefine S in the
manner suggested above, hence the model theory seems to allow us to go outside
the first-order realm.

Proof. We need only verify that A satisfies the properties given in our revised
framework (see subsection 2.2). For necessity, notice that each fj is integral on
S by definition, so by conservativity it is also V DF -integral on S. In addition
all elements of ID are globally V DF -integral, and V DF -integrality is preserved
under the process of taking the generated OK-algebra. The sufficiency is as easy as
in Theorem 2.3, however we give here more details. The formula ϕS(x) says that
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each fj is integral at x, so in particular defined there. If fj〈X〉 = pj〈X〉/qj〈X〉
where pj and qj are relatively prime in K[X]D then ϕS(x) is equivalent to∧

j∈J

(
v(pj〈x〉) ≥ v(qj〈x〉)

)
& qj〈x〉 6= 0 .

Now any valuation ṽ on K(X)D for which all elements of A are in Oṽ will in
particular satisfy ṽ(fj) ≥ 0, so for F =

(
K(X)D, ṽ, D

)
we have F |= v(pj〈X〉) ≥

v(qj〈X〉). Since we also have F |= qj〈X〉 6= 0 we get F |= ϕS(X), as required.
We have already noted that ID satisfies the extension property, and that V DF -
integrality is conservative, so our revised framework applies.

Remark 3.3.
(i) We get a natural inclusion-reversing correspondence associated to T -integrality,

analogous to null sets and radical ideals. For example in the valued D-field
context, for any A ⊆ K(X)D let

V int(A) = {x ∈ Kn : ∀f ∈ A(f is V DF -integral at x)}

and for any S ⊆ Kn let

I int(S) = {f ∈ K(X)D : f is V DF -integral on S} .

We claim that the closure V int(I int(S)) of S = {x ∈ Kn :
∧
j∈J fj〈x〉 ∈ OK}

equals S = {x ∈ Kn :
∧
j∈J fj is V DF -integral at x}. First, since each fj

is integral on S by definition, it is also V DF -integral on S. Hence {fj : j ∈
J} ⊆ I int(S), and then S = V int({fj : j ∈ J}) ⊇ V int(I int(S)). On the
other hand, since each Dp/p ∈ ID is globally V DF -integral (and the fj
are V DF -integral on S by definition) we get for A as in Theorem 3.1 that
each f ∈ Aint

T is V DF -integral on S. Hence S is contained in V int(Aint
T ),

which equals V int(I int(S)) by the above theorem. Since Aint
T is in the image

of I int we can conclude from V int(Aint
T ) = S that I int(S) = Aint

T , as stated
in Remark 3.2.

(ii) The above arguments can be repeated for any theory T (satisfying the
conservativity property) for which we have found a set I satisfying the
extension property and such that every f ∈ I is globally T -integral. Note
that, although T -integrality is non-elementary (at least a-priori — its given
definition is not first-order), the resulting inclusion-reversing correspondence
is quite reasonable, or “tame”. For example compare I int(V int({fj : j ∈
J})) = I int(S) = Aint

T with the nullstellensatz.

4. Real closed valued fields

An ordered valued field is an ordered field (K,<K) with a convex subring. This
convex subring is automatically the valuation ring of a valuation v on K which
satisfies 0 <K x <K y → v(x) ≥ v(y). Ordered valued fields were studied by
Cherlin and Dickmann [5], who proved that the model completion of the theory of
ordered valued fields (OVF) is the theory of real closed valued fields (RCVF). The
results of this section could be recast in the language of (real) valuation spectra of
such fields (see [9]).

In our model-theoretic framework for the ganzstellensätze, the theory T is OVF
and T̃ is RCVF. We aim to describe the collection of rational functions which are
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integral on definable sets S in a real closed valued field K. By quantifier elimination
any definable set is a finite union of sets defined by conjunctions of formulae of the
following forms: v(f(x)) ≥ 0, v(f(x)) > 0, p(x) ≥K 0, p(x) >K 0 (where f is
a rational function and p is a polynomial). We can assume our set is given by a
conjunction, since the ring of functions integral on the union of several sets is given
by the intersection of the appropriate rings.

