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1. Basic Definitions

Model theory uses mathematical logic to formalise the underlying language of mathe-
matics. The natural objects of study are the definable sets, and the key is to choose an
appropriate language so that the definable sets are both tractable and the natural objects of
study in another branch of mathematics. Consider the following example of a mathematical
statement:

for every x, if x is greater than 0 then there is a y such that y is the square
root of x.

For this statement to mean anything, first of all we need to be working in a context in which
“the square root” makes sense. Thus we need to have a multiplication, or an interpretation
of multiplication by some other binary function. Once the statement has meaning, we can
address the question of whether or not it is true. This depends on the set with respect to
which we make the statement.

We thus see that many mathematical assertions incorporate three facets.

(1) The logical language, which is always present, consists of the connectives: ∨ (disjunc-
tion), ∧ (conjunction), → (implication), ¬ (negation), the quantifiers: ∀ (universal),
∃ (existential), and variables.

(2) A language for a particular mathematical context includes a list of relation symbols
R1, R2, . . . of given arity, function symbols f1, f2, . . . of given arity and constant sym-
bols c1, c2, . . .. For example, to talk about rings we need to have both an addition and
a multiplication, and the identities for each operation. Thus the language of rings
Lr = (+, ·, 0, 1), where + and · are binary relation symbols, and 0 and 1 are constant
symbols. The language of ordered rings Lor = (<,+, ·, 0, 1) includes a binary relation
symbol for the ordering.

(3) A set, called the universe, over which the variables are allowed to range.

A structure M for a language L consists of a set M and an interpretation for each symbol
of the language:

M = (M,RM
1 , . . . , fM

1 , . . . , cM1 , . . .) .

We will usually not distinguish between the formal symbol for the relations, functions and
constants and their interpretation in any particular structure, except as is standard in the
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given mathematical context. For example, M2 = (M2,+, ·, 02, I2), whereM2 is the set of 2×2
matrices over a given field, + and · are interpreted as matrix addition and multiplication, 02

is the zero matrix and I2 is the identity matrix, is a structure in the language of rings. Also
C = (C,+, ·, 0, 1) is a structure in the language of rings, with the obvious interpretations of
the symbols.

Since a structure consists of both a set which is its universe and a set which is the in-
terpretation of the language, we can get subsets in two different ways. If we change the
language, we say that the corresponding structure is a reduct of the original one. Thus if
we forget the multiplicative structure on the complex numbers, C = (C,+, 0) is a reduct of
C = (C,+, ·, 0, 1). If we take a subset of the universe, the new structures is called a substruc-
ture of the old one, provided the interpretation of the symbols of the language remains the
same from one set to the other. Thus R = (R,+, ·, 0, 1), the real field, is a substructure of
the complex field C = (C,+, ·, 0, 1); however (Zp,+, ·, 0, 1) with addition and multiplication
modulo the prime p is not a substructure of R = (R,+, ·, 0, 1).

Terms in the language L are built up by finitely many applications of function symbols
to the appropriate number of variables and constant symbols. We allow ourselves to use
parentheses as necessary for readability of terms. Thus (x · y + 1) · z is a term in Lr. An
atomic formula is an application of a relation symbol or equality to terms: (x · y+ 1) · z = 0
is an atomic formula in the language Lr and (x · y + 1) · z < 1 is an atomic formula in Lor.
Formulae are formed by finitely many applications of connectives and quantifiers to atomic
formulae. Thus

ϕ(x, y) is ¬(x = 0) → x · y = 1

ψ is ∀x∃y(x = y · y)
are both formulae in Lr. Informally, formulae are the things we can say in the language;
terms are the objects about which we speak. In Lr, the terms are polynomials, and the
atomic assertions we can make about the polynomials are that they are, or are not equal to
zero.

The above formula ψ is an example of a sentence as all of its variables are within the scope
of a quantifier; a sentence is a formula with no free variables. As such, it makes sense to ask
whether the sentence is true in a particular structure. In the structure C = (C,+, ·, 0, 1),
the variables are allowed to range over the universe C, and then the sentence makes a true
assertion about the complex numbers. In the structure R = (R,+, ·, 0, 1), the variables are
allowed to range over the universe R, and the sentence is not true. We write

C |= ∀x∃y(x = y · y) ,
and R 2 ∀x∃y(x = y · y) ,

and say that C is a model for the sentence ψ, or that ψ is true in C.
Given a structure M in a language L, any sentence in the language will be either true or

false in M. We call the set of all sentences which are true in M the theory of M, and write
Th(M). In general, any set of sentences forms a theory; we say that the theory is satisfiable
if there is a structure in which all the given sentences are true. We call this structure a model
for the theory. We say that a theory T is complete if, for every sentence in the language,
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either the sentence or its negation is in T . The theory T is axiomatized by a smaller set of
sentences ∆ if, for any structure M, M |= T if and only if M |= ∆.

