Assignment 2 / Due Wednesday July 4

Problem 1

Problem 2

Problem 3

Find the extreme values of $f(x, y, z)=x+y^{2} z$, subject to the constraints $y^{2}+z^{2}=2$ and $z=2$.
Solution and hint: If $g_{1}=y^{2}+z^{2}-2$ and $g_{2}-2$, then

$$
\left\{\begin{array}{l}
\nabla f=\lambda \nabla g_{1}+\mu \nabla g_{2} \\
g_{1}=0 \\
g_{2}=0
\end{array}\right.
$$

From the first equation, we have $0=1$, which is impossible. Therefore, this system has no solution, so there are no maximum and minimum as well.

Show that the following equations can be solved for u and v as functions of x, y and z, near the point P_{0}, where $(x, y, z)=(2,0,1)$ and $(u, v)=(1,0)$. Find $\frac{\partial u}{\partial z}$ at this point.

$$
\left\{\begin{array}{l}
x e^{y}+u z-\cos v=2 \\
u \cos v+x^{2} v-y z^{2}=1
\end{array}\right.
$$

Solution and hint: We take the derivatives of the equations, with respect to u and v.

$$
\left[\begin{array}{cc}
z & \sin v \\
\cos v & -u \sin v+x^{2}
\end{array}\right]
$$

At the point P_{0}, this matrix is equal to

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 4
\end{array}\right] \Rightarrow \operatorname{det}=4 \neq 0
$$

The matrix is invertible, and by the Implicit Function Theorem, we can solve for u and v. To find u_{z}, take the derivative of both the equations by implicit differentiation, and notice that, u and v, are functions of x, y and z. From the first equation, we have

$$
u_{z} z+u-v_{z} \sin v=0 \xrightarrow{\text { at } P_{0}} u_{z}+1=0 \Rightarrow u_{z}=-1
$$

Note that in general, we need to take the derivative of both the equations with respect to z, to obtain a system of two equations and two unknowns $\left(u_{z}\right.$ and $\left.v_{z}\right)$. Solving that system gives us the answer. Here the equations are special, and we didn't need to find the derivative of the second equation.

Find the maximum and minimum values for the curvature of the ellipse $x=a \operatorname{cost}$, $y=b \sin t$, where $a>b>0$.

Solution and hint:

As a space curve, we can write c as $c(t)=(a \cos t, b \sin t, 0)$, and we have

$$
\begin{aligned}
c^{\prime}(t) & =(-a \sin t, b \cos t, 0) \\
c^{\prime \prime}(t) & =(-a \cos t,-b \sin t, 0) \\
c^{\prime}(t) \times c^{\prime \prime}(t) & =(0,0, a b) \\
\kappa(t) & =\frac{\left|c^{\prime}(t) \times c^{\prime \prime}(t)\right|}{\left|c^{\prime}(t)\right|^{3}} a b \\
\kappa(t) & \left.=\frac{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{\frac{3}{2}}}{\left(a^{2}\right.}+\sin ^{2} t b^{2}\right)^{\frac{1}{2}} \\
\kappa^{\prime}(t) & =\frac{-3 a b\left(a^{2}-b^{2}\right)\left(\left(a^{2} \sin ^{2} t+b^{2} t\right)^{3}\right.}{\left(\cos ^{2} \sin ^{2}\right.} \sin t
\end{aligned}
$$

Set the derivative equal to zero, we get $\sin t=0$ or $\cos t=0$. Plugging these points in $\kappa(t)$, we get the result.