In the present paper we consider the cases when S is defined either by a con-
junction of formulae of the first type (which we refer to as the pure case) or by a
single formula of the last type (the mixed case). In order to use our model-theoretic
framework to prove ganzstellensätze in this context, we will need to find a set I
satisfying the extension property. That is, we need to know in what circumstances
a given valuation on K(X) extending v is compatible with some linear order on
K(X) extending <K . Our extension theorem (Theorem 4.1) is restricted to the
field of rational functions in a single variable. Hence our ganzstellensätze only give
algebraic characterisations for functions which are integral on definable subsets of
the line. Furthermore, since a rational function in a single variable can be shown
to be OV F -integral at b ∈ K if and only if it is integral at b, we can revert in the
rest of this section to the naive version of our framework, and ignore Definition 2.8.
However note that for functions of more than one variable OV F -integrality is a
new concept (see Remark 2.9 (i) for an example), even though it does satisfy the
conservativity assumption.

In the literature, there is a treatment of the problems of characterising all valua-
tions on a field compatible with a given ordering, and all orderings compatible with
a given valuation (see in particular [14, section 7] and [11, Theorem 1.8 and section
3]). Our situation is more specific, in that we are concerned with the set of orderings
which are compatible with a given valuation and extend the given ordering on the
subfield K. Furthermore, in the mixed case (Theorem 4.13) we need to know the
specifics of how these orderings are defined. However, we also have more flexibility,
as we only need to know the existence of an appropriate ordering, rather than trying
to characterise the family of such orderings.

4.1. Expanding a valued field extension to an ordered valued field

Let K = (K, v,<K) be an ordered valued field. Denote the field of rational
functions by F = K(X), forX a single variable, and assume we are given a valuation
vF on F extending v with valuation ring OF . We want to examine the following
question: can we extend the given ordering on K to an ordering on F in such a
way that OF is convex? In other words we ask whether (F, vF ) can be expanded to
an ordered valued field F = (F, vF , <F ) which extends K. Suppose for the moment
that such an expansion exists. Denote the set of positive elements in F by F+,
and note that the map f 7→ 1

1+f takes F+ into (0, 1) ⊆ OF . Hence for all f in F ,
1

1+f2 ∈ OF . Of course we could replace f2 here by any sum of squares. The aim
of this subsection is to prove a converse statement when K is existentially closed,
or equivalently a model of RCVF. We show that the above condition is the only
obstruction to extending <K to F . In fact, we give a strong form of the converse: it
is enough to know the above condition for linear polynomials. Thus the answer to
the above question is given by the following theorem. Write ΓF for the value group
of the valued field F and kF for its residue field.
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Theorem 4.1. Let K = (K, v,<K) be a real closed valued field. Let F = K(X)
and assume that ṽ is a valuation on F extending v. Then (F, ṽ) can be expanded
to an ordered valued field F = (F, ṽ, <F ) in such a way that <F extends <K if and
only if

∀a, b ∈ K :
1

1 + (aX + b)2
∈ Oṽ . (2)

The proof of the theorem gives the following more detailed information: if ΓF 6= Γ
then there are exactly two such ways to extend the ordering <K to F (and the
condition is always true); if kF 6= k then there are (uncountably) many such ways
to extend <K to F , unless F is an algebraic extension of K, in which case there
is no appropriate extension of <K ; and if F is an immediate extension of K as a
valued field (i.e. ΓF = Γ and kF = k) then there is a unique such extension of <K
to F .

Remark 4.2. By the remarks before the theorem, we only need to show that
there is a suitable ordering on K(X) if condition (2) is satisfied. Note that (2) has
no content when ṽ(aX + b) 6= 0.

It is useful to note the following simple lemma on an ordered valued field F .

Lemma 4.3.

(i) If v(ε) > v(a) then sgn(a+ ε) = sgn(a) ∈ {+1,−1}.
(ii) If a and b have the same sign then they cannot cancel each other: if sgn(a) =

sgn(b) then v(a+ b) = min(v(a), v(b)).

Proof.

(i) Since v(|ε|) = v(ε) > v(a) = v(|a|) we get |ε| <F |a|, hence a + ε has the
same sign as a.