Problem 1. Choose an appropriate language and write axioms for the theories of groups,
rings, fields, vector spaces, algebraically closed fields. Consider how the character of the
axioms changes if you choose a different language.

In the above example, we can remove one of the quantifiers, and consider the formula ψ(x)
which is ∃y(x = y · y). It no longer makes sense to ask if the formula is true in a particular
structure, as the answer depends on the choice of x. Instead the formula defines a set in any
structure:

{x ∈ C : ∃y(x = y · y)} = C ,

{x ∈ R : ∃y(x = y · y)} = [0,∞) .

In general, if M = (M,L) is a structure in the language L, a subset X of Mn is definable if
there is a formula ψ(x1, . . . xn) in L such that

X = {x ∈ Mn : M |= ψ(x)} .
It is often convenient to have a particular set A in mind as a subset of the universe, and then
allow parameters from this set when constructing terms. (Formally, this is done by increasing
the set of constant symbols to include symbols for each element of A and interpreting these
symbols as the indicated element.) A set which is defined by a formula with parameters
in the set A is said to be A-definable. A set which can be defined without parameters is
called ∅-definable (pronounced “zero-definable”). Thus {x ∈ R : x < π} is {π}-definable in
Lor; {x ∈ R : x <

√
2} is defined here by a formula with the parameter

√
2, but in fact is

∅-definable, since it is the same as {x ∈ R : x < 0 ∨ x = 0 ∨ x · x < 1 + 1}.
The role of the logical symbols in the language can be understood geometrically in the

context of the collection of definable sets. Consider M = (M,L) an L-structure, ϕ(x), ψ(x)
formulae with n free variables, X = {x ∈ Mn : M |= ϕ(x)}, Y = {x ∈ Mn : M |= ψ(x)}.
The conjunction, disjunction and negation give the intersection, union and complement
respectively:

{x ∈Mn : M |= ϕ(x) ∧ ψ(x)} = X ∩ Y ,

{x ∈Mn : M |= ϕ(x) ∨ ψ(x)} = X ∪ Y ,

{x ∈Mn : M |= ¬ϕ(x)} = Mn \X .

(These are called the boolean operations.) Existential quantification is a projection:

{(x2, . . . , xn) ∈Mn−1 : M |= ∃x1ϕ(x1, x2, . . . , xn)}
is the projection of X onto the last n− 1 coordinates. Universal quantification can be seen
geometrically after observing that it can be replaced by an existential quantifier as follows:
∀xϕ(x) is equivalent to ¬∃x¬ϕ(x). Thus

{(x2, . . . , xn) ∈Mn−1 : M |= ∀x1ϕ(x1, x2, . . . , xn)} =

{(x2, . . . , xn) ∈Mn−1 : M |= ¬∃x1¬ϕ(x1, x2, . . . , xn)}
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is the complement of the projection of the complement of X. For example, in the language
Lr, let ϕ(x1, x2) be the formula x2

1 + x2
2 = 1. In the structure R = (R,+, ·, 0, 1), X =

{(x1, x2) ∈ R
2 : ϕ(x1, x2)} is a circle, and R

2 \ X is the complement of the circle. The
projection of X onto the second coordinate, which of course is the interval [−1, 1], is given
by {x2 ∈ R : ∃x1(x

2
1 + x2

2 = 1)}. In particular, the interval is a definable set in the language
Lr. Notice that this is not immediately obvious, since the natural “definition” of the interval
as {x ∈ R : −1 ≤ x ≤ 1} uses a formula in the language of ordered rings, which is not a
formula in the language without the ordering. The projection of the complement of X is the
real line, and hence the set defined by ∀x1ϕ(x1, x2) is the empty set.

Problem 2. Let X ⊆ Rn be an A-definable set in the language of ordered rings. Show that
the topological closure of X is also A-definable.

The logical language described so far is called first-order logic. It has its limitations, the
most fundamental one being that in it, we cannot quantify over subsets of the universe.
Thus, for example, we cannot state the completeness property of the real numbers — all
bounded subsets of R have a least upper bound — since, however, it is formulated, it requires
referring to all subsets of R. First-order logic is nevertheless still currently the logic of choice
for working mathematicians, primarily because it has the twin properties of completeness and
compactness. Gödel’s completeness theorem ties the model theoretic notion of satisfiability
to the proof-thoeretic notion of consistency. In these lectures, we are not concerned with a
formal notion of proof, but whatever a ”proof” is, it must be a finite object.

