

Practice Problems

PROBLEM 1 Consider the surface $x^4 + (x^2 + y^2)z + z^3 = 1$.
 (a) Determine for which points on the surface it is possible to solve for $z = g(x, y)$ locally.
 (b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(x, y, z) = (1, 2, 0)$.

PROBLEM 2 Suppose $c(t)$ is a path with velocity vector $v(t) = c'(t) = (3t \cos t, 5t \sin t, 4t \cos t)$ with $t \geq 0$.
 (a) Calculate the unit tangent $T(t)$, normal $N(t)$, and curvature $\kappa(t)$, for $t > 0$.
 (b) Is the path smooth at $t = 0$? Explain your answer.

PROBLEM 3 Let $F : \mathbb{R}^n \rightarrow \mathbb{R}$ be defined as $F(x) = \|x\|^2$. Use the definition of differentiability to show that F is differentiable at every $x \in \mathbb{R}^n$, and $DF(x) = [2x_1 \ 2x_2 \ \cdots \ 2x_n]$.

PROBLEM 4 If $y = f(x)$ is twice differentiable, show its curvature is

$$\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

Use the formula to find the curvature of $y = \ln(\cos x)$. Show the curvature is zero in an inflection point.

PROBLEM 5 Find T , N , B , κ and τ , for the following curves:

$$\begin{aligned} r_1(t) &= (e^2 \cos t, e^t \sin t, 2) \\ r_2(t) &= (\cosh t, -\sinh t, t) \\ r_3(t) &= (\cos t + t \sin t, \sin t - t \cos t, 3) \\ r_4(t) &= (\cos^3 t, \sin^3 t, 0) \end{aligned}$$

PROBLEM 6 Find the limit and prove it by definition:

$$\begin{aligned} 1) \quad & \lim_{(x,y) \rightarrow (\frac{\pi}{2}, 0)} \frac{\cos y + 1}{y - \sin x} \\ 2) \quad & \lim_{(x,y) \rightarrow (0,0)} \frac{3x^2 - y^2 + 5}{x^2 + y^2 + 2} \\ 3) \quad & \lim_{(x,y) \rightarrow (0,0)} \frac{x - y + 2\sqrt{x} - 2\sqrt{y}}{\sqrt{x} - \sqrt{y}} \end{aligned}$$

PROBLEM 7 Find the linearization at the given point:

$$\begin{aligned} f(x, y) &= e^x \cos y \quad (x, y) = (0, 0), (0, \frac{\pi}{2}) \\ g(x, y) &= (x + y + 2)^2 \quad (x, y) = (0, 0), (1, 2) \end{aligned}$$

PROBLEM 8 Find the points on the sphere $x^2 + y^2 + z^2 = 4$, that are closest to and farthest from the point $(3, 1, -1)$.

PROBLEM 9

Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

$$\begin{aligned}f_1(x, y, z) &= xyz, & x^2 + 2y^2 + 3z^2 &= 6 \\f_2(x, y, z, t) &= x + y + z + t, & x^2 + y^2 + z^2 + t^2 &= 1 \\f_3(x, y, z) &= yz + xy, & xy &= 1, \quad y^2 + z^2 &= 1\end{aligned}$$