(ii) Assume for contradiction v(a + b) > v(a). Since v(−a) = v(a) we can
use (i) to get sgn(−a) = sgn((−a) + (a + b)) = sgn(b), contradicting our
assumption.

The proof of the hard direction of Theorem 4.1 is given by the following sequence
of lemmata. Lemmata 4.4 and 4.6 deal with the case where the value group has
been extended, while Lemmata 4.7 through 4.11 deal with the complementary case
ΓF = Γ.

Lemma 4.4. In the situation of Theorem 4.1, assume (2) holds. Suppose that
ΓF 6= Γ. Then there are a, b ∈ K such that ṽ(aX + b) /∈ Γ∞.

Proof. We assumed that ṽ
(
p(X)/q(X)

)
/∈ Γ for some nonzero polynomials p, q ∈

K[X]. Since K is a real closed field we can write p and q as products of linear or
irreducible quadratic factors. (Note that it is at this step that we have to assume we
are working with polynomials in one variable.) If all these factors had ‘old’ values
(i.e. values from Γ) then p/q would also have an old value; hence some have new
values.
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Assume for contradiction no linear term has a new value. Then ṽ
(
a(X+b)2+c

)
/∈

Γ for some a, c ∈ K+ = {x ∈ K : x >K 0}. Since we are assuming in particular
that X + b has an old value, the summands a(X + b)2 and c both have old values.
This has to mean that the new value is a result of cancellation, that is

ṽ
(
a(X + b)2

)
= ṽ

(
c
)
< ṽ

(
a(X + b)2 + c

)
.

Hence ṽ
(
1 + [

√
a
c (X + b)]2

)
> 0, contradicting our assumption in (2).

Now, since K(aX + b) = K(X), we may assume that X itself has a new value
ṽ(X) /∈ Γ.

Remark 4.5. The value group of a real closed valued field K is divisible —
one can take pth roots of any x ∈ K when p is odd, and one can take square roots
either of x or of −x, both of which have the same value.

Lemma 4.6. In the situation of Theorem 4.1, assume (2) holds. Suppose that
ṽ(X) /∈ Γ. Then there are exactly two ways to extend <K to an ordering <F on
F = K(X) such that (F, ṽ, <F ) is an ordered valued field.

Proof. Assume we have chosen the sign of X, sgn(X) = s ∈ {+1,−1}. We
show that this, together with the requirement that K(X) be an ordered valued
field, determines an ordering on K(X).

Given a polynomial p ∈ K[X], all its monomials have different values, since ṽ(X)
is new and, by Remark 4.5, Γ is divisible. Hence exactly one of the monomials has
least value, say anXn, and we are forced by Lemma 4.3 (i) to let the sign of p(X)
be the sign of this monomial; sgn(p(X)) := sgn(an)(sgn(X))n = sgn(an)sn.

Let P = {p(X) ∈ K[X] : sgn(p(X)) = +1}. We show that P is a positive
cone; that is, it is closed under addition and multiplication. Let p(X) =

∑
i aiX

i

and q(X) =
∑
j bjX

j be polynomials from P, and assume that the monomials with
least value in p and q are anXn and bmXm, respectively. Note that ṽ(p) = ṽ(anXn)
and ṽ(q) = ṽ(bmXm).

Closure under addition. First assume ṽ(p) = ṽ(q). By divisibility of Γ we know
that necessarily n = m. Since an and bn have the same sign we cannot have
cancellation (see Lemma 4.3 (ii)), so v(an + bn) = v(an), hence the monomial
with least value in p + q is (an + bn)Xn. By definition we get sgn(p + q) =
sgn(an + bn)sn. Now, since clearly an + bn shares the common sign of an and
bn, p+ q shares the common (positive) sign of p and q, as required.
Now assume without loss of generality that ṽ(p) < ṽ(q). We get ṽ(anXn) <
ṽ(bmXm) ≤ ṽ(bnXn), hence v(an) < v(bn), and thus v(an + bn) = v(an). It is
easy to conclude that (an + bn)Xn has least value in p + q. By Lemma 4.3 (i)
we get sgn(p+ q) = sgn(an + bn)sn = sgn(an)sn = sgn(p) = +1.
Closure under multiplication. Let ` = n+m. The coefficient c` of X` in pq is the
sum of anbm and ‘smaller’ terms, i.e. terms with higher value (by minimality).
Hence c` will have the same value as anbm. It follows that ṽ(c`X`) = ṽ(anXn)+
ṽ(bmXm), so c`X` will be the monomial with least value in pq. In addition the
sign of c` equals the sign of anbm (by Lemma 4.3 (i)). Hence we get