Theorem 1. Let T be a theory. Then T is satisfiable (has a model) if and only if T is
consistent (does not prove a contradiction).

The completeness theorem gives a very easy proof of the compactness theorem, which is
fundamental to model theory.

Theorem 2. Let T be a theory. Then T is satisfiable if and only if every finite subset of T
is satisfiable.

Proof. One direction is immediate. To prove the other direction, suppose for contradiction
that every finite subset of T is satisfiable but T is not. By the completeness theorem, T
must fail to be consistent, so proves a contradiction. As any proof can only involve finitely
many sentences from T , there is a finite subset of T which is inconsistent, and hence not
satisfiable. This contradicts the hypothesis. �

A typical example of the use of the compactness theorem is outlined in the following
problem.

Problem 3. Let T be the theory of R in the language of ordered rings Lor. Adjoin a new
constant symbol c to the language and write sentences φk which assert that c is larger than
k. Deduce from the compactness theorem that there is a model of T in which there is an
element larger than every real number.

2. Some examples of structures

At this point it is useful to catalogue some further examples of languages, structures and
theories which are particularly relevant in the study of o-minimality. We have already seen
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the real numbers, which I will write R = (R,+, ·, 0, 1) as a structure in the language of rings
and its expansion R< = (R,+, ·, 0, 1, <) as a structure in the language of ordered rings. R<

is called an expansion by definition of R, as the interpretation of the symbol < is a definable
set in R; Th(R) |= ∀x∀y

(
x < y ↔ ∃z (x + z2 = y)

)
. Th(R) is called the theory of real

closed fields RCF; Th(R<) is the theory of real closed ordered fields RCOF. The real numbers
contain the real algebraic numbers as a substructure; Ralg = (Ralg,+, ·, 0, 1), and similarly
Ralg

<. Ralg is a model of RCF and Ralg
< is a model of RCOF.

Problem 4. To be more precise, a field is called formally real if −1 cannot be written as a
sum of squares of elements of the field. This is equivalent to saying there is an ordering on
the field which is compatible with the field operations. State precisely what this means and
prove it. (Hint: an ordering can be defined by stating the set of positive elements.)

A formally real field F is real closed if no algebraic extension of F is formally real. It is
somewhat more work to prove that this is equivalent to saying that for every a ∈ F , either
a or −a is a square, and every odd degree polynomial over F has a root in F . This latter
statement can be expressed by infinitely many sentences in first-order logic. It is this theory
that is called RCF. The fact that Th(R) is RCF follows from Section 4.

An example of a structure with a larger universe is given by the set of rational functions
over the reals, R(X). R(X) is clearly the universe of a structure in the language of rings.
It can also be made into an ordered field; in fact there are infinitely many different possi-
ble orderings which respect the field structure. Here, the symbol X can be either a single
indeterminate or a finite tuple of indeterminates. If <1 and <2 are two different orderings
on R(X), both of which extend the ordering on R, this gives an example of two structures
(R(X), <1), (R(X), <2) with a common substructure (R, <), for which neither is a substruc-
ture of the other. (R(X),Lor) is not a model of RCF; indeed, it is not true in R(X) that
x < y ↔ ∃z(x+ z2 = y). For example, take an ordering on R(X) in which the element X is
positive, so 0 < X. But there is no element z with z2 = X. In fact, R(X) can be extended
to a real closed field by formally adjoining square roots for positive elements, and roots of
odd-degree equations.

Problem 5. Give an explicit description of the real closure of R(X), given a choice of ordering.

We move into the realm of analysis when we increase the language by adding symbols
for new functions which are not definable in Lor. For example, we can add a symbol for a
function exp which is intended to be interpreted by the exponential function on R. Thus
Rexp = (R,+, ·, 0, 1, exp) and Rexp,< = (R,+, ·, 0, 1, <, exp) are expansions of R and R<

respectively. The theory of Rexp,< will include sentences stating algebraic properties of the
exponential function; for example, ∀x, y exp(x + y) = exp(x) · exp(y). It will not include

analytic properties; for example exp(1) = limx→0(1 + x)
1

x , as this is not a formula in the
language Lr.

We can even add infinitely many function symbols, as in the structure called “R-an”,
defined as follows. Write Fn for the set of elements of the ring of formal power series in
n variables over R, R[[X1, . . . , Xn]], which converge in a neighbourhood of [−1, 1]n. The
language Lan consists of Lor together with a constant symbol for every real number and, for
every natural number n, a function symbol f for every element of Fn. The structure Ran
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interprets the symbols of Lor in the usual way, and interprets each function symbol by the
corresponding restricted analytic function

f(x) =

{∑
fνx

ν , if |xi| < 1 for all i;

0, otherwise.

