Tutorial 3 Outline

Some Theoretical and Conditional Probability Problems
Sept. 28, 29, 30

Chapter 2: Some more Theoretical Exercises

TE 19

An urn contains n red and m blue balls. They are withdrawn one at a time until a total of $r, r \leq n$, red balls have been withdrawn. Find the probability that a total of k balls are withdrawn.

Another additional hint should you require it: Have a look inside the front cover at the Discrete Distributions...

TE 20

Consider an experiment whose sample space consists of a countably infinite number of points. Show that not all points can be equally likely. Can all points have a positive probability occurring?

Countably infinite, or just "countable", sets refers to sets that can be put in a 1 to 1 correspondence with \mathbb{N}.
\mathbb{Q}, for example, is obviously not finite - but IS countable.
\mathbb{R}, however, is NOT countable.
Conceptually, even if counting off the whole set would take forever, you can count to any particular element in a FINITE amount of time. This question is a taste of "Real Analysis".

Chapter 3: Conditional Probabilities \& Independence

Example 2f

This is an extension of chapter 2's famous "Matching Problem" - N men throw their hats into middle, then randomly grab one. What's the probability that NONE get their own hat back? We will run through this QUICKLY.

Thus, we want to generalize - What's the probability that exactly k of the N men get their hat.

Example 3c

Should you study for a multiple choice test?

Example 3e

Using conditional probability to help make good decisions.

TE 2

Let $A \subset B$, show simplest form for:

$$
P(A \mid B), P\left(A \mid B^{C}\right), P(B \mid A), P\left(B \mid A^{C}\right)
$$

TE 3

Comparing 2 strategies.

