Assignment 3 / Due Monday July 30

Problem 1 Write the trigonometric Fourier series for $f(x)=x^{2}+x$ on $(-\pi, \pi)$.
Problem 2 Show that the following function has a local maximum at $(1,1,1)$.

$$
f(x, y, z)=4 x y z-x^{4}-y^{4}-z^{4}
$$

Problem 3 Let $D \subset \mathbb{R}^{3}$ be a bounded open set with smooth boundary surface ∂D. Define the admissible class \mathcal{A}_{0} of C^{1} functions $u: \bar{D} \rightarrow \mathbb{R}$, which vanish on the boundary. Let $\vec{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{1} vector field, and consider the functional

$$
I(u)=\iiint_{D} \frac{1}{2}|\nabla u-\vec{E}(x, y, z)|^{2} d x d y d z
$$

(a) Expand out $I(u+t v)$ for $u, v \in \mathcal{A}_{0}$, in powers of t.
(b) Use part (a) to find the Euler-Lagrange equation.

