MATH 3MB3 FALL 2016 SAMPLE MIDTERM 1

Question 1. Consider the state variable $N(t)$ given by

$$
N(t+1)=1+N(t)-\frac{1}{4}(N(t))^{2} .
$$

a) Classify the model.
b) Find the fixed points.
c) Determine the stability of each fixed point.

Question 2. Consider $N(t)$ given by $N(t+1)=1-2|N(t)-0.5|$, where $|N(t)-0.5|$ denotes the absolute value of $N(t)-0.5$.
a) Classify the model.
b) Find the fixed points.
c) Determine the stability of each fixed point.

Hint: consider $N(t)>0.5$ and $N(t)<0.5$ separately.

Question 3. Consider $\vec{x}(t)$ determined by $\vec{x}(t+1)=A \vec{x}(t)$ where

$$
\vec{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right], \quad A=\left[\begin{array}{cc}
1 / 2 & -1 \\
a & -1 / 2
\end{array}\right] .
$$

Here a is a parameter. Assume now that $a \neq-3 / 4$.
a) Classify the model.
b) Find the fixed points.
c) Determine the stability of each fixed point.
d) Comment on the case $a=-3 / 4$.

Question 4. Consider $x(t)$ given by

$$
\frac{d x}{d t}=1-x^{2}
$$

a) Classify the model.
b) Find its fixed points.
c) Determine the stability of each fixed point.
d) Find the solution $x(t)$ by solving the equation for an initial condition $x(0)$.
e) Make a phase diagram and confirm your conclusions about stability.

