Tutorial 8

Ch. 4 and 5 $\,$

Nov. 11

Summary	of	the	discrete	distri	butions:

X	X Counts	p(x)	Values of X	E(x)	V(x)
Binomial	Number of sucesses in n fixed trials	$\binom{n}{x}p^{x}(1-p)^{n-1}$	^{-x} x = 0,1,,n	np	np(1-p)
Poisson	Number of arrivals in a fixed time period	$\frac{e^{-\lambda}\lambda^{x}}{x!}$	x = 0,1,2,	λ	λ
Geometric	Number of trials up through 1st success	(1-p) ^{x-1} p	x = 1,2,3,	1 p	$\frac{1-p}{p^2}$
Negative Binomial	Number of trials up through kth success	$\binom{x-1}{k-1}(1-p)^{x-k}$	^k p ^k x = k, k + 1,	k p	$\frac{k(1-p)}{p^2}$
Hyper - geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	max (0,M + n – N ≤ x ≤ min (M,n)) n* <mark>M</mark>	<u>nM(N – M)(N – n)</u> N ² (N – 1)

Chapter 4 Example 9c page 157

Find the expected value of the sum obtained when n fair dice are rolled.

Chapter 5 Problem 5.1 page 212

$$f(x) = \begin{cases} c(1-x^2) & -1 < x < 1 \\ 0 & otherwise \end{cases}$$

- a. What is the value of c?
- b. What is the cumulative distribution function?

Suggested Problem

Find the cumulative distribution function of the following density:

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 1 & 1 \le x < 1.5 \\ 0 & otherwise \end{cases}$$