sgn(pq) = sgn(c`X`) = sgn(c`)s` = sgn(anbm)sn+m

= [sgn(an)sn][sgn(bm)sm]
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= sgn(p)sgn(q) = +1,

as required.
Similar considerations now show that, if p and q are both positive and ṽ(p) < 0,
then ṽ(p+ q) < 0. Hence the valuation ring is convex in this ordering, as required.

Now we wish to treat the case where there are no new values, so assume ΓF = Γ.
First we give a general lemma concerning the connection between ‘good’ orderings
on a valued field extension L of K, and orderings on its residue field kL.

Lemma 4.7. Let (K, v) ⊆ (L, ṽ) be any valued field extension such that ΓL = Γ.
Assume thatK is an ordered valued field. Then there is a one-to-one correspondence
between extensions of <K to L which make it into an ordered valued field, and
extensions of the ordering on k to the residue field kLof L.

Proof. First the restriction of <L to the valued ring OL of L respects the
equivalence relation defined by a ∼ b iff a− b ∈ ML (this is an easy consequence of
Lemma 4.3 (i), for example). Hence any ordering on L making it an ordered valued
field “descends” to an ordering on kL.

Conversely, suppose we are given an ordering on kL. Since L has no new values,
any non-zero element y ∈ L can be written as y = αz, where α ∈ K has the same
value as y, and hence ṽ(z) = 0. Also we may assume α is positive, since v(−α) =
v(α). Now res(z) is non-zero, so we can define sgn(y) def= sgn(res(z)). This is well-
defined, since if αz = α′z′ for positive α, α′ then in kL, res(z) = res

(
α′

α

)
res(z′).

Since α′

α is positive and has valuation 0 its residue is also positive.
We need only to check that the set of positive y is closed under multiplication

and under addition, so assume α, β ∈ K+, ṽ(z) = ṽ(w) = 0, and z, w have positive
residues. We want to show that the sum αz+βw is positive (it is easily seen that the
product αβ(zw) is positive). Assume without loss of generality that v(α) ≤ v(β),
so β

α ∈ OK . Write αz + βw = α(z + β
αw), and note that res(z + β

αw) = res(z) +
res(βα )res(w). Now res(z) and res(w) are positive, and since β

α ∈ K+ we know its
residue is non-negative. Hence res(z)+res(βα )res(w) is positive, so in particular it’s
non-zero, therefore z+ β

αw has valuation 0 and positive residue. Hence, by definition
α(z + β

αw) is indeed positive, as required.

Corollary 4.8. In the situation of Theorem 4.1, suppose that F = K(X) is
an immediate extension of K (so ΓF = Γ and kF = k). Then there is a unique
extension of <K to F making it an ordered valued field.

We now give a lemma similar to Lemma 4.4, stating that a linear term has to be
responsible for the extension, this time of the residue field.

Lemma 4.9. In the situation of Theorem 4.1, assume (2) holds. Suppose kF is a
proper extension of the residue field of K. Then there is a linear term aX+ b ∈ O×F
with a new residue.

Proof. Assume for contradiction that for all a, b ∈ K, if aX + b ∈ O×F then
res(aX + b) ∈ k. We know that some p(X)/q(X) in O×F has a new residue. Write p
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and q as products of linear factors and irreducible quadratic factors. Since ΓF = Γ
we may rescale so that each of the factors is in O×F . Hence we know one of these
factors has a new residue, and from our assumption we get that some irreducible
quadratic Q has a new residue. Without loss of generality, we can write Q = a(bX+
c)2+d with a, d ∈ K+ and bX+c ∈ O×F . Note that by our assumption res(bX+c) ∈
k.

