Tutorial 8

Ch. 4 and 5

Nov. 11

Summary of the discrete distributions:

\boldsymbol{X}	X Counts	$p(x) \quad V$	Values of X	$E(x)$	$V(x)$
Binomial	Number of sucesses in n fixed trials	$\binom{n}{x} p^{x}(1-p)^{n-x}$	$x \mathrm{x}=0,1, \ldots, n$	$n p$	$n \mathrm{n}(1-\mathrm{p})$
Poisson	Number of arrivals in a fixed time period	$\frac{e^{-\lambda} \lambda^{x}}{x!}$	$x=0,1,2, \ldots$	λ	λ
Geometric	Number of trials up through 1st success	$(1-p)^{x-1} p$	$x=1,2,3, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Negative Binomial	Number of trials up through kth success	$\binom{x-1}{k-1}(1-p)^{x-k} p$	$p^{k} \quad x=k, k+1, \ldots$	$\frac{\mathrm{k}}{\mathrm{p}}$	$\frac{\mathrm{k}(1-\mathrm{p})}{\mathrm{p}^{2}}$
Hyper geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$\begin{aligned} & \max (0, M+n-N) \\ & \leq x \leq \min (M, n) \end{aligned}$	$n * \frac{M}{N}$	$\frac{n M(N-M)(N-n)}{N^{2}(N-1)}$

Chapter 4 Example 9c page 157

Find the expected value of the sum obtained when n fair dice are rolled.

Chapter 5 Problem 5.1 page 212

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

a. What is the value of c ?
b. What is the cumulative distribution function?

Suggested Problem

Find the cumulative distribution function of the following density:

$$
f(x)= \begin{cases}x & 0<x<1 \\ 1 & 1 \leq x<1.5 \\ 0 & \text { otherwise }\end{cases}
$$