Notice that in this case we have defined a language with uncountable cardinality, which
is much bigger than any other example we have looked at until now. The language LD

an

contains in addition a binary function symbol D which, in the structure RD
an is interpreted

as the restricted division function:

D(x, y) =

{
x/y, if |x| ≤ |y| ≤ 1, y 6= 0;

0, otherwise.

Problem 6. Give an explicit construction which replaces occurrences of the symbol D in a
formula by an Lan-formula with extra variables. Thus an LD

an-formula is equivalent to an
Lan-formula, but with more existential quantifiers. We will use this construction in Section 5.

Finally, we will look at a rather different example, which also arises in the study of o-
minimal structures. To the language of ordered rings Lor add a new unary predicate symbol
S, a unary function symbol λ and a family of unary predicate symbols Pn for n any natural
number greater than 1. As well as the axioms for real closed ordered fields, the theory
includes axioms to say that 2 ∈ S, S is a multiplicative subgroup of the set of positive
elements of the ring, and the following:

T1 ∀x (1 < x < 2 → x /∈ S) ;
T2 ∀x

(
x > 0 → ∃y (y ∈ S ∧ y ≤ x < 2y)

)
;

T3 ∀x
(
Pn(x) → ∃y (y ∈ S ∧ yn = x)

)
;

T4 ∀x∀y
(
λ(x) = y ↔ (x < 0 ∧ y = 0) ∨ (x ≥ 0 ∧ y ∈ S ∧ y ≤ x < 2y)

)
.

The intended model is the real numbers with the predicate S interpreted as the integer
powers of 2, 2Z. The function λ then assigns to each positive real number x the highest
power of 2 less than or equal to x, and the set Pn is interpreted by the set 2nZ. I will call
this language Ltwo, and the theory outlined here Ttwo.

3. Model completeness and quantifier elimination

We now turn to look at structural properties that structures may have. Let M = (M,L),
N = (N,L) be two structures in the same language. As observed before, we say that M is
a substructure of N , and write M ⊆ N , if M ⊆ N and all the symbols in L are interpreted
in the same way in M as in N . More generally, a map σ : M → N is an embedding if σ is
an injective function from M to N which preserves the interpretation of all of the symbols of
the language. That is, for every relation symbol R, every function symbol f , every constant
symbol c and every tuple a ∈Mn of the appropriate arity,

M |= RM(a) =⇒ N |= RN (σ(a)),

σ(fM(a)) = fN (σ(a)),

σ(cM) = cN .
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Thus M is a substructure of N if the inclusion map is an embedding. We say that σ is
an isomorphism between M and N if it is a bijection. It is fairly easy to show that an
isomorphism perserves the truth value of all formulae. Consequently, if σ : M → M is
an isomorphism fixing each element of a subset A of M , and X is an A-definable set, then
σ(X) = X; that is, X is fixed setwise by the isomorphism.

Two structures are isomorphic if there is an isomorphism between them. A weaker relation
between structures is that of elementary equivalence. M and N are elementarily equivalent,
written M ≡ N if, for every sentence ϕ in the language, M |= ϕ if and only if N |= ϕ.
That is, Th(M) = Th(N ). Certainly if M and N are isomorphic then they are elementarily
equivalent. The converse is not true; for example, Ralg ≡ R, but they cannot be isomorphic
just for cardinality reasons.

An embedding σ : M → N is an elementary embedding if σ is an embedding with respect
to the language LM with constants for all elements of M , and M and N are elementarily
equivalent in LM . If M is a substructure of N , we say that M is an elementary substructure
of N , and write M 4 N , if the inclusion map is an elementary embedding. That is, M and
N are elementarily equivalent as structures in the language with constants added for every
element of M .

Definition 3. We say that a theory is model complete if, for every M and N models of the
theory, if M ⊆ N then M 4 N .

A beautiful example of the power of model completeness is given by the following proof
of the solution to Hilbert’s seventeenth problem.

Theorem 4. Let f(X) ∈ R[X] be a polynomial in n variables, and suppose that for all
x ∈ Rn, f(x) ≥ 0. Then there exist rational functions g1, . . . , gk ∈ R(X) such that

f(X) =

k∑

i=1

gi(X)2 .

Proof. The proof uses that fact that the theory of real closed fields, which is Th(R), is model
complete, as well as algebraic facts about the set of all orderings on a field.