If d ∈ OK then a is in OK too, and then res(Q) = res(a)(res(bX + c))2 + res(d)
is old, contradicting Q’s property. Hence d /∈ OK , so we get ṽ

(
[
√

a
d (bX+c)]2 +1

)
=

ṽ(Q)− ṽ(d) = 0− v(d) > 0, contradicting (2).

Since K(bX+c) = K(X) we may assume that the linear term with a new residue
is X itself.

Lemma 4.10. In the situation of Theorem 4.1, assume (2) holds. Assume kF is
a proper extension of the residue field k of K and suppose X = res(X) /∈ k. Then
kF is the transcendental extension of k by X.

Proof. First we show that kF = k(X). The residue of a linear term aX + b ∈
O×F is in k(X), since if we assume (for contradiction) that a /∈ OK then we get
ṽ(X + b

a ) > 0, hence X = −res(b/a) ∈ k. The residue of an irreducible quadratic
is in k(X) by the same argument used at the end of the proof of Lemma 4.9. Since
K is a real closed field and there are no new values we can write any polynomial
from O×F as a product of linear and quadratic terms from O×F , and conclude that
kF = k(X).

Now assume for contradiction that the extension is algebraic, i.e. X is algebraic
over k. Since k is a real closed field this means X solves an irreducible quadratic.
But then it is easy to get a contradiction to (2).

Lemma 4.11. In the situation of Theorem 4.1, assume (2) holds. Assume kF
is a proper extension of k and suppose X = res(X) /∈ k. Then we can add X
into any Dedekind cut of (k,<k) that we wish, extend the ordering accordingly to
kF = k(X), and “lift” the ordering from kF to F making it an ordered valued field.

Proof. Fix a Dedekind cut D in k (i.e. a partition of (k,<) into two nonempty
convex subsets). For any polynomial p ∈ k[X], it is easy to find an interval (a, b)
in k “bracing” the cut D (that is [a, b] intersects both parts of the partition) such
that p has constant sign on (a, b) (e.g. the endpoints may be chosen to be roots
of p). Let sgn(p) be this constant sign. The collection of “positive” polynomials
is closed under addition and multiplication simply because the intersection of two
open intervals bracing the cut D still braces the same cut. Now lift the resulting
ordering from kF to F using Lemma 4.7.

Proof. (of Theorem 4.1)
To recapitulate, the previous lemmata give us the required result:
(i) If the value group is extended then a linear term aX + b has a new value,

and there are exactly two extensions of <K to F = K(X) that give it the
structure of an ordered valued field — we just need to choose the sign of
aX + b.
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(ii) If neither the value group nor residue field are extended then there is a
unique appropriate extension of <K to F .

(iii) If the residue field is extended transcendentally then a linear term aX + b
has a new residue, and there are (uncountably) many appropriate extensions
of <K to F — we can choose any Dedekind cut in k for res(aX + b).

(iv) If the residue field is extended algebraically then condition (2) fails, and
there is no appropriate extension of <K to F .

4.2. The ganzstellensätze

As mentioned in the preamble to this section, we prove ganzstellensätze for the
two cases S = {x ∈ K :

∧
j∈J v(fj(x)) ≥ 0} and Sp = {x ∈ K : p(x) > 0} where for

each j in the finite set J , fj(X) ∈ K(X), and p(X) ∈ K[X]. For either case, let

Iord = { 1
1 + (aX + b)2

: a, b ∈ K} .

Theorem 4.12. Let K = (K, v,<K) be a real closed valued field. Let S =
{x ∈ K :

∧
j∈J fj(x) ∈ OK}. Let A be the OK-subalgebra of K(X) generated by

Iord ∪ {fj(X) : j ∈ J}. Then for any g(X) ∈ K(X),

g is integral on S ⇐⇒ g(X) ∈ Aint
T .

Proof. By the framework of section 2, we just need to show that A satisfies the
given conditions. Sufficiency clearly follows from fj ∈ A. Necessity is also clear, as
any f ∈ Iord is globally integral definite. Finally, the fact that Iord satisfies the
extension property is given exactly by Theorem 4.1.

