Tutorial 8

Ch. 4 and 5 $\,$

Nov. 11

Summary	of	the	discrete	distri	butions:
•/					

X	X Counts	p(x)	Values of X	E(x)	V(x)
Binomial	Number of sucesses in n fixed trials	$\binom{n}{x} p^{x} (1-p)^{n}$	^{-x} x = 0,1,,n	np	np(1-p)
Poisson	Number of arrivals in a fixed time period	$\frac{e^{-\lambda}\lambda^{x}}{x!}$	x = 0,1,2,	λ	λ
Geometric	Number of trials up through 1st success	(1-p) ^{x-1} p	x = 1,2,3,	1 p	$\frac{1-p}{p^2}$
Negative Binomial	Number of trials up through kth success	$\binom{x-1}{k-1}(1-p)^{x-1}$	^k p ^k x = k, k + 1,	k p	$\frac{k(1-p)}{p^2}$
Hyper - geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	max (0,M + n – N ≤ x ≤ min (M,n)	⁾⁾ n* <mark>M</mark>	<u>nM(N – M)(N – n)</u> N ² (N – 1)

Chapter 4 Example 9c page 157

Find the expected value of the sum obtained when n fair dice are rolled.

Solution:

Let X represent to total sum. We can re-write X as: $\sum_{i=1}^{n} X_i$ where X_i is the upturned value on die *i* for i = 1, ..., n. Because X_i is equally likely to be any of the values from 1 to 6 we know that:

6 we know that: $E(X_i) = \sum_{j=1}^{6} j \frac{1}{6}$ $E(X_i) = 3.5$ So if we wish to find E(X) we are finding $E(\sum_{i=1}^{n} X_i)$. $E(X) = E(\sum_{i=1}^{n} X_i)$ $E(X) = \sum_{i=1}^{n} E(X_i)$ $E(X) = \sum_{i=1}^{n} 3.5$ E(X) = 3.5n

Chapter 5 Problem 5.1 page 212

$$f(x) = \begin{cases} c(1-x^2) & -1 < x < 1\\ 0 & otherwise \end{cases}$$

a. What is the value of c?

b. What is the cumulative distribution function?

Solution:

Part a.

We know that the area under a density curve should be 1. Thus: $\int_{-\infty}^{\infty} f(x) dx = 1$.

$$\begin{split} 1 &= \int_{-\infty}^{\infty} f(x) dx \\ 1 &= \int_{-1}^{-1} 0 dx + \int_{-1}^{-1} c(1-x^2) dx + \int_{-1}^{\infty} 0 dx \\ 1 &= \int_{-1}^{-1} c(1-x^2) dx \\ 1 &= c \int_{-1}^{-1} (1-x^2) dx \\ 1 &= c [x - \frac{x^3}{3}]|_{x=-1}^{x=-1} \\ 1 &= c [1 - \frac{1}{3}] - c [-1 - \frac{-1}{3}] \\ 1 &= c [\frac{4}{3}] \\ \boldsymbol{c} &= \frac{3}{4} \end{split}$$

Part b.

We know that the cumulative density function is defined as $F(x) = P(X \le x)$. Thus: $F(x) = \int_{-\infty}^{x} f(x) dx$. Which is the are under the density function to the left of x.

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

For $-\infty < x < -1$ the area below the curve to the left of x is just 0: $F(x) = \int_{-\infty}^{x} 0 dt$ F(x) = 0

For -1 < x < 1 the area below the curve to the left of x is: $F(x) = \int_{-\infty}^{-1} 0dt + \int_{-1}^{x} 0.75(1-t^2)dt$ $F(x) = 0.75 \int_{-1}^{t} (1-t^2)dt$ $F(x) = 0.75(t-\frac{t^3}{3})|_{t=-1}^{t=x}$ $F(x) = 0.75(x-\frac{x^3}{3}-(-1+1/3))$ $F(x) = 0.75x-\frac{x^3}{4}+\frac{1}{2}$

For $1 < x < \infty$ the area below the curve to the left of x is: $F(x) = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{1} 0.75(1-t^2) dt + \int_{1}^{t} 0 dt$ F(x) = 1

Thus:

$$F(x) = \begin{cases} 0 & x < -1\\ 0.75x - \frac{x^3}{4} + \frac{1}{2} & -1 \le x \le 1\\ 1 & x > 1 \end{cases}$$

Suggested Problem

Find the cumulative distribution function of the following density:

$$f(x) = \begin{cases} x & 0 < x < 1\\ 1 & 1 \le x < 1.5\\ 0 & otherwise \end{cases}$$

Solution:

We know that the cumulative density function is defined as $F(x) = P(X \le x)$. Thus: $F(x) = \int_{-\infty}^{x} f(x) dx$. Which is the are under the density function to the left of x.

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

For $-\infty < x < 0$ the area below the curve to the left of x is just 0: $F(x) = \int_{-\infty}^{x} 0 dt$ F(x) = 0

For 0 < x < 1 the area below the curve to the left of x is: $F(x) = \int_{-\infty}^{0} 0dt + \int_{0}^{x} tdt$ $F(x) = \int_{0}^{t} tdt$ $F(x) = \frac{t^{2}}{2}|_{t=0}^{t=x}$ $F(x) = \frac{x^{2}}{2} - \frac{0}{2}$ $F(x) = \frac{x^{2}}{2}$

For 1 < x < 1 the area below the curve to the left of x is: $F(x) = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{x} 1dt$ $F(x) = \frac{t^{2}}{2} |_{t=0}^{t=1} + t|_{t=1}^{t=x}$ $F(x) = \frac{1}{2} + (x - 1)$ $F(x) = x - \frac{1}{2}$

For $1.5 < x < \infty$ the area below the curve to the left of x is: $F(x) = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{1.5} 1dt \int_{1.5}^{x} 0dt$ $F(x) = \frac{t^{2}}{2} |_{t=0}^{t=1} + t|_{t=1}^{t=1.5}$ $F(x) = \frac{1}{2} + (1.5 - 1)$ F(x) = 1

Thus:

$$F(x) = \begin{cases} 0 & x < 0\\ \frac{x^2}{2} & 0 \le x \le 1\\ x - \frac{1}{2} & 1 < x \le 1.5\\ 1 & x > 1.5 \end{cases}$$