Suppose for contradiction that f cannot be written as a sum of squares of rational func-
tions. Then there is an ordering <∗ on R(X) which extends the ordering on R and with
the property that f <∗ 0. The ordered field (R(X), <∗) is not real closed, as it is not the
case that every odd degree polynomial has a root in R(X). But it can be extended to a real
closed field L. In L, the sentence ϕ: ∃x(f(x) < 0) is true, since it is realised by the rational
function X in R(X). Notice that ϕ is a sentence with parameters from R (the coefficients of
the polynomial f). Now R is a substructure of L, so by model completeness is an elementary
substructure. Hence the sentence ϕ is true also in R. Thus there is a tuple x ∈ R

n with
f(x) < 0. This contradicts the assumption on f . �

Now I want to consider equivalent ways to state the definition of model completeness and
the related, but stronger, property of quantifier elimination. This will give us different ways
to prove that a theory has one or the other of these properties.

Definition 5. Let T be a theory in a language L.
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(1) T is model complete if, for all models M, N of T and all L-formulae ϕ(x), if M ⊆ N
then for all m ∈Mn, N |= ϕ(m) if and only if M |= ϕ(m).

(2) T has quantifier elimination if, for all models M, N of T and all L-formulae ϕ(x), if
A is a common substructure of M and N then for all a ∈ An, N |= ϕ(a) if and only
if M |= ϕ(a).

Note that this is not the standard definition of qunatifier elimination; I just state it this
way to emphasise the comparison with model completeness. Quantifier elimination clearly
implies model completeness. We shall see later that the theory of R is model complete but
does not have quantifier elimination, whereas the theory of R< does eliminate quantifiers.
An example illustrates how we can see the difference in the above definitions. Consider the
field F = R(X). In F , X is not a sum of squares, so one can formally adjoin a square root

for either X or −X. Let F1 = F (
√
X), F2 = F (

√
−X). F1 and F2 are both formally real,

so can be ordered. Let F̃1, F̃2 be real closed fields containing F1, F2 respectively, with the

respective orderings. Then R(X) is a common substructure of both F̃1 and F̃2. The formula

ϕ : ∃y(y2 = X) has parameters in R(X). But F̃1 |= ϕ, whereas F̃2 6|= ϕ. Thus the theory
does not satisfy the criterion for quantifier elimination. This example says nothing about

the criterion for model completeness, as R(X) is not a submodel of either F̃1 or F̃2. The
example does not arise in the language with a symbol for the ordering, as in (R(X), <), X
is definitely either positive or negative, so only one of F1 or F2 is a formally real field.

The following model-theoretic criteria for model-completeness and quantifier elimination
are often useful for proving that a theory has these properties.

Theorem 6. Let T be a complete theory in a language L.

(1) T is model-complete if and only if the following property holds. Let M,N |= T , M ⊂
N , ϕ(x, y) a quantifier-free L-formula and m a tuple from M . If N |= ∃yϕ(m, y)
then M |= ∃yϕ(m, y).

(2) T has quantifier elimination if and only if the following property holds. Let M,N |=
T , A a common substructure of M and N , ϕ(x, y) a quantifier-free L-formula and
a a tuple from A. Then N |= ∃yϕ(a, y) if and only if M |= ∃yϕ(a, y).

This theorem says that, in order to verify that a theory is model-complete or has quantifier
elimination, we only need to check the condition on formulae with one (block of) existential
quantifier.

Model-completeness and quantifier elimination can be restated in a more syntactic form,
which explains the terminology for quantifier elimination, and also can be used to interpret
the properties as statements about the definable sets in a model of the theory.

Theorem 7. Let T be a complete theory in a language L.

(1) T is model complete if and only if for any L-formula ϕ(x) there is a quantifier-free
L-formula ψ(x, y) such that T |= ∀x (ϕ(x) ↔ ∃y ψ(x, y)).

(2) T has quantifier elimination if and only if for any L-formula ϕ(x) there is a quantifier-
free L-formula θ(x) such that T |= ∀x (ϕ(x) ↔ θ(x)).

Consider X = {x ∈ M : M |= ϕ(x)}. If M is a model of the model-complete theory T ,
then X = {x ∈ M : ∃y ψ(x, y)}; that is, X is the projection of a quantifier-free definable
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set. For example, in Ran, the quantifier-free definable sets are the analytic sets; their pro-
jections are called subanalytic sets. Thus the model-completeness of Th(Ran) implies that
the complement of a subanalytic set is also a subanalytic set. This is a result which is called
Gabrielov’s “theorem of the complement”.

If the theory T has quantifier elimination then X would be quantifier-free definable, as
is any projection of X. In R, the quantifier-free definable sets are the semialgebraic sets.
Thus quantifier elimination for Th(R) implies that projections of semialgebraic sets are
semialgebraic.

Finally, observe that we began this section by saying that a theory is model-complete
if every substructure is an elementary substructure; more generally, if every embedding is
elementary. To formulate a parallel statement for quantifier elimination we need the notion
of a saturated structure. A structure M in a language L is κ-saturated if for every consistent
set of formulae with parameters in a subset A of M with cardinality at most κ, there is an
element in M which realizes all of the formulae simultaneously.