For the sets S that we have discussed up to this point, sufficiency was easily taken
care of; it sufficed to ensure that the defining (D)-rational functions were included in
A. In the mixed case, we get a slightly more complicated statement, and will actually
not be able to find an OK-algebra A satisfying the sufficiency property. Instead we
replace the sufficiency and extension properties by the following property of the OK-
algebra A, which is readily verified to still fit our framework (see subsection 2.1).
Revised sufficiency Given a valuation ṽ on K(X) extending v such that ṽ(f) ≥ 0

for all f ∈ A, we can expand
(
K(X), ṽ

)
to a model F =

(
K(X), ṽ, . . .

)
of T

such that F |= ϕS(X).
Let Sp = {x ∈ K : p(x) >K 0} for p ∈ K[X]. It is easy to see that, if r(X) ∈ K[X]

is any positive semidefinite function, then for all s ∈ Sp, v
(
p(s)

)
≥ v

(
p(s)+r(s)

)
6=

∞, hence p
p+r is integral on Sp. Define

Ip = { p

p+ r
: r(X) ∈ K[X] is a sum of squares} .

Theorem 4.13. Let K = (K, v,<K) be a real closed valued field. Let Sp =
{x ∈ K : p(x) >K 0}, and let A be the OK-subalgebra of K(X) generated by
Iord ∪Ip. Then for any g(X) ∈ K(X),

g is integral on Sp ⇐⇒ g(X) ∈ Aint
T .
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Proof. As always, we need only verify that A satisfies the conditions of the
framework. We noted that any function in Ip is integral on Sp, and necessity
follows. The extension property for Iord is Theorem 4.1. Thus it remains to verify
the revised sufficiency condition.

Let ṽ be a valuation on F = K(X) such that f ∈ Oṽ for all f ∈ A. We need
to show that we can expand (F, ṽ) to a model of OVF such that 0 <F p(X). By
Theorem 4.1 we know there is some ordering <F on F making it an ordered valued
field; suppose p = p(X) <F 0. We show that <F can be changed to make p positive.
We rely heavily on the proof of Theorem 4.1.

Case 1: ΓF 6= Γ; we may assume that ṽ(X) is new.
First suppose that the sign of p is determined by an odd monomial a2n+1X

2n+1.
Then by changing the sign of X (which we know we can) we are changing the sign
of p, hence we can make p positive, as required.

Now assume the sign of p is determined by a2nX
2n. Since the value of this

monomial is strictly smaller than all the others, this means that ṽ(p− a2nX
2n) >

ṽ(p). Since we assumed p <F 0 we know a2n <K 0. Now we get ṽ( p
p+(

√
−a2nXn)2

) <
0, contradicting Ip ⊆ A ⊆ OF .

Case 2: ΓF = Γ; in this case we may assume by rescaling p with α ∈ K+ that
ṽ(p) = 0.

First assume that res(p) ∈ k. Let α ∈ K have the same residue as p. Then since
p <F 0 we have α <K 0. But then we get ṽ(p+ (

√
−α)2) > 0 = ṽ(p), contradicting

Ip ⊆ Oṽ.
Now assume res(p) /∈ k, and so in particular the residue field extends, and hence

we know res(aX+b) /∈ k for some a, b ∈ K such that aX+b ∈ O×F . We may assume
that X itself has a new residue.

Claim All of p’s coefficients are in OK , i.e. if p(X) =
∑d
i=0 aiX

i then for all i,
ai ∈ OK .

Proof of claim. If not, divide the above equality by a coefficient aj having
least value. Then since ṽ(p(X)/αj) = 0 − v(αj) > 0 we get an equation for
res(X) = X over k,

∑d
i=0 res(

ai

aj
)X

i
= 0, contradicting the fact that k ⊆ k(X) is

a transcendental extension.
In order to make p positive in F it is enough to make res(p) positive in kF ,

and by the above claim res(p) =
∑d
i=0 res(ai)X

i
. Assume for contradiction this

is not possible. Since we know that we can put X into any cut of (k,<), this
means that q(Y ) =

∑d
i=0 res(ai)Y

i is negative semidefinite. Since k is a real closed
field, this can happen only if −q is a sum of squares from k(X). But then −p
is a sum of squares plus a polynomial with coefficients from the maximal ideal
MK . Now, since ṽ(X) = 0, this polynomial has positive value. Therefore we get
ṽ(p+ sum of squares) > 0 = ṽ(p), contradicting Ip ⊆ Oṽ.

