Practice Problems

Problem $1 \quad$ Consider the surface $x^{4}+\left(x^{2}+y^{2}\right) z+z^{3}=1$.
(a) Determine for which points on the surface it is possible to solve for $z=g(x, y)$ locally.
(b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(x, y, z)=(1,2,0)$.

Problem 2 Suppose $c(t)$ is a path with velocity vector $v(t)=c^{\prime}(t)=(3 t \cos t, 5 t \sin t, 4 t \cos t)$ with $t \geq 0$.
(a) Calculate the unit tangent $T(t)$, normal $N(t)$, and curvature $\kappa(t)$, for $t>0$.
(b) Is the path smooth at $t=0$? Explain your answer.

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7
Find the linearization at the given point:

$$
\begin{aligned}
& f(x, y)=e^{x} \cos y \quad(x, y)=(0,0),\left(0, \frac{\pi}{2}\right) \\
& g(x, y)=(x+y+2)^{2} \quad(x, y)=(0,0),(1,2)
\end{aligned}
$$

Problem 8
Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined as $F(x)=\|x\|^{2}$. Use the definition of differentiability to show that F is differentiable at every $x \in \mathbb{R}^{n}$, and $D F(x)=\left[\begin{array}{llll}2 x_{1} & 2 x_{2} & \cdots & 2 x_{n}\end{array}\right]$.

If $y=f(x)$ is twice differentiable, show its curvature is

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{\frac{3}{2}}}
$$

Use the formula to find the curvature of $y=\ln (\cos x)$. Show the curvature is zero in an inflection point.

Find T, N, B, κ and τ, for the following curves:

$$
\begin{aligned}
& r_{1}(t)=\left(e^{2} \cos t, e^{t} \sin t, 2\right) \\
& r_{2}(t)=(\cosh t,-\sinh t, t) \\
& r_{3}(t)=(\cos t+t \sin t, \sin t-t \cos t, 3) \\
& r_{4}(t)=\left(\cos ^{3} t, \sin ^{3} t, 0\right)
\end{aligned}
$$

Find the limit and prove it by definition:

$$
\begin{array}{ll}
\text { 1) } & \lim _{(x, y) \rightarrow\left(\frac{\pi}{2}, 0\right)} \frac{\cos y+1}{y-\sin x} \\
\text { 2) } & \lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}+5}{x^{2}+y^{2}+2} \\
\text { 3) } & \lim _{(x, y) \rightarrow(0,0)} \frac{x-y+2 \sqrt{x}-2 \sqrt{y}}{\sqrt{x}-\sqrt{y}}
\end{array}
$$

Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$, that are closest to and farthest from the point $(3,1,-1)$.

Problem 9 Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

$$
\begin{array}{rlc}
f_{1}(x, y, z) & =x y z, \quad x^{2}+2 y^{2}+3 z^{2}=6 \\
f_{2}(x, y, z, t) & =x+y+z+t, & x^{2}+y^{2}+z^{2}+t^{2}=1 \\
f_{3}(x, y, z) & =y z+x y, \quad x y=1, y^{2}+z^{2}=1
\end{array}
$$