Theorem 8. The theory T has quantifier elimination if and only if the following property
holds. Let M be a model of T , A ⊂ M, N a |M |-saturated model of T , σ : A → N an
elementary mapping. For any a ∈ M \ A, σ can be extended to an elementary embedding
from A(a), the structure generated by a over A, into N .

Problem 7. Prove the equivalence of the different statements for model completeness and
quantifier elimination. Theorem 6 uses induction on the construction of formulas; Theorem 7
requires the compactness theorem.

4. The theory of real closed fields

We now look at examples of theories which we can prove to be model complete, or to have
quantifier elimination. The first is the theory of real closed ordered fields, in the language
of ordered rings. A field is said to be real closed if it has an ordering (is real) and no proper
algebraic extension of it can be ordered. Both R and Ralg are examples of real closed fields.
Any ordered field has an algebraic extension which is real closed.

Theorem 9. The theory of real closed ordered fields, Th(R<), has quantifier elimination.

Proof. The proof uses Theorem 6. So let M, N be two real closed ordered fields, A a
common substructure of M and N . Observe that, to say A is a substructure implies that it
is closed under the operations of addition and multiplication, contains a 0 and a 1 and that
there is an ordering on the universe. Furthermore, all universally axiomatised properties of
these operations which hold in M are also true in A. Thus A is an ordered integral domain.
Now we use the following theorem about ordered fields.

Theorem 10. An ordered integral domain (A,<) has a unique real closure in the following
sense: if (R1, <), (R2, <) are real closed ordered fields which are algebraic over A and contain
A as an ordered substructure, then (R1, <) is isomorphic to (R2, <) over A.

The algebraic closures of A in M and N respectively will each be real closed fields, and
by the theorem, there is an isomorphism between them. Thus if a formula over A is realised
by an element in M which is algebraic over A, there will be an element in N , also algebraic
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over A, which realises the same formula. So we can assume that A is in fact a real closed
field.

Now let ϕ(a, y) be a quantifier-free formula with parameters a from A, and assume that
M |= ∃yϕ(a, y). We need to examine carefully the possible form of the formula ϕ. As the
language has only addition and multiplication as function symbols, the terms are polynomials
in y, p(y), with coefficients amongst the parameters a. The atomic formulae are of the form
p(y) = 0 or p(y) < 0, and the negated atomic formulae can be rewritten positively as

¬(p(y) = 0) ⇔ p(y) < 0 ∨ −p(y) < 0;

¬(p(y) < 0) ⇔ p(y) = 0 ∨ −p(y) < 0.

By regrouping, the formula ϕ can be rewritten in disjunctive normal form as
∨

(p1(y) = 0 ∧ · · · ∧ pk(y) = 0 ∧ q1(y) < 0 ∧ · · · ∧ qℓ(y) < 0) .

To satisfy a disjunction, just one of the disjuncts needs to be satisfied. Furthermore, in an
ordered domain,

p1(y) = 0 ∧ · · · ∧ pk(y) = 0 ⇔ p2
1(y) + · · ·+ p2

k(y) = 0.

Thus we may assume that ϕ(a, y) is the formula

p(y) = 0 ∧
ℓ∧

i=1

qi(y) < 0.

We assumed M |= ∃yϕ(a, y), so let b ∈M be the element such that ϕ(a, b).
First suppose that p is a non-trivial polynomial. Since p(b) = 0, this means that b is

algebraic over A. By our assumption, then b ∈ A, so we are done.
Now suppose p is trivial, so we can assume that b is not algebraic over A. Each polynomial

qi can be factored over M as a product of linear and quadratic factors. Thus qi can only
change sign at finitely many points, and these points are algebraic over A, hence in A. Thus
for each i, there are ci, di in A with ci < b < di and qi(x) < 0 for all x ∈ (ci, di). Let
c = max{ci}, d = min{di}. Then c < b < d and for all x ∈ (c, d), qi(x) < 0 for all i. Thus
the interval (c, d) is nonempty, so in fact there is an element b′ ∈ A with c < b′ < d and
ϕ(a, b′) holds, as required. �

We observed in Section 2 that the ordering < is a definable predicate in RCF. Theorem 9
proves that every formula ϕ in Lor is equivalent in the theory RCOF to a quantifier-free
formula ψ in Lor. If every occurrence of the formula x < y in ψ is replaced by the formula
∃z (x + z2 = y), then the theorem tells us that every formula in Lr is equivalent in the
theory RCF to a formula with just existential quantifiers. Thus RCF is model-complete in
the language Lr.

