

Assignment 2 / Due Wednesday July 4

PROBLEM 1 Find the extreme values of $f(x, y, z) = x + y^2z$, subject to the constraints $y^2 + z^2 = 2$ and $z = 2$.

Solution and hint: If $g_1 = y^2 + z^2 - 2$ and $g_2 = z - 2$, then

$$\begin{cases} \nabla f = \lambda \nabla g_1 + \mu \nabla g_2 \\ g_1 = 0 \\ g_2 = 0 \end{cases}$$

From the first equation, we have $0 = 1$, which is impossible. Therefore, this system has no solution, so there are no maximum and minimum as well.

PROBLEM 2 Show that the following equations can be solved for u and v as functions of x , y and z , near the point P_0 , where $(x, y, z) = (2, 0, 1)$ and $(u, v) = (1, 0)$. Find $\frac{\partial u}{\partial z}$ at this point.

$$\begin{cases} xe^y + uz - \cos v = 2 \\ u \cos v + x^2 v - yz^2 = 1 \end{cases}$$

Solution and hint: We take the derivatives of the equations, with respect to u and v .

$$\begin{bmatrix} z & \sin v \\ \cos v & -u \sin v + x^2 \end{bmatrix}$$

At the point P_0 , this matrix is equal to

$$\begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix} \Rightarrow \det = 4 \neq 0$$

The matrix is invertible, and by the Implicit Function Theorem, we can solve for u and v . To find u_z , take the derivative of both the equations by implicit differentiation, and notice that, u and v , are functions of x , y and z . From the first equation, we have

$$u_z z + u - v_z \sin v = 0 \xrightarrow{\text{at } P_0} u_z + 1 = 0 \Rightarrow u_z = -1$$

Note that in general, we need to take the derivative of both the equations with respect to z , to obtain a system of two equations and two unknowns (u_z and v_z). Solving that system gives us the answer. Here the equations are special, and we didn't need to find the derivative of the second equation.

PROBLEM 3 Find the maximum and minimum values for the curvature of the ellipse $x = a \cos t$, $y = b \sin t$, where $a > b > 0$.

Solution and hint:

As a space curve, we can write c as $c(t) = (a \cos t, b \sin t, 0)$, and we have

$$\begin{aligned} c'(t) &= (-a \sin t, b \cos t, 0) \\ c''(t) &= (-a \cos t, -b \sin t, 0) \\ c'(t) \times c''(t) &= (0, 0, ab) \\ \kappa(t) &= \frac{|c'(t) \times c''(t)|}{|c'(t)|^3} \\ \kappa(t) &= \frac{ab}{(a^2 \sin^2 t + b^2 \cos^2 t)^{\frac{3}{2}}} \\ \kappa'(t) &= \frac{-3ab(a^2 - b^2)((a^2 \sin^2 t + b^2 \cos^2 t)^{\frac{1}{2}})}{(a^2 \sin^2 t + b^2 \cos^2 t)^3} \sin t \cos t \end{aligned}$$

Set the derivative equal to zero, we get $\sin t = 0$ or $\cos t = 0$. Plugging these points in $\kappa(t)$, we get the result.