Tutorial 8

Ch. 4 and 5

Nov. 11

Summary of the discrete distributions:

\boldsymbol{X}	X Counts	$p(x) \quad V$	Values of X	$E(x)$	$V(x)$
Binomial	Number of sucesses in n fixed trials	$\binom{n}{x} p^{x}(1-p)^{n-x}$	$x \mathrm{x}=0,1, \ldots, n$	$n p$	$n \mathrm{n}(1-\mathrm{p})$
Poisson	Number of arrivals in a fixed time period	$\frac{e^{-\lambda} \lambda^{x}}{x!}$	$x=0,1,2, \ldots$	λ	λ
Geometric	Number of trials up through 1st success	$(1-p)^{x-1} p$	$x=1,2,3, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Negative Binomial	Number of trials up through kth success	$\binom{x-1}{k-1}(1-p)^{x-k} p$	$p^{k} \quad x=k, k+1, \ldots$	$\frac{\mathrm{k}}{\mathrm{p}}$	$\frac{\mathrm{k}(1-\mathrm{p})}{\mathrm{p}^{2}}$
Hyper geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$\begin{aligned} & \max (0, M+n-N) \\ & \leq x \leq \min (M, n) \end{aligned}$	$n * \frac{M}{N}$	$\frac{n M(N-M)(N-n)}{N^{2}(N-1)}$

Chapter 4 Example 9c page 157

Find the expected value of the sum obtained when n fair dice are rolled.

Solution:

Let X represent to total sum. We can re-write X as: $\sum_{i=1}^{n} X_{i}$ where X_{i} is the upturned value on die i for $i=1, \ldots, n$. Because X_{i} is equally likely to be any of the values from 1 to 6 we know that:
$E\left(X_{i}\right)=\sum_{j=1}^{6} j \frac{1}{6}$
$E\left(X_{i}\right)=3.5$
So if we wish to find $E(X)$ we are finding $E\left(\sum_{i=1}^{n} X_{i}\right)$.
$E(X)=E\left(\sum_{i=1}^{n} X_{i}\right)$
$E(X)=\sum_{i=1}^{n} E\left(X_{i}\right)$
$E(X)=\sum_{i=1}^{n} 3.5$
$E(X)=3.5 n$

Chapter 5 Problem 5.1 page 212

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

a. What is the value of c ?
b. What is the cumulative distribution function?

Solution:

Part a.

We know that the area under a density curve should be 1 . Thus: $\int_{-\infty}^{\infty} f(x) d x=1$.
$1=\int_{-\infty}^{\infty} f(x) d x$
$1=\int_{-\infty}^{-1} 0 d x+\int_{-1}^{-1} c\left(1-x^{2}\right) d x+\int_{-1}^{\infty} 0 d x$
$1=\int_{-1}^{-1} c\left(1-x^{2}\right) d x$
$1=c \int_{-1}^{-1}\left(1-x^{2}\right) d x$
$\left.1=c\left[x-\frac{x^{3}}{3}\right]\right]_{x=-1}^{x=1}$
$1=c\left[1-\frac{1}{3}\right]-c\left[-1-\frac{-1}{3}\right]$
$1=c\left[\frac{4}{3}\right]$
$c=\frac{3}{4}$
Part b.
We know that the cumulative density function is defined as $F(x)=P(X \leq x)$. Thus: $F(x)=\int_{-\infty}^{x} f(x) d x$. Which is the are under the density function to the left of x.
$F(x)=\int_{-\infty}^{x} f(t) d t$
For $-\infty<x<-1$ the area below the curve to the left of x is just 0 :
$F(x)=\int_{-\infty}^{x} 0 d t$
$F(x)=0$
For $-1<x<1$ the area below the curve to the left of x is:
$F(x)=\int_{-\infty}^{-1} 0 d t+\int_{-1}^{x} 0.75\left(1-t^{2}\right) d t$
$F(x)=0.75 \int_{-1}^{t}\left(1-t^{2}\right) d t$
$F(x)=\left.0.75\left(t-\frac{t^{3}}{3}\right)\right|_{t=-1} ^{t=x}$
$F(x)=0.75\left(x-\frac{x^{3}}{3}-(-1+1 / 3)\right)$
$F(x)=0.75 x-\frac{x^{3}}{4}+\frac{1}{2}$
For $1<x<\infty$ the area below the curve to the left of x is:

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{-1} 0 d t+\int_{-1}^{1} 0.75\left(1-t^{2}\right) d t+\int_{1}^{t} 0 d t \\
& F(x)=1
\end{aligned}
$$

Thus:

$$
F(x)= \begin{cases}0 & x<-1 \\ 0.75 x-\frac{x^{3}}{4}+\frac{1}{2} & -1 \leq x \leq 1 \\ 1 & x>1\end{cases}
$$

Suggested Problem

Find the cumulative distribution function of the following density:

$$
f(x)= \begin{cases}x & 0<x<1 \\ 1 & 1 \leq x<1.5 \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

We know that the cumulative density function is defined as $F(x)=P(X \leq x)$. Thus: $F(x)=\int_{-\infty}^{x} f(x) d x$. Which is the are under the density function to the left of x.
$F(x)=\int_{-\infty}^{x} f(t) d t$
For $-\infty<x<0$ the area below the curve to the left of x is just 0 :
$F(x)=\int_{-\infty}^{x} 0 d t$
$F(x)=0$
For $0<x<1$ the area below the curve to the left of x is:
$F(x)=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} t d t$
$F(x)=\int_{0}^{t} t d t$
$F(x)=\left.\frac{t^{2}}{2}\right|_{t=0} ^{t=x}$
$F(x)=\frac{x^{2}}{2}-\frac{0}{2}$
$F(x)=\frac{x^{2}}{2}$
For $1<x<1$ the area below the curve to the left of x is:
$F(x)=\int_{-\infty}^{0} 0 d t+\int_{0}^{1} t d t+\int_{1}^{x} 1 d t$
$F(x)=\left.\frac{t^{2}}{2}\right|_{t=0} ^{t=1}+\left.t\right|_{t=1} ^{\mid=x}$
$F(x)=\frac{1}{2}+(x-1)$
$F(x)=x-\frac{1}{2}$
For $1.5<x<\infty$ the area below the curve to the left of x is:

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{0} 0 d t+\int_{0}^{1} t d t+\int_{1}^{1.5} 1 d t \int_{1.5}^{x} 0 d t \\
& \left.F(x)=\frac{t^{2}}{2} \right\rvert\, t=1 \\
& F(x)=\frac{1}{2}+\left(\left.1.5\right|_{t=1} ^{t=1.5}\right. \\
& F(x)=1
\end{aligned}
$$

Thus:

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{x^{2}}{2} & 0 \leq x \leq 1 \\ x-\frac{1}{2} & 1<x \leq 1.5 \\ 1 & x>1.5\end{cases}
$$