Problem 8. One consequence of Theorem 9 is that any infinite definable subset of the real
line contains an interval, and hence the property for a set of being finite is first-order. This
together with compactness can be used to prove the following result on uniform bounds.

Let M |= RCOF. Let ϕ(x, y) be an Lor-formula, where x = (x1, . . . , xn).
Suppose that, for every a ∈ Mn, {y ∈ M : ϕ(a, y)} is finite. Then there is a
bound N such that for every a ∈Mn, |{y ∈M : ϕ(a, y)}| ≤ N .
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5. The theory of the reals with restricted analytic functions

Theorem 11. [2] Th(RD
an) has quantifier elimination.

Proof. (This presentation is adapted from the argument outlined in [4].) I will outline the
main steps in the argument. We use Theorem 7. Thus we need to consider a quantifier-free
LD

an-formula ψ(x, y) and show that there is a quantifier-free LD
an-formula θ(x) such that

RD
an |= ∀x

(
∃y ψ(x, y) ↔ θ(x)

)
.

Step 1. Terms in the LD
an language are finite compositions of function symbols with the

function symbol D. We remove occurrences of D, at the expense of introducing new exis-
tentially quantified variables. See Problem 6. Repeating this process as many times as there
are occurrences of D in the formula ψ produces an Lan-formula ψ∗(x, y, z) with

RD
an |= ∀x (∃y ψ(x, y) ↔ ∃y ∃z ψ∗(x, y, z).

From now on, we will assume that ψ(x, y) is an Lan-formula in m+ n variables.

We will now see how to reduce the number of y-variables by one, at the expense of re-
introducing symbols D, but only involving the x variables. Repeating the argument finitely
many times will give the required quantifier-free LD

an-formula θ.

Step 2. Using arguments as for real closed ordered fields, we can reduce to the case that ψ
is a formula of the form

f1(x, y) > 0 ∧ · · · ∧ fk(x, y) > 0,

where f1, . . . , fk are elements of Fm+n. We focus on just one of these functions, say f(x, y).
Write

f(X, Y ) =
∑

i∈Nn

ai(X)Y i,

where ai(X) ∈ Fm. As a ring, Fm is noetherian, hence there is d ∈ N such that, for every i
with |i| > d,

ai(X) =
∑

|j|<d

cij(X)aj(X)

with cij(X) ∈ Fm.

Step 3. Observe that f(X, Y ) can be written as

f(X, Y ) =
∑

|i|<d

ai(X)Y iui(X, Y ),

where each ui(X, Y ) is a unit and there is an ε > 0 such that for all i, ui(εX, εY ) ∈ Fm+n.

Step 4. Let

Sj = {x ∈ R
m : |aj(x)| = max

|i|<d
{|ai(x)|}}

and observe that Sj is a quantifer-free Lan-definable set. Write

f̃(X, V, Y ) = Y juj(X, Y ) +
∑

|i|<d,i6=j

ViY
iui(X, Y ) .
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Then for x ∈ Sj and vi(X) = D(ai(X), aj(X)),

f(x, y) = f̃(x, v(x), y) .

Notice that we have reintroduced terms involving D, but only in the X-variables and not
in the Y -variables. Using a standard invertible transformation of the Y -variables, we can

assume that the power series f̃(X, V, Y ) is regular in Yn.

Step 5. Apply the Weierstrass Preparation Theorem to get

f̃(X, V, Y ) = U(X, V, Y )G(X, V, Y )

where U(X, V, Y ) is a unit and G(X, V, Y ) is polynomial in the last variable Yn. This step
needs some care, as U and G do not, in general, converge on a neighbourhood of [−1, 1]n,
hence are not elements of Fm+d+n. Instead, one has to apply Weierstrass preparation locally,
and use compactness of the interval [−1, 1]n to find finitely many LD

an-formulae of the form
below. With this caveat, we have that

Ran |= ∀x
(
∃y1 . . . ynf(x, y) > 0 ↔

∨

|j|<d

x ∈ Sj ∧ ∃y1 . . . ynaj(x)G(x, v, y1, . . . , yn−1, yn) > 0
)
.

Step 6 Since yn occurs polynomially in the above formula, by quantifier elimination for
RCOF, there is a quantifier-free LD

an-formula θ(x, y1, . . . , yn−1) in which D is only applied to
the variables involving x such that

Ran |= ∀x
(
∃y1 . . . ynψ(x, y) ↔ ∃y1 . . . yn−1θ(x, y1, . . . , yn−1

)

which completes the required reduction. �

Problem 9. Write s(x) for the restriction of the sine function to the unit interval. Let Ls

be the language of rings with a function symbol added for s(x). Observe that Theorem 11
implies that the theory of R in the language Ls is o-minimal, though it does not imply model
completeness. Trace through the proof of Theorem 11 in this context, and try to determine
what further functions need to be added in order to get model completeness in the smaller
language.