Remark 4.14. Ideally, we would like to have a characterisation for functions
which are integral definite relative to any definable set. Since we are in the case of
one variable, the restriction in Theorem 4.13 to sets defined by a single polynomial
inequality is not such a serious restriction. For any other order-definable set S can
be written as Sp ∪ P for some set Sp as above and some finite set of points P .
It is easy to show that g ∈ K(X) is integral at a single point b if and only if
g(X) ∈ (Ib + OK)Ib+1, where Ib is the ideal generated by X − b in K[X].
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For the special case p = 1, the result of Theorem 4.13 can be improved: by taking
S = K in Theorem 4.12, we see that the OK-algebra generated by Iord is sufficient.
One wonders whether the general statement of Theorem 4.13 could be improved
similarly, by having r range only over squares of linear terms instead of sums of
general squares. We show that such an improvement is impossible.

Let B be the OK-algebra generated by Iord∪{ p
p+(aX+b)2 : a, b ∈ K}. We give an

example of a polynomial p(X) and a function g(X) ∈ K(X) such that g is integral
on Sp = {x ∈ K : p(x) >K 0}, but there is a valuation ṽ on K(X) such that
ṽ(g) < 0 and B ⊆ Oṽ, so g /∈ Bint

T . Hence B can not replace A in Theorem 4.13.
Let p = εX3−X2−(X+1)2 for some non-zero ε ∈ MK . Then there are a ∈ K s.t.

p(a) >K 0: take any a such that v(a) < −v(ε) and sgn(a) = sgn(ε) (e.g. a = ε−3),
and use Lemma 4.3 (i). Hence Sp is non-empty. Let g(X) = p

p+X2+(X+1)2 . It is easy
to see that g is integral on Sp (this is the easy direction of Theorem 4.13).

Now define ṽ on K[X] by ṽ(
∑
i aiX

i) = mini v(ai) (so in particular ṽ(X) = 0,
and res(X) is ‘new’, i.e. is not in k). Now, since ṽ(p) = 0 and ṽ

(
p+X2+(X+1)2

)
=

ṽ(εX3) = v(ε) > 0, we get ṽ(g) < 0.
On the other hand we claim that ṽ

(
p+(aX + b)2

)
≤ 0 for any a, b ∈ K. Suppose

not. Since ṽ(p) = 0 we may assume that ṽ(aX + b) = 0. Then by the definition of
ṽ we get a, b ∈ OK . Thus in

p+ (aX + b)2 = εX3 + (a2 − 2)X2 + (2ab− 2)X + (b2 − 1)

we know that all the coefficients are from OK . We claim that at least one of these
coefficients has valuation 0. If not then by taking the reduction to the residue field
of K we get ā2 − 2 = 2āb̄− 2 = b̄2 − 1 = 0, which is impossible.

Hence ṽ
(
p+ (aX + b)2

)
= 0 by definition, and ṽ

(
p

p+(aX+b)2

)
≥ 0, as required. A

similar (but much easier) argument shows that ṽ
(

1
1+(aX+b)2

)
≥ 0, hence ṽ is the

required witness to g /∈ Bint
T .

A similar argument works with X4 instead of X2+(X+1)2, showing that squares
of non-linear terms are also necessary in Theorem 4.13.

5. Infinitesimal-definite functions

We wish to give a similar treatment of (relative) infinitesimal-definite functions;
that is, functions which map some definable set S into MK . A natural conjecture
is that, for S defined by weak valuation inequalities, any such function equals
some infinitesimal element times an integral-definite function. In this section we
prove such a statement, in the ACVF and RCVF contexts, for functions of a single
variable.

Proposition 5.1. Let K = (K, v) be an algebraically closed valued field. Let
S = {x ∈ K :

∧
j∈J fj(x) ∈ OK}, where fj ∈ K(X) for all j in some finite set J .

