Assignment 2 / Due Wednesday July 4

Problem 1

Problem $2 \quad$ Show that the following equations can be solved for u and v as functions of x, y and z, near the point P_{0}, where $(x, y, z)=(2,0,1)$ and $(u, v)=(1,0)$. Find $\frac{\partial u}{\partial z}$ at this point.

$$
\left\{\begin{array}{l}
x e^{y}+u z-\cos v=2 \\
u \cos v+x^{2} v-y z^{2}=1
\end{array}\right.
$$

Problem 3 Find the maximum and minimum values for the curvature of the ellipse $x=a \operatorname{cost}$, $y=b \sin t$, where $a>b>0$.