6. The theory of the reals with a predicate for the powers of 2

Theorem 12. [3] The theory Ttwo has quantifier elimination in the language Ltwo.

Proof. I will use Theorem 8. Thus we consider models M and N of the theory with N
a saturated model, and let A be a substructure of M. Assume that σ : A → N is an
elementary embedding. We must show that for any c ∈ M \ A, σ can be extended to an
elementary embedding from A〈c〉, the substructure generated by c over A, into N . Without
loss of generality, we may assume that A ⊂ N and that σ|A is the identity. To begin with, it
is helpful to describe explicitly the consequences for A of being a substructure of M in the
language Ltwo. A must be closed under the function symbols +,−, · and λ. (For convenience,
I added the symbol for the additive inverse.) As we saw in the proof of Theorem 9, this
means that A is an ordered integral domain. It also means that axiom T2 must hold for
SA, as for every x, λ(x) is the required element. Note that without the function λ in the
language, this axiom would not hold for an arbitrary substructure. We know that SA is
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closed under multiplication, but not that it is a group, as A itself is only a ring. In a model,
we know from the definition that

PM
n = {x ∈M : ∃y ∈ SM(yn = x)} .

In a substructure, we can only say that

PA
n = {x ∈ A : ∃y ∈ SM(yn = x)} .

Finally note that axioms T1 and T4 together imply that SA = {λ(x) : x ∈ A}.
In the proof of Theorem 9, we saw that the ordered ring structure extends uniquely to

the real closed field containing A, and hence we can assume that A is a real closed field.
We must do the same thing for the additional symbols in the language Ltwo. By the two
comments above, we only need to show that there is only one way to extend the function λ
on A to the real closed field containing A. First look at qf(A), the field of fractions of A.
For any nonzero a, b ∈ A,

0 < λ(a) ≤ a < 2λ(a),

0 < λ(b) ≤ b < 2λ(b), and hence

1

2
· λ(a)

λ(b)
<
a

b
< 2 · λ(a)

λ(b)
.

Closure under multiplication and the fact that Sqf(A) ⊃ SA means that both ends of the
inequality are in Sqf(A). If a/b < λ(a)/λ(b) then λ(a/b) = λ(a)/2λ(b). If a/b ≥ λ(a)/λ(b)
then λ(a/b) = λ(a)/λ(b). In either case, λ is determined on qf(A). Thus we may assume
that A is already a field.

Now let Ã be the real closure of A. Let c be a positive element of Ã \ A. Since Ã is
algebraic over A, there is a natural number n and an element d ∈ A such that cn/d is finite;
that is, bounded by integers. We may assume that d = λ(d). Furthermore, in the real closed
field M , exactly one of d, 2d, . . . , 2n−1d is in PM

n , so we may assume that d ∈ PM
n . Thus

d1/n ∈ SM ∩ Ã. Since c/d1/n is finite, there is an integer k such that

2k ≤ c

d1/n
< 2 · 2k .

Thus λ(c) = 2kd1/n ∈ Ã. Hence Ã is closed under λ, which thus extends uniquely to Ã.
From now on, we assume that A is a real closed field. Let c ∈M \A, so c is transcendental

over A, and write A′ for the substructure of M generated by c over A. If we can find d ∈ N
which satisfies the same type over A as c does, then the embedding of A′ into N generated
by sending c to d will be elementary. Since N is a saturated model, it will have an element
which realizes this type provided the type is consistent. If the interpretation of the symbols
of Ltwo on A′ is determined by that on A, and elementary properties of c, then tp(c/A) will
be consistent also in N .

Case 1 S ∩ A′ = S ∩ A. Then for any e ∈ A′ there is a ∈ SA with a ≤ e < 2a, and hence
λ(e) must take the value a. Also, PA′

n = PA
n , as adding terms in c cannot add any new nth

roots.
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Case 2 S ∩ A′ 6= S ∩ A. We may assume that λ(c) /∈ SA, and also that c = λ(c). Let
i(n) ∈ {0, 1, . . . , n − 1} be such that c/2i(n) ∈ PM

n (from comments above, i(n) is well-
defined for each n). Since A′ has transcendence degree one over A, it is not hard to see that
SA′

must be generated by a single element over SA, and hence equals {acℓ : a ∈ SA, ℓ ∈ Z}.
λ is then determined on A′. Similarly, PA′

n is determined by the sequence of conditions
c/2i(n) ∈ PA′

n . �
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