Assume g ∈ K(X) maps S into MK . Then there is some ε > 0 in Γ such that g
maps S into εOK = {x ∈ K : v(x) ≥ ε}.

Proof. Let R be the finite set of roots of numerators or denominators of one of
the functions fj or g.

We present S as a union S =
⋃
r∈R Sr, where each set Sr satisfies the following

three properties:
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(i) The function x 7→ v(g(x)) on Sr factors through x
φ7→ v(x − r)

ψ7→ v(g(x))
(that is, v(g(x)) depends only on v(x− r)).

(ii) The map ψ above is piecewise Z-linear, where the “pieces” are closed inter-
vals.

(iii) The range of the map φ above, whose domain is Sr, is closed.

The existence of a suitable ε follows, since a Z-linear image of a closed set is closed,
and a closed subset of {v(x) : x ∈ MK} is bounded away from 0.

Fix some r ∈ R. Define Ur = {x ∈ K : ∀r′ ∈ R : v(x− r) ≥ v(x− r′)}, and note
that

⋃
r∈R Ur = K. Let Sr = Ur ∩ S. Now define ∆r = {v(r′ − r) : r′ ∈ R}. Let

∆r = {δ1, . . . , δmr} such that δ1 < δ2 < . . . < δmr (note that δmr = v(0) = ∞).
Let δ0 =“−∞”, and define (for 1 ≤ i ≤ mr) V ir = {x ∈ Ur : δi−1 ≤ v(x− r) ≤ δi}.
It is easy to verify that, for any r′ ∈ R, v(x − r′) either equals v(x − r) on V ir or
is constant there. Thus on the set V ir we have that v(g(x)) is a Z-linear function of
v(x − r), since g(X) = c

∏
r′∈R(X − r′)kr′ for some c ∈ K and kr′ ∈ Z. Hence Ur

satisfies properties (i) and (ii) above, and as a result its subset Sr satisfies (i) and
(ii) as well.

Note that {v(x− r) : x ∈ Ur} = Γ∞. Since R also contains the zeros and poles of
fj we get that v(fj(x)) is a piecewise Z-linear function of v(x− r) on Ur. Therefore
intersecting Ur with S = {x ∈ K :

∧
j∈J v(fj(x)) ≥ 0} gives us |J | closed conditions

on v(x− r), so the set {v(x− r) : x ∈ Ur ∩ S} is closed. Hence the set Sr = Ur ∩ S
also satisfies property (iii) above, as required to complete the proof.

We may choose any e ∈ K with v(e) = ε, and note that h(X) = g(X)/e is
integral on S. Hence we can use Theorem 2.3 to get the following corollary.

Corollary 5.2. With the notation of Theorem 2.3 for n = 1, g is infinitesimal-
definite on S (that is, maps S into MK) if and only if g(X) ∈ MKA

int
T .

We now give an identical statement for RCVF.

Proposition 5.3. Let K = (K, v,<K) be a real closed valued field. Let S =
{x ∈ K :

∧
j∈J fj(x) ∈ OK}, where fj ∈ K(X) for any j in some finite set J .

Assume g ∈ K(X) maps S into MK . Then there is some ε > 0 in Γ such that g
maps S into εOK = {x ∈ K : v(x) ≥ ε}.

Proof. The proof is very similar to that of Proposition 5.1, so we only indicate
the necessary adjustments. First we explain how to modify R. Here every function
fj , as well as g, can be written as a product of linear and irreducible quadratic
terms and their inverses. For any quadratic term Qi = (X − ci)2 + d2

i appearing in
one of the relevant functions we add ci to the set R. We also add v(di) to each ∆r

for r ∈ R. We then proceed in exactly the same way — on each set V ir we conclude
that v(fj(x)) is a linear function of v(x− r), and similarly for v(g(x)).

Remark 5.4. An alternative proof of the above proposition is to reduce to the
easy special case S = K, by applying Lemma 4.3 (ii) to the squares of the functions
fj and of 1/g.
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Again we get as an easy corollary, this time of Theorem 4.12, that g ∈ K(X) is
infinitesimal-definite on S iff g(X) ∈ MKA

int
T , where this time A is the OK-algebra

generated by Iord ∪ {fj(X) : j ∈ J